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1. Introduction

Programming languages are an inexhaustible topic 
of debate in professional circles today, discussing 
about which programming language is better and 
why a particular programmer or company has 
chosen to write a program in it. Scientists from 
various fields often use different programming 
languages, claiming that the one they use is 
the best. Programmers frequently create new 
programming languages in order to solve practical 
problems more easily or quickly. Thousands 
of different programming languages have been 
created in recent years. Some languages are more 
commonly used in the education of programmers, 
while others are utilized in specific areas of 
science and research. Each language has its own 
advantages and disadvantages. This paper provides 
a comparative analysis of various properties and 
characteristics of some popular programming 
languages: VisualBasic, C++ and Python, as well 
as the VEEPro programming language, which 
is highly specialized for communication with 
programmable measurement instruments. VEEPro 
is a programming language primarily designed for 
programming connection between computers and 
measurement instruments from Hewlett Packard, 

then Agilent, and now Keysight. However, this 
programming language is also successfully used 
for programming connection with programmable 
measurement instruments from other well-known 
global manufacturers. Programming in the VEEPro 
programming language is done using ready-made 
objects that are placed on the workspace and then 
connected to each other by drawing lines dragging 
the mouse from the output of one object to the 
input of another. This diversity of programming 
languages primarily aims to show teachers who 
teach programming in schools and universities 
the fundamental differences in syntax among 
programming languages and which programming 
languages are simpler in the initial stages of learning 
programming. For the purposes of this paper, 
programs are written to compare the execution 
speed of these programs for a large number of 
cycles. Programs for adding and dividing numbers, 
calculating the sine of an angle, computing the 
logarithm of natural numbers, sorting an array of 
numbers, as well as writing and reading data into a 
text file and an Excel document are created. For each 
program, a series of 10 measurements of program 
duration was conducted and the standard deviation 
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of the dispersion of time measurement results, 
as well as the relative deviation of the standard 
deviation from the mean value of measurements 
were calculated. Multi-criteria decision-making 
(MCDM) represents a field that is crucial for 
making precise and correct decisions in various 
fields of activity, as supported by studies (Petrovas 
et al., 2023; 2024; Baydas et al., 2024).

After the introduction, the paper is structured into 
five other sections. Section 2 presents a review 
of the current state in the field from the point of 
view of programming language analysis. Section 
3 provides a detailed development and extension 
of the OPARA method with TFNs, while Section 
4 introduces the formation of the MCDM model, 
a team of experts for group decision-making, as 
well as the final results of the model. In Section 5, 
a comparative analysis and an examination of the 
impact of simulated values of weighting coefficients 
are conducted. Finally, the last section Section 6, 
summarizes the findings through the conclusion.

2. Literature Review

Since the advent of computers and programming 
languages, many programmers have been engaged 
in comparing programming languages. This paper 
will provide a brief overview of some articles 
that have addressed the comparison of various 
programming languages. The study by Naim et al. 
(2010) presents a survey focusing on a selection of 
programming languages, including C++, C#, Java, 
JavaScript, AspectJ, Haskell, PHP, Scala, Scheme, 
and BPEL. The study provides a comparative 
analysis of these ten languages, evaluated against 
several criteria such as secure programming 
practices, web application development, web 
service composition, object-oriented programming 
(OOP) abstractions, reflection, aspect-oriented 
programming, functional programming, 
declarative programming, batch scripting, and 
user interface prototyping. The languages are 
analyzed based on these parameters and the degree 
of support each provides to the others. 

The article of Stein & Geyer-Schulz (2013) 
examined C++, Java, C#, F#, and Python in a 
controlled environment where a graph clustering 
task was developed and executed for each 
language. Their paper outlines the problem being 
addressed and presents an in-depth exploration 
of the various characteristics of the selected 
languages. The results reveal that C++ offers the 
highest performance for the given task, though 

Java, C#, and F# perform similarly under specific 
conditions. Additionally, the study highlights the 
potential for modern languages like Python and 
F# to reduce the overall codebase size. 

In the paper of Zakaria et al. (2015), a comparative 
analysis of six programming languages, namely 
C++, PHP, C#, Java, Python, and Visual Basic 
(VB) is conducted. The study evaluates these 
languages based on various attributes, including 
reusability, portability, reliability, availability 
of compilers and tools, familiarity, efficiency, 
readability, and expressiveness. 

The research conducted by Parveen & Fatima 
(2016) presents a comparative analysis of three 
widely utilized programming languages: Java, C#, 
and C++. The comparison is made with respect 
to several criteria, including syntax, number lines 
of code, compilation time, machine dependency, 
execution time, speed (or efficiency), and 
flexibility. The authors investigate these languages 
in relation to the specified criteria, assessing the 
degree of support each language provides to 
the others. The paper’s objective is to deliver a 
thorough comparative understanding of the selected 
languages. By employing a straightforward 
common program across all languages, the 
researchers facilitate effective comparisons. 
Ultimately, the goal is to assist programmers in 
recognizing and exploring the most favorable 
attributes of high-level programming languages.

In his paper, Pejovic (2019) explores the use of 
the Python programming language for automating 
measurement systems and developing virtual 
measurement instruments. The study highlights 
the availability of various Python modules for 
specific tasks, which can be sourced from the 
Python Standard Library or external repositories, 
with some modules specifically designed for 
facilitating communication with instruments. The 
applications of Python began in the field of power 
electronics and have successfully expanded into 
metrology, the design of a DC voltage calibrator, 
and educational contexts. The methodologies 
were utilized to modernize two courses and 
for measuring system frequency response in 
electronics, acoustics, and control system design. 
The study concludes that Python serves as an 
effective tool for building automated measurement 
systems and virtual instruments, thanks to its 
modular architecture and the flexibility it offers 
for module contributions. When choosing a 
programming tools, the focus has been on 
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promoting general-purpose tools and techniques 
to reduce the need for specialized knowledge. 

The process of selecting a programming language 
is fundamentally an MCDM (Multi-Criteria 
Decision-Making) problem, as noted by Mishra et 
al. (2020). To address the uncertainties inherent 
in MCDM scenarios, fuzzy set theory serves as a 
valuable tool. Interval-valued intuitionistic fuzzy 
sets (IVIFSs) offer enhanced flexibility in modeling 
uncertainty compared to traditional fuzzy sets 
(FSs), as they incorporate interval membership, 
non-membership, and hesitancy functions. This 
paper introduces a novel integrated approach based 
on the multi-attributive border approximation 
area comparison (MABAC) method for tackling 
MCDM problems utilizing IVIFSs. The proposed 
method incorporates IVIFS operators, modifies 
the classical MABAC approach, and introduces 
a new process for calculating criteria weights. 
To determine these weights, the subjective 
assessments from decision experts are combined 
with objective weights derived from a proposed 
entropy measure and divergence techniques, 
yielding more realistic weight values. The 
analysis demonstrates that merging subjective and 
objective weights can enhance the stability of the 
proposed method across varying criteria weights. 
Additionally, the paper compares the outcomes 
of the proposed approach with existing methods 
to validate its effectiveness. This comparative 
analysis reveals that the proposed method is both 
efficient and aligns well with other methodologies. 

In their research, Pereira et al. (2021) conduct 
a comparative analysis of a wide range of 
programming languages with a focus on their 
efficiency from an energy consumption perspective. 
Their objective is to develop and evaluate 
various rankings for programming languages 
based on energy efficiency metrics. Their paper 
applied rigorous and systematic methodologies 
to address ten well-defined programming 
challenges, utilizing 27 programming languages 
sourced from the renowned Computer Language 
Benchmark Game repository. The findings of their 
study yield significant insights, including how the 
energy consumption patterns of slower and faster 
languages may differ, as well as the impact of 
memory usage on overall energy consumption. 
Additionally, they offer a straightforward approach 
for leveraging these results to assist software 
engineers and practitioners in making informed 
choices regarding programming languages when 
energy efficiency is a critical consideration. 

In his paper, Filip (2021) provides a concise 
historical overview of the role that computers and 
automation have played in fostering new working 
methods while simultaneously enhancing the 
quality of life for individuals. He emphasizes that 
this evolution has been further accelerated by the 
current efforts people are undertaking to adapt to 
and alleviate the negative effects of the ongoing 
pandemic, striving to return to a state of normalcy. 

In their research, Ali & Qayyum (2021) 
concentrate on the four programming languages: 
C, C++, Python, and Java, evaluating them based 
on the criteria of time, speed, and simplicity. They 
utilize a single optimized pseudo-code example 
to implement code in each of these programming 
languages, adhering to their specific syntax and 
conventions. The findings of this comparison 
are summarized in a table to facilitate the 
understanding of the results for the reader. 

Chiu et al. (2022) conduct a thorough performance 
analysis and comparison of Java, JavaScript, Go, 
and Python, utilizing C++ as a reference point. 
They meticulously instrument the runtimes of 
these languages, allowing developers to accurately 
gauge the cycle count required to execute 
any bytecode instruction or to determine the 
overhead associated with dynamic type checking 
in JavaScript. This methodology facilitates the 
precise identification of overhead sources. The 
authors provide a comprehensive examination 
of completion times, resource utilization, and 
scalability across the analyzed languages. 

Languages developed in the 1950s, such as 
Fortran, remain in active use today, owing to their 
versatility and foundational role in supporting 
a substantial portion of the legacy systems and 
applications in our digital landscape. Since 
that era, numerous additional languages have 
emerged, exhibiting increasing diversity over 
time. Modern languages such as C, C++, Python, 
Java, JavaScript, and PHP have greatly enhanced 
efficiency and are utilized across a wide array 
of applications. Sakharkar (2023) emphasizes 
that the proliferation of programming languages 
not only enhances accessibility but also exposes 
applications to significant security challenges. 
These security concerns differ in terms of 
prevalence and language specificity. 

Zakeri-Nasrabadia et al. (2023) conduct a 
systematic literature review and meta-analysis 
focused on techniques for measuring and 
evaluating code similarity, aiming to clarify 
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existing methodologies and their attributes across 
various applications. Their research began with a 
search of four digital libraries, resulting in an initial 
pool of over 10,000 articles, which was narrowed 
down to 136 primary studies relevant to the topic. 
A thorough examination of these studies reveals 80 
software tools that employ eight distinct techniques 
across five application domains. Notably, nearly 
49% of these tools are tailored for Java programs, 
while 37% are compatible with C and C++. 

In contrast, numerous programming languages 
receive insufficient support in this area. Jäger 
& Gümmer (2023) present PythonDAQ, an 
open-source Python package designed for the 
acquisition, visualization, storage, and post-
processing of measurement data. This code enables 
the acquisition of data from any sensor with digital 
output, facilitates online calculations, and allows 
for the storage of both measured and computed 
data. In the concluding section, the authors compare 
PythonDAQ with commercial data acquisition 
(DAQ) solutions and the data acquisition software 
utilized by a leading aero-engine manufacturer. 

In their study, Alves et al. (2023) analyze the 
typical linguistic features found in six prominent 
programming languages: C, C++, C#, Java, 
Python, and Haskell. Then they design and 
implement a survey aimed at gaining a deeper 
understanding of the intrinsic relationship 
between programmers and their primary tools 
programming languages. To begin interpreting 
the results, the authors focus on the first question, 
which assesses respondents’ familiarity with the 
selected languages. Java, C, and Python emerged 
as the most recognized, with 95%, 88%, and 
93% of participants indicating they could use 
these languages to some extent. This suggests 
that inquiries related to Java, C, and Python 
may yield more significant insights into their 
defining characteristics. In contrast, familiarity 
with Haskell, C++, and C# was notably lower, 
with only 47%, 45%, and 31% of respondents, 
respectively, claiming they were at least somewhat 
proficient in these languages.

Katzy et al. (2023) report that experiments indicate 
a close proximity in token representation among 
programming languages such as C++, Python, and 
Java, while tokens in languages like Mathematica 
and R demonstrate considerable dissimilarity. 
Their findings imply that such variations may lead 
to performance issues when handling multiple 
languages. Consequently, the authors advocate for 

the utilization of their similarity measure to guide 
the selection of a diverse range of programming 
languages during the training and evaluation of 
future models. 

Padilla et al. (2023) explore the application of 
ChatGPT in the educational sector, noting its 
potential to significantly enhance teaching and 
learning processes. However, they identify a 
gap in understanding its implementation within 
programming courses in computing programs. 
This study examines the advantages, challenges, 
and issues associated with utilizing ChatGPT, a 
language AI model, for programming tasks. The 
findings highlight several benefits, such as improved 
coding efficiency, assistance in comprehending 
complex code, and its role as a problem-solving tool. 
Conversely, the research underscores significant 
challenges, including concerns about data privacy, 
ethical implications, tendencies toward plagiarism, 
and limitations in contextual comprehension.

In their study, Sambucci et al. (2023) analyze  
research showing that while AI enhances the 
efficiency of critical infrastructures, it also 
introduces vulnerabilities to sophisticated attacks. 
To address these risks, the authors emphasize the 
need for proactive security measures, including 
incident response and collaboration, to safeguard 
AI-driven systems.

3. Extension of the OPARA Method 
with TFNs

The OPARA method is a new MCDM tool 
developed by Keshavarz-Ghorabaee et al. (2024), 
which has been modified and extended with 
TFNs (triangular fuzzy numbers) in this paper. 
The algorithm of the Fuzzy OPARA method is 
presented through the following steps.

Step 1: Creation of the initial fuzzy decision 
matrix with elements aij

Step 2: Calculation of parameters based on which 
the subsequent normalization of the initial fuzzy 
decision matrix can be performed, whereby the 
values α = 5 and β = 0.7.

a.	 calculation of values that represent the 
difference between the maximum and 
minimum values ( )jm , the sum of the 
minimum and maximum values, ( )'jm , and 
the quotient of these two previously calculated 
values ( )jb .
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Step 3: In this step, it is necessary to modify 
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and benefit (B).
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Step 4: In this step, a parameter jh  is introduced, 
defined as (1,1,1) by decision-makers, based 
on the original OPARA method from the paper 
(Keshavarz-Ghorabaee et al., 2024). After that, the 
following equations are defined, again depending 
on the type of criteria.
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Step 5: Creation of the aggregated value jk  
between ijg  and iji  by introducing a coefficient 
ω which ranges from 0-1.

( ) ( )( )1ij ij ijk g iω ω= ⊗ + − ⊗
                      

(12)

Step 6: Summing the elements of the fuzzy matrix 
ijk  by columns, obtaining then:

1
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where m is the number of criteria.

Step 7: Ranking the alternative solutions based on 
the final values obtained as follows:
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where n is the number of alternatives, and the 
highest value represents the best-ranked alternative.

4. Forming a MCDM Model

Due to the inability to present all experimental 
measurements and results for the eighth, ninth 
and tenth criteria, a brief description of the 
measurement procedure is provided below. The 
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mentioned measurements refer to the results 
of comparing the execution speed for the same 
program code in four programming languages, 
which were compared with each other. Each 
program was run ten times on the same computer 
using the Windows operating system. Based on 
the ten measurements of program execution time, 
the mean value and standard deviation for the ten 
measurements were calculated. The measurements 
displayed the comparative results of measuring the 
time taken to perform addition, division of two 
numbers, calculate the logarithm base 10, compute 
the sine of an angle in a double for loop, and write, 
read and sort a series of numbers. 

After defining all the measurements and 
providing the comparative values for the four 
programming languages, which essentially 
represent alternatives in this MCDM model: 
VisualBasic (A1), C++ (A2), Python (A3), and 
VEEPro (A4), a list of criteria was defined on the 
basis of which the programming languages were 
evaluated, as shown in Table 1. 

In the study comparing four programming 
languages, a total of 20 experts participated, 
including 9 university professors, 6 university 
associates and 5 experts from industry who 
are engineers.

Among experts, 3 hold the title of full professor, 5 
are associate professors, 1 is an assistant professor, 
4 are senior assistants, and 2 are assistants. Some 
of the university experts are engaged in pure 

programming, while others work in electrical 
measurements and use various programming 
languages to manage measuring instruments and 
devices. The experts from industry are engineers 
who deal with programming related to measuring 
devices and control systems. The range of work 
experience of engineers is from 10 to 30 years, and 
they have used various programming languages 
in their work so far. Each expert conducted an 
individual evaluation of the importance of the 
criteria, and later the programming languages as 
potential alternatives. To determine the weights 
of the criteria, the IMF SWARA was applied 
(Vrtagić et al., 2021; Stević et al., 2022; Badi 
& Bouraima, 2023) in combination with the 
fuzzy Bonferroni operator (Hadžikadunic et al., 
2023; Radovanović et al., 2023), resulting in the 
following calculated weights:

w1=(0.093,0.102,0.112),w2=(0.103,0.112,0.122),
w3=(0.123,0.132,0.142),w4=(0.087,0.097,0.107),
w5=(0.098,0.107,0.118),w6=(0.084,0.095,0.106), 
w7=(0.081,0.091,0.102),w8=(0.093,0.103,0.113),
w9=(0.068,0.078,0.089),w10=(0.056,0.066,0.076)

This means that the third criterion, which 
represents development speed, is the most 
dominant in the eyes of programmers, while 
the tenth criterion, which refers to the speed of 
working with large datasets, is the least important. 
The next phase of applying the MCDM model 
involves processing data for the evaluation of 
programming languages by 20 experts who 
participated in the group decision-making. The 

Table 1. Title and brief description of 10 criteria for comparing programming languages

Name and Brief Description of Criteria
C1 Popularity - which of the considered programming languages are studied at the surveyed faculties.
C2 Ease of Learning - how quickly or easily things that have never been used before can be understood.

C3 Development Speed - how quickly a programmer can create a program. This usually shows how fast a programmer 
can code using a specific programming language.

C4
Readability – it refers to how easily a reader comprehends a written text. In the context of natural language, 
the readability of a text is influenced by its content, the complexity of vocabulary and syntax, as well as by its 
presentation, which includes typographical elements such as font size, line height, and line length.

C5 Efficiency - the capacity to minimize the waste of materials, energy, time, and money during the development of a 
program. More generally, it refers to the ability to do the job well, successfully, and without wasting time.

C6 Tool Support - the extent to which a programming language provides ready-made programming tools.)

C7
Portability - a parameter of a computer program that indicates whether the program can be used on multiple 
operating systems. Portability is essentially the task of adapting any job required to build a computer program that 
operates in a new environment.

C8 Speed of Mathematical Function Processing
C9 Speed of Data Writing and Reading 
C10 Speed of Working with Large Datasets
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evaluation was conducted using a linguistic scale 
in order to create a conversion to TFNs through 
processing. The obtained values of the initial TFN 
matrix (Table 2) were also averaged using the 
fuzzy Bonferroni operator. 

In the following, the algorithm of the fuzzy 
OPARA method is explained through a partial 
calculation. First, the values are calculated:

( )
( )

1 2.973,4.373,5.787

5.583 2.610,6.586 2.213,7.558 1.801

m = =

− − −

( )
( )

1 ' 7.385,8.799,10.198

5.583 1.801,6.586 2.213,7.588 2.610

m = =

+ + +

( )1
2.973 4.373 5.7870.292,0.497,0.784 , ,

10.198 8.799 7.385
b  = =  

 

( )1 24.135,28.558,32.962c =

( )1 27.917,32.930,37.940d =

( )1
24.135 28.558 32.9620.636,0.867,1.181 , ,
37.940 32.930 27.917

e  = =  
 

( )1 1.000,1.000,1.181f =  since

( )1 0.292,0.497,0.784b = , which means that l and 
m of this number are < β = 0.7, and u > β = 0.7. It is 
important to note that all criteria are of the benefit 
type, so Equation (8) is applied for normalization. 

1 1 1.181

11
2.254 2.871 3.4740.093 ,0.102 ,0.112
7.588 6.586 5.583

g
      =              

1 1 1

11
2.254 2.871 3.4740.093 ,0.102 ,0.112
7.588 6.586 5.583

i
      =              

( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

11 0.027,0.044,0.067

0.5 0.027 1 0.5 0.027

0.5 0.044 1 0.5 0.044

0.5 0.064 1 0.5 0.070

k = =

⊗ + − ⊗

⊗ + − ⊗

⊗ + − ⊗

( )
( )
( )
( )

1 0.179.0.274,0.418

0.027 0.068 0.062 0.022

0.044 0.102 0.094 0.034

0.067 0.157 0.145 0.049

l = =

+ + +

+ + +

+ + +

( )1 0.224,0.561,1.387o =

After the calculation was complete, the obtained 
results are shown in Table 3.

The obtained results indicate that within the 
defined set of elements of the MCDM model, 
C++ represents the programming language with 
the best-rated performance by the experts involved 
in the research.

5. Sensitivity and Comparative 
Analysis

Through this section of the study, an analysis of 
the change in the impact of weighting coefficients 
(Puška et al., 2024) on the ranking of programming 
languages was created, as such analysis provides 
decision-makers with the opportunity to make a 
better decision. This allows for the consideration 
of certain future impacts and the modeling of 
results accordingly. 

Table 2. Initial TFN matrix in the Fuzzy OPARA method

C1 C2 … C9 C10
A1 2.254 2.871 3.474 3.947 4.958 5.965

.

.

.

4.940 5.942 6.943 2.531 3.549 4.559
A2 5.583 6.586 7.588 4.878 5.827 6.775 5.095 6.096 7.096 5.046 6.047 7.047
A3 5.063 6.069 7.074 5.173 6.178 7.181 5.301 6.315 7.325 3.284 4.288 5.290
A4 1.801 2.213 2.610 3.333 4.172 5.005 2.830 3.717 4.603 4.707 5.652 6.596
max 5.583 6.586 7.588 5.173 6.178 7.181 5.301 6.315 7.325 5.046 6.047 7.047
min 1.801 2.213 2.610 3.333 4.172 5.005 2.830 3.717 4.603 2.531 3.549 4.559

Table 3. Results of the Fuzzy OPARA method

Crisp Rank
A1 0.224 0.561 1.387 0.724 3
A2 0.334 0.780 1.868 0.994 1
A3 0.305 0.720 1.730 0.918 2
A4 0.173 0.439 1.087 0.566 4
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Figure 1 shows the weights of the parameters 
across 100 scenarios in which different values of 
the criteria are simulated in such a way that the 
weighting coefficients change from 5% to 95%.

It is important to note that there are no changes in 
the sensitivity analysis, i.e., that the initial results 
are identical across all 100 scenarios. This result is 
a consequence of the small number of alternative 
solutions on the one hand, and of the double-digit 
number of criteria on the other.

The next step involves creating a comparative 
analysis (Figure 2) with four other MCDM 
methods: Fuzzy Range of Value ROV (Ristić 
et al., 2024), Fuzzy MARCOS Measurement 

Alternatives and Ranking according to 
Compromise Solution (Damjanović et al., 2022), 
Fuzzy Simple Additive Method (Kabassi et al., 
2020), and Fuzzy WASPAS weighted aggregated 
sum product assessment (Turskis et al., 2015).

The results of the comparison with additional four 
MCDM methods show the stability of the results 
and an identical ranking to that of the Fuzzy 
OPARA method.

In addition, it is important to emphasize that 
the analysis of the change in the coefficient ω 
was also conducted across all integer values 
in the range within 0-1, and that the results  
remained unchanged.

Figure 1. Values of weighting coefficients through 100 simulated scenarios

Figure 2. Ranks in comparative analysis
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6. Conclusion

Through the research presented in this paper, 
four programming languages were analyzed 
by comparing the performance measurements 
of various operations. Based on this, certain 
quantitative indicators were obtained and included 
in a list of 10 criteria used by 20 experts to evaluate 
the programming languages. The contribution of 
this paper is reflected in the modification and 
extension of the OPARA method with TFNs, as 
well as in the extensive comparative analysis 
of programming languages, which partly serves 
as input parameters in the MCDM model, as 

decision-makers were provided with the results of 
the performance measurements of the operations. 
The expert team and the applied Fuzzy OPARA 
method demonstrate that, among the considered 
set of languages, C++ shows the best performance 
according to the established criteria, which was 
verified through sensitivity analysis, comparative 
analysis with four other MCDM methods, and 
variations in the coefficient ω. Future research 
based on this study implies the expansion of the 
list of experts in group decision-making, a greater 
number of simulation measurements related to the 
performance of specific operations, as well as the 
possibility of applying other evaluation tools.
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