
5

ICI Bucharest © Copyright 2012-2024. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

Programming languages are an inexhaustible topic
of debate in professional circles today, discussing
about which programming language is better and
why a particular programmer or company has
chosen to write a program in it. Scientists from
various fields often use different programming
languages, claiming that the one they use is
the best. Programmers frequently create new
programming languages in order to solve practical
problems more easily or quickly. Thousands
of different programming languages have been
created in recent years. Some languages are more
commonly used in the education of programmers,
while others are utilized in specific areas of
science and research. Each language has its own
advantages and disadvantages. This paper provides
a comparative analysis of various properties and
characteristics of some popular programming
languages: VisualBasic, C++ and Python, as well
as the VEEPro programming language, which
is highly specialized for communication with
programmable measurement instruments. VEEPro
is a programming language primarily designed for
programming connection between computers and
measurement instruments from Hewlett Packard,

then Agilent, and now Keysight. However, this
programming language is also successfully used
for programming connection with programmable
measurement instruments from other well-known
global manufacturers. Programming in the VEEPro
programming language is done using ready-made
objects that are placed on the workspace and then
connected to each other by drawing lines dragging
the mouse from the output of one object to the
input of another. This diversity of programming
languages primarily aims to show teachers who
teach programming in schools and universities
the fundamental differences in syntax among
programming languages and which programming
languages are simpler in the initial stages of learning
programming. For the purposes of this paper,
programs are written to compare the execution
speed of these programs for a large number of
cycles. Programs for adding and dividing numbers,
calculating the sine of an angle, computing the
logarithm of natural numbers, sorting an array of
numbers, as well as writing and reading data into a
text file and an Excel document are created. For each
program, a series of 10 measurements of program
duration was conducted and the standard deviation

Studies in Informatics and Control, 33(4) 5-14 December 2024

https://doi.org/10.24846/v33i4y202401

Novel Fuzzy MCDM Model for Comparison of
Programming Languages

Srđan DAMJANOVIĆ1, Predrag KATANIĆ1, Edmundas Kazimieras ZAVADSKAS2*,
Željko STEVIĆ3,4, Branko KRSMANOVIĆ1, Nataša DJALIĆ3

1 Faculty of Business Economics, University of East Sarajevo, Bijeljina, 1C Semberskih Ratara,
76300, Bijeljina, Bosnia and Herzegovina
srdjan.damjanovic@fpe.ues.rs.ba, predrag.katanic@fpe.ues.rs.ba,
branko.krsmanovic@fpe.ues.rs.ba
2 Institute of Sustainable Construction, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
edmundas.zavadskas@vilniustech.lt (*Corresponding author)
3 Faculty of Transport and Traffic Engineering, University of East Sarajevo, 52 Vojvode Mišića,
74000 Doboj, Bosnia and Herzegovina
zeljko.stevic@sf.ues.rs.ba, natasa.djalic@sf.ues.rs.ba
4 College of Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Republic of Korea
172317@korea.ac.kr

Abstract: In the last twenty years, a large number of new programming languages have emerged, along with the modernization
and evolution of existing ones. The selection of an appropriate programming language to solve a specific problem is often
a topic of debate among university professors and programmers. The development of new programming languages is also
influenced by advancements in computer hardware, communication, and measurement equipment. This paper aims to explore
methods for qualitative comparison of different programming languages. A comparative analysis is presented among four
programming languages: VisualBasic, C++, Python, and VEEPro. A new extension of OPARA (Objective Pairwise Adjusted
Ratio Analysis) was created for ranking programming languages, while the IMF SWARA (Improved Fuzzy Stepwise Weight
Assessment Ratio Analysis) was used to determine the importance of 10 criteria. Since this involves group decision-making
with the participation of 20 experts, their preferences were averaged using the Bonferroni operator. The results of the created
model show that C++ is the programming language with the best performance among the set of considered alternatives and
criteria. To validate the model, verification analyses were defined, confirming the initial results.

Keywords: Fuzzy OPARA, Programming Language, IMF SWARA, MCDM.

https://www.sic.ici.ro

6 Damjanović S., Katanić P., Zavadskas E. K., Stević Ž., Krsmanović B., Djalić N.

of the dispersion of time measurement results,
as well as the relative deviation of the standard
deviation from the mean value of measurements
were calculated. Multi-criteria decision-making
(MCDM) represents a field that is crucial for
making precise and correct decisions in various
fields of activity, as supported by studies (Petrovas
et al., 2023; 2024; Baydas et al., 2024).

After the introduction, the paper is structured into
five other sections. Section 2 presents a review
of the current state in the field from the point of
view of programming language analysis. Section
3 provides a detailed development and extension
of the OPARA method with TFNs, while Section
4 introduces the formation of the MCDM model,
a team of experts for group decision-making, as
well as the final results of the model. In Section 5,
a comparative analysis and an examination of the
impact of simulated values of weighting coefficients
are conducted. Finally, the last section Section 6,
summarizes the findings through the conclusion.

2. Literature Review

Since the advent of computers and programming
languages, many programmers have been engaged
in comparing programming languages. This paper
will provide a brief overview of some articles
that have addressed the comparison of various
programming languages. The study by Naim et al.
(2010) presents a survey focusing on a selection of
programming languages, including C++, C#, Java,
JavaScript, AspectJ, Haskell, PHP, Scala, Scheme,
and BPEL. The study provides a comparative
analysis of these ten languages, evaluated against
several criteria such as secure programming
practices, web application development, web
service composition, object-oriented programming
(OOP) abstractions, reflection, aspect-oriented
programming, functional programming,
declarative programming, batch scripting, and
user interface prototyping. The languages are
analyzed based on these parameters and the degree
of support each provides to the others.

The article of Stein & Geyer-Schulz (2013)
examined C++, Java, C#, F#, and Python in a
controlled environment where a graph clustering
task was developed and executed for each
language. Their paper outlines the problem being
addressed and presents an in-depth exploration
of the various characteristics of the selected
languages. The results reveal that C++ offers the
highest performance for the given task, though

Java, C#, and F# perform similarly under specific
conditions. Additionally, the study highlights the
potential for modern languages like Python and
F# to reduce the overall codebase size.

In the paper of Zakaria et al. (2015), a comparative
analysis of six programming languages, namely
C++, PHP, C#, Java, Python, and Visual Basic
(VB) is conducted. The study evaluates these
languages based on various attributes, including
reusability, portability, reliability, availability
of compilers and tools, familiarity, efficiency,
readability, and expressiveness.

The research conducted by Parveen & Fatima
(2016) presents a comparative analysis of three
widely utilized programming languages: Java, C#,
and C++. The comparison is made with respect
to several criteria, including syntax, number lines
of code, compilation time, machine dependency,
execution time, speed (or efficiency), and
flexibility. The authors investigate these languages
in relation to the specified criteria, assessing the
degree of support each language provides to
the others. The paper’s objective is to deliver a
thorough comparative understanding of the selected
languages. By employing a straightforward
common program across all languages, the
researchers facilitate effective comparisons.
Ultimately, the goal is to assist programmers in
recognizing and exploring the most favorable
attributes of high-level programming languages.

In his paper, Pejovic (2019) explores the use of
the Python programming language for automating
measurement systems and developing virtual
measurement instruments. The study highlights
the availability of various Python modules for
specific tasks, which can be sourced from the
Python Standard Library or external repositories,
with some modules specifically designed for
facilitating communication with instruments. The
applications of Python began in the field of power
electronics and have successfully expanded into
metrology, the design of a DC voltage calibrator,
and educational contexts. The methodologies
were utilized to modernize two courses and
for measuring system frequency response in
electronics, acoustics, and control system design.
The study concludes that Python serves as an
effective tool for building automated measurement
systems and virtual instruments, thanks to its
modular architecture and the flexibility it offers
for module contributions. When choosing a
programming tools, the focus has been on

	 7

ICI Bucharest © Copyright 2012-2024. All rights reserved

Novel Fuzzy MCDM Model for Comparison of Programming Languages

promoting general-purpose tools and techniques
to reduce the need for specialized knowledge.

The process of selecting a programming language
is fundamentally an MCDM (Multi-Criteria
Decision-Making) problem, as noted by Mishra et
al. (2020). To address the uncertainties inherent
in MCDM scenarios, fuzzy set theory serves as a
valuable tool. Interval-valued intuitionistic fuzzy
sets (IVIFSs) offer enhanced flexibility in modeling
uncertainty compared to traditional fuzzy sets
(FSs), as they incorporate interval membership,
non-membership, and hesitancy functions. This
paper introduces a novel integrated approach based
on the multi-attributive border approximation
area comparison (MABAC) method for tackling
MCDM problems utilizing IVIFSs. The proposed
method incorporates IVIFS operators, modifies
the classical MABAC approach, and introduces
a new process for calculating criteria weights.
To determine these weights, the subjective
assessments from decision experts are combined
with objective weights derived from a proposed
entropy measure and divergence techniques,
yielding more realistic weight values. The
analysis demonstrates that merging subjective and
objective weights can enhance the stability of the
proposed method across varying criteria weights.
Additionally, the paper compares the outcomes
of the proposed approach with existing methods
to validate its effectiveness. This comparative
analysis reveals that the proposed method is both
efficient and aligns well with other methodologies.

In their research, Pereira et al. (2021) conduct
a comparative analysis of a wide range of
programming languages with a focus on their
efficiency from an energy consumption perspective.
Their objective is to develop and evaluate
various rankings for programming languages
based on energy efficiency metrics. Their paper
applied rigorous and systematic methodologies
to address ten well-defined programming
challenges, utilizing 27 programming languages
sourced from the renowned Computer Language
Benchmark Game repository. The findings of their
study yield significant insights, including how the
energy consumption patterns of slower and faster
languages may differ, as well as the impact of
memory usage on overall energy consumption.
Additionally, they offer a straightforward approach
for leveraging these results to assist software
engineers and practitioners in making informed
choices regarding programming languages when
energy efficiency is a critical consideration.

In his paper, Filip (2021) provides a concise
historical overview of the role that computers and
automation have played in fostering new working
methods while simultaneously enhancing the
quality of life for individuals. He emphasizes that
this evolution has been further accelerated by the
current efforts people are undertaking to adapt to
and alleviate the negative effects of the ongoing
pandemic, striving to return to a state of normalcy.

In their research, Ali & Qayyum (2021)
concentrate on the four programming languages:
C, C++, Python, and Java, evaluating them based
on the criteria of time, speed, and simplicity. They
utilize a single optimized pseudo-code example
to implement code in each of these programming
languages, adhering to their specific syntax and
conventions. The findings of this comparison
are summarized in a table to facilitate the
understanding of the results for the reader.

Chiu et al. (2022) conduct a thorough performance
analysis and comparison of Java, JavaScript, Go,
and Python, utilizing C++ as a reference point.
They meticulously instrument the runtimes of
these languages, allowing developers to accurately
gauge the cycle count required to execute
any bytecode instruction or to determine the
overhead associated with dynamic type checking
in JavaScript. This methodology facilitates the
precise identification of overhead sources. The
authors provide a comprehensive examination
of completion times, resource utilization, and
scalability across the analyzed languages.

Languages developed in the 1950s, such as
Fortran, remain in active use today, owing to their
versatility and foundational role in supporting
a substantial portion of the legacy systems and
applications in our digital landscape. Since
that era, numerous additional languages have
emerged, exhibiting increasing diversity over
time. Modern languages such as C, C++, Python,
Java, JavaScript, and PHP have greatly enhanced
efficiency and are utilized across a wide array
of applications. Sakharkar (2023) emphasizes
that the proliferation of programming languages
not only enhances accessibility but also exposes
applications to significant security challenges.
These security concerns differ in terms of
prevalence and language specificity.

Zakeri-Nasrabadia et al. (2023) conduct a
systematic literature review and meta-analysis
focused on techniques for measuring and
evaluating code similarity, aiming to clarify

https://www.sic.ici.ro

8 Damjanović S., Katanić P., Zavadskas E. K., Stević Ž., Krsmanović B., Djalić N.

existing methodologies and their attributes across
various applications. Their research began with a
search of four digital libraries, resulting in an initial
pool of over 10,000 articles, which was narrowed
down to 136 primary studies relevant to the topic.
A thorough examination of these studies reveals 80
software tools that employ eight distinct techniques
across five application domains. Notably, nearly
49% of these tools are tailored for Java programs,
while 37% are compatible with C and C++.

In contrast, numerous programming languages
receive insufficient support in this area. Jäger
& Gümmer (2023) present PythonDAQ, an
open-source Python package designed for the
acquisition, visualization, storage, and post-
processing of measurement data. This code enables
the acquisition of data from any sensor with digital
output, facilitates online calculations, and allows
for the storage of both measured and computed
data. In the concluding section, the authors compare
PythonDAQ with commercial data acquisition
(DAQ) solutions and the data acquisition software
utilized by a leading aero-engine manufacturer.

In their study, Alves et al. (2023) analyze the
typical linguistic features found in six prominent
programming languages: C, C++, C#, Java,
Python, and Haskell. Then they design and
implement a survey aimed at gaining a deeper
understanding of the intrinsic relationship
between programmers and their primary tools
programming languages. To begin interpreting
the results, the authors focus on the first question,
which assesses respondents’ familiarity with the
selected languages. Java, C, and Python emerged
as the most recognized, with 95%, 88%, and
93% of participants indicating they could use
these languages to some extent. This suggests
that inquiries related to Java, C, and Python
may yield more significant insights into their
defining characteristics. In contrast, familiarity
with Haskell, C++, and C# was notably lower,
with only 47%, 45%, and 31% of respondents,
respectively, claiming they were at least somewhat
proficient in these languages.

Katzy et al. (2023) report that experiments indicate
a close proximity in token representation among
programming languages such as C++, Python, and
Java, while tokens in languages like Mathematica
and R demonstrate considerable dissimilarity.
Their findings imply that such variations may lead
to performance issues when handling multiple
languages. Consequently, the authors advocate for

the utilization of their similarity measure to guide
the selection of a diverse range of programming
languages during the training and evaluation of
future models.

Padilla et al. (2023) explore the application of
ChatGPT in the educational sector, noting its
potential to significantly enhance teaching and
learning processes. However, they identify a
gap in understanding its implementation within
programming courses in computing programs.
This study examines the advantages, challenges,
and issues associated with utilizing ChatGPT, a
language AI model, for programming tasks. The
findings highlight several benefits, such as improved
coding efficiency, assistance in comprehending
complex code, and its role as a problem-solving tool.
Conversely, the research underscores significant
challenges, including concerns about data privacy,
ethical implications, tendencies toward plagiarism,
and limitations in contextual comprehension.

In their study, Sambucci et al. (2023) analyze
research showing that while AI enhances the
efficiency of critical infrastructures, it also
introduces vulnerabilities to sophisticated attacks.
To address these risks, the authors emphasize the
need for proactive security measures, including
incident response and collaboration, to safeguard
AI-driven systems.

3. Extension of the OPARA Method
with TFNs

The OPARA method is a new MCDM tool
developed by Keshavarz-Ghorabaee et al. (2024),
which has been modified and extended with
TFNs (triangular fuzzy numbers) in this paper.
The algorithm of the Fuzzy OPARA method is
presented through the following steps.

Step 1: Creation of the initial fuzzy decision
matrix with elements aij

Step 2: Calculation of parameters based on which
the subsequent normalization of the initial fuzzy
decision matrix can be performed, whereby the
values α = 5 and β = 0.7.

a.	 calculation of values that represent the
difference between the maximum and
minimum values ()jm , the sum of the
minimum and maximum values, ()'jm , and
the quotient of these two previously calculated
values ()jb .

	 9

ICI Bucharest © Copyright 2012-2024. All rights reserved

Novel Fuzzy MCDM Model for Comparison of Programming Languages

(), , max minl m u
j j j j ij ijii

m m m m a a= = −

(1)

()' ' , ' , ' max minl m u
j j j j ij ijii

m m m m a a= = +

(2)

, ,
' ' ''

l m u
j j j j

j u m l
j j jj

m m m m
b

m m mm

 
= =   

 
(3)

b.	 calculation of the value jc that represents
the product ()'jm and ()1α − , jd which
represents the product max iji

aα ⊗ and je as
a quotient of two previously calculated values.

()1 max minj ij ijii
c a aα= − ⊗ +

(4)

maxj iji
d aα= ⊗

(5)

, ,
l m u

j j j j
j u m l

j j jj

c c c c
e

d d dd

 
= =   

 
(6)

c.	 calculation of the value jf which is the
adjustment parameter determined using an
adjustment function based on the corresponding
performance range for each criterion.

1
j j

j
e if b

f
otherwise

β >= 


(7)

Step 3: In this step, it is necessary to modify
the original OPARA method by introducing the
normalization process. The normalized values are
shown as ijg for both types of criteria: cost (C)
and benefit (B).

,
max

,
max max

max

l
j

f j m
j

u
j

fl
ijl

j u
ij

fm
ij ijm

ij j j m
ij iji

fu
iju

j l
ij

a
w

a

a a
g w w if j B

a a

a
w

a

      
  

 
       = = ∈           

  
  
     

(8)

max
,

max max
,

max

l
j

f j m
j

u
j

fl
ijl

j u
ij

fmij ijmi
ij j j m

ij ij

fu
iju

j l
ij

a
w

a

a a
g w w if j C

a a

a
w

a

      
  

 
       = = ∈           

  
  
     

(9)

Step 4: In this step, a parameter jh is introduced,
defined as (1,1,1) by decision-makers, based
on the original OPARA method from the paper
(Keshavarz-Ghorabaee et al., 2024). After that, the
following equations are defined, again depending
on the type of criteria.

,
max

,
max max

max

l
j

h j m
j

u
j

hl
ijl

j u
ij

hm
ij ijm

ij j j m
ij iji

hu
iju

j l
ij

a
w

a

a a
i w w if j B

a a

a
w

a

      
  

 
       = = ∈           

  
  
     

(10)

max
,

max max
,

max

l
j

h j m
j

u
j

hl
ijl

j u
ij

hmij ijmi
ij j j m

ij ij

hu
iju

j l
ij

a
w

a

a a
i w w if j C

a a

a
w

a

      
  

 
       = = ∈           

  
  
     

(11)

Step 5: Creation of the aggregated value jk
between ijg and iji by introducing a coefficient
ω which ranges from 0-1.

() ()()1ij ij ijk g iω ω= ⊗ + − ⊗

(12)

Step 6: Summing the elements of the fuzzy matrix
ijk by columns, obtaining then:

1

m

j ij
j

l k
=

=∑

(13)

where m is the number of criteria.

Step 7: Ranking the alternative solutions based on
the final values obtained as follows:

1 1 , ,
l m u

ij ij ij ij
i u m l

j j jj

k k k k
o

n n l l ll

   
= ⊗ = ⊗        

∑ ∑

(14)

where n is the number of alternatives, and the
highest value represents the best-ranked alternative.

4. Forming a MCDM Model

Due to the inability to present all experimental
measurements and results for the eighth, ninth
and tenth criteria, a brief description of the
measurement procedure is provided below. The

https://www.sic.ici.ro

10 Damjanović S., Katanić P., Zavadskas E. K., Stević Ž., Krsmanović B., Djalić N.

mentioned measurements refer to the results
of comparing the execution speed for the same
program code in four programming languages,
which were compared with each other. Each
program was run ten times on the same computer
using the Windows operating system. Based on
the ten measurements of program execution time,
the mean value and standard deviation for the ten
measurements were calculated. The measurements
displayed the comparative results of measuring the
time taken to perform addition, division of two
numbers, calculate the logarithm base 10, compute
the sine of an angle in a double for loop, and write,
read and sort a series of numbers.

After defining all the measurements and
providing the comparative values for the four
programming languages, which essentially
represent alternatives in this MCDM model:
VisualBasic (A1), C++ (A2), Python (A3), and
VEEPro (A4), a list of criteria was defined on the
basis of which the programming languages were
evaluated, as shown in Table 1.

In the study comparing four programming
languages, a total of 20 experts participated,
including 9 university professors, 6 university
associates and 5 experts from industry who
are engineers.

Among experts, 3 hold the title of full professor, 5
are associate professors, 1 is an assistant professor,
4 are senior assistants, and 2 are assistants. Some
of the university experts are engaged in pure

programming, while others work in electrical
measurements and use various programming
languages to manage measuring instruments and
devices. The experts from industry are engineers
who deal with programming related to measuring
devices and control systems. The range of work
experience of engineers is from 10 to 30 years, and
they have used various programming languages
in their work so far. Each expert conducted an
individual evaluation of the importance of the
criteria, and later the programming languages as
potential alternatives. To determine the weights
of the criteria, the IMF SWARA was applied
(Vrtagić et al., 2021; Stević et al., 2022; Badi
& Bouraima, 2023) in combination with the
fuzzy Bonferroni operator (Hadžikadunic et al.,
2023; Radovanović et al., 2023), resulting in the
following calculated weights:

w1=(0.093,0.102,0.112),w2=(0.103,0.112,0.122),
w3=(0.123,0.132,0.142),w4=(0.087,0.097,0.107),
w5=(0.098,0.107,0.118),w6=(0.084,0.095,0.106),
w7=(0.081,0.091,0.102),w8=(0.093,0.103,0.113),
w9=(0.068,0.078,0.089),w10=(0.056,0.066,0.076)

This means that the third criterion, which
represents development speed, is the most
dominant in the eyes of programmers, while
the tenth criterion, which refers to the speed of
working with large datasets, is the least important.
The next phase of applying the MCDM model
involves processing data for the evaluation of
programming languages by 20 experts who
participated in the group decision-making. The

Table 1. Title and brief description of 10 criteria for comparing programming languages

Name and Brief Description of Criteria
C1 Popularity - which of the considered programming languages are studied at the surveyed faculties.
C2 Ease of Learning - how quickly or easily things that have never been used before can be understood.

C3 Development Speed - how quickly a programmer can create a program. This usually shows how fast a programmer
can code using a specific programming language.

C4
Readability – it refers to how easily a reader comprehends a written text. In the context of natural language,
the readability of a text is influenced by its content, the complexity of vocabulary and syntax, as well as by its
presentation, which includes typographical elements such as font size, line height, and line length.

C5 Efficiency - the capacity to minimize the waste of materials, energy, time, and money during the development of a
program. More generally, it refers to the ability to do the job well, successfully, and without wasting time.

C6 Tool Support - the extent to which a programming language provides ready-made programming tools.)

C7
Portability - a parameter of a computer program that indicates whether the program can be used on multiple
operating systems. Portability is essentially the task of adapting any job required to build a computer program that
operates in a new environment.

C8 Speed of Mathematical Function Processing
C9 Speed of Data Writing and Reading
C10 Speed of Working with Large Datasets

	 11

ICI Bucharest © Copyright 2012-2024. All rights reserved

Novel Fuzzy MCDM Model for Comparison of Programming Languages

evaluation was conducted using a linguistic scale
in order to create a conversion to TFNs through
processing. The obtained values of the initial TFN
matrix (Table 2) were also averaged using the
fuzzy Bonferroni operator.

In the following, the algorithm of the fuzzy
OPARA method is explained through a partial
calculation. First, the values are calculated:

()
()

1 2.973,4.373,5.787

5.583 2.610,6.586 2.213,7.558 1.801

m = =

− − −

()
()

1 ' 7.385,8.799,10.198

5.583 1.801,6.586 2.213,7.588 2.610

m = =

+ + +

()1
2.973 4.373 5.7870.292,0.497,0.784 , ,

10.198 8.799 7.385
b  = =  

 

()1 24.135,28.558,32.962c =

()1 27.917,32.930,37.940d =

()1
24.135 28.558 32.9620.636,0.867,1.181 , ,
37.940 32.930 27.917

e  = =  
 

()1 1.000,1.000,1.181f = since

()1 0.292,0.497,0.784b = , which means that l and
m of this number are < β = 0.7, and u > β = 0.7. It is
important to note that all criteria are of the benefit
type, so Equation (8) is applied for normalization.

1 1 1.181

11
2.254 2.871 3.4740.093 ,0.102 ,0.112
7.588 6.586 5.583

g
      =              

1 1 1

11
2.254 2.871 3.4740.093 ,0.102 ,0.112
7.588 6.586 5.583

i
      =              

()
() ()()
() ()()
() ()()

11 0.027,0.044,0.067

0.5 0.027 1 0.5 0.027

0.5 0.044 1 0.5 0.044

0.5 0.064 1 0.5 0.070

k = =

⊗ + − ⊗

⊗ + − ⊗

⊗ + − ⊗

()
()
()
()

1 0.179.0.274,0.418

0.027 0.068 0.062 0.022

0.044 0.102 0.094 0.034

0.067 0.157 0.145 0.049

l = =

+ + +

+ + +

+ + +

()1 0.224,0.561,1.387o =

After the calculation was complete, the obtained
results are shown in Table 3.

The obtained results indicate that within the
defined set of elements of the MCDM model,
C++ represents the programming language with
the best-rated performance by the experts involved
in the research.

5. Sensitivity and Comparative
Analysis

Through this section of the study, an analysis of
the change in the impact of weighting coefficients
(Puška et al., 2024) on the ranking of programming
languages was created, as such analysis provides
decision-makers with the opportunity to make a
better decision. This allows for the consideration
of certain future impacts and the modeling of
results accordingly.

Table 2. Initial TFN matrix in the Fuzzy OPARA method

C1 C2 … C9 C10
A1 2.254 2.871 3.474 3.947 4.958 5.965

.

.

.

4.940 5.942 6.943 2.531 3.549 4.559
A2 5.583 6.586 7.588 4.878 5.827 6.775 5.095 6.096 7.096 5.046 6.047 7.047
A3 5.063 6.069 7.074 5.173 6.178 7.181 5.301 6.315 7.325 3.284 4.288 5.290
A4 1.801 2.213 2.610 3.333 4.172 5.005 2.830 3.717 4.603 4.707 5.652 6.596
max 5.583 6.586 7.588 5.173 6.178 7.181 5.301 6.315 7.325 5.046 6.047 7.047
min 1.801 2.213 2.610 3.333 4.172 5.005 2.830 3.717 4.603 2.531 3.549 4.559

Table 3. Results of the Fuzzy OPARA method

Crisp Rank
A1 0.224 0.561 1.387 0.724 3
A2 0.334 0.780 1.868 0.994 1
A3 0.305 0.720 1.730 0.918 2
A4 0.173 0.439 1.087 0.566 4

https://www.sic.ici.ro

12 Damjanović S., Katanić P., Zavadskas E. K., Stević Ž., Krsmanović B., Djalić N.

Figure 1 shows the weights of the parameters
across 100 scenarios in which different values of
the criteria are simulated in such a way that the
weighting coefficients change from 5% to 95%.

It is important to note that there are no changes in
the sensitivity analysis, i.e., that the initial results
are identical across all 100 scenarios. This result is
a consequence of the small number of alternative
solutions on the one hand, and of the double-digit
number of criteria on the other.

The next step involves creating a comparative
analysis (Figure 2) with four other MCDM
methods: Fuzzy Range of Value ROV (Ristić
et al., 2024), Fuzzy MARCOS Measurement

Alternatives and Ranking according to
Compromise Solution (Damjanović et al., 2022),
Fuzzy Simple Additive Method (Kabassi et al.,
2020), and Fuzzy WASPAS weighted aggregated
sum product assessment (Turskis et al., 2015).

The results of the comparison with additional four
MCDM methods show the stability of the results
and an identical ranking to that of the Fuzzy
OPARA method.

In addition, it is important to emphasize that
the analysis of the change in the coefficient ω
was also conducted across all integer values
in the range within 0-1, and that the results
remained unchanged.

Figure 1. Values of weighting coefficients through 100 simulated scenarios

Figure 2. Ranks in comparative analysis

	 13

ICI Bucharest © Copyright 2012-2024. All rights reserved

Novel Fuzzy MCDM Model for Comparison of Programming Languages

6. Conclusion

Through the research presented in this paper,
four programming languages were analyzed
by comparing the performance measurements
of various operations. Based on this, certain
quantitative indicators were obtained and included
in a list of 10 criteria used by 20 experts to evaluate
the programming languages. The contribution of
this paper is reflected in the modification and
extension of the OPARA method with TFNs, as
well as in the extensive comparative analysis
of programming languages, which partly serves
as input parameters in the MCDM model, as

decision-makers were provided with the results of
the performance measurements of the operations.
The expert team and the applied Fuzzy OPARA
method demonstrate that, among the considered
set of languages, C++ shows the best performance
according to the established criteria, which was
verified through sensitivity analysis, comparative
analysis with four other MCDM methods, and
variations in the coefficient ω. Future research
based on this study implies the expansion of the
list of experts in group decision-making, a greater
number of simulation measurements related to the
performance of specific operations, as well as the
possibility of applying other evaluation tools.

REFERENCES

Ali, S. & Qayyum, S. (2021) A Pragmatic Comparison
of Four Different Programming Languages.
University of Management and Technology,
Daska Campus, pp. 1-15. doi: 10.14293/S2199-
1006.1.SOR-.PP5RV1O.v1.

Alves, J., Neto, A. C., Pereira, M. J. V. & Henriques,
P. R. (2023) Characterization and Identification
of Programming Languages. In: Proceedings of
12th Symposium on Languages, Applications and
Technologies (SLATE 2023), 26-28 June 2023, Vila do
Conde, Portugal. Dagstuhl Publishing, Saarbrücken/
Wadern, Germany, OASICS. pp. 1-13. doi: 10.4230/
OASIcs.SLATE.2023.13.

Badi, I. & Bouraima, M. B. (2023) Development of
MCDM-based frameworks for proactively managing
the most critical risk factors for transport accidents:
a case study in Libya. Spectrum of Engineering and
Management Sciences. 1(1), 38-47. doi: 10.31181/
sems1120231b.

Baydaş, M., Kavacık, M. & Wang, Z. (2024)
Interpreting the Determinants of Sensitivity in MCDM
Methods with a New Perspective: An Application
on E-Scooter Selection with the PROBID Method.
Spectrum of Engineering and Management Sciences.
2(1), 17-35. doi: 10.31181/sems2120242b.

Chiu, A., Stumm, M. & Yuan, D. (2022) Investigating
Managed Language Runtime Performance Why
JavaScript and Python are 8x and 29x slower than C++,
yet Java and Go can be faster? In: Proceedings of the
2022 USENIX Annual Technical Conference (USENIX
ATC 22), 11–13 July 2022, Carlsbad, CA, U.S.A.
Berkeley, California, U.S.A., USENIX – The Advanced
Computing Systems Association. pp. 835-852.

Damjanović, M., Stević, Ž., Stanimirović, D.,
Tanackov, I. & Marinković, D. (2022) Impact of
the number of vehicles on traffic safety: multiphase
modeling. Facta Universitatis, Series: Mechanical
Engineering. 20(1), 177-197. doi: 10.22190/
FUME220215012D.

Filip, F. G. (2021) Automation and Computers
and Their Contribution to Human Well-being and
Resilience. Studies in Informatics and Control. 30(4),
5-18. doi: 10.24846/v30i4y202101.

Hadžikadunic, A., Stevic, Ž., Badi, I. & Roso, V.
(2023) Evaluating the Logistics Performance Index
of European Union Countries: An Integrated Multi-
Criteria Decision-Making Approach Utilizing the
Bonferroni Operator. International Journal of
Knowledge and Innovation Studies. 1(1), 44-59. doi:
10.56578/ijkis010104.

Jäger, D. & Gümmer, V. (2023) PythonDAQ – A
Python based measurement data acquisition and
processing software. In: Proceedings of XXVI
Biennial Symposium on Measuring Techniques in
Turbomachinery (MTT2622), 28-30 September
2022, Pisa, Italy. IOP Publishing. pp. 1-13. doi:
10.1088/1742-6596/2511/1/012032.

Kabassi, K., Karydis, C. & Botonis, A. (2020) AHP,
Fuzzy SAW, and Fuzzy WPM for the Evaluation of
Cultural Websites. Multimodal Technologies and
Interaction. 4(1), 5. doi: 10.3390/mti4010005.

Katzy, J., Izadi, M. & Deursen, A. (2023) On the Impact
of Language Selection for Training and Evaluating
Programming Language Models. In: Proceedings of
2023 IEEE 23rd International Working Conference
on Source Code Analysis and Manipulation (SCAM)
02-03 October 2023, Bogotá, Colombia. Piscataway,
New Jersey, U.S.A., Institute of Electrical and
Electronics Engineers (IEEE). pp. 271-276. doi:
10.1109/SCAM59687.2023.00038.

Keršuliene, V., Zavadskas, E. K. & Turskis, Z. (2010)
Selection of rational dispute resolution method by
applying new step‐wise weight assessment ratio
analysis (SWARA). Journal of Business Economics
and Management. 11(2), 243-258. doi: 10.3846/
jbem.2010.12.

https://www.sic.ici.ro

14 Damjanović S., Katanić P., Zavadskas E. K., Stević Ž., Krsmanović B., Djalić N.

Keshavarz-Ghorabaee, M., Abdolghani, R.,
Maghsoud, A., Zavadskas, E. K. & Antuchevičienė,
J. (2024) Multi-Criteria personnel evaluation and
selection using an objective pairwise adjusted ratio
analysis (OPARA). Economic Computation and
Economic Cybernetics Studies and Research. 58(2),
pp. 23-45. doi: 10.24818/18423264/58.2.24.02.

Li, X., Liao, H., Baušys, R. & Zavadskas, E. K. (2024)
Large-scale emergency supplier selection considering
limited rational behaviors of decision makers and
ranking robustness. Technological and Economic
Development of Economy. 30(4), 1037-1063. doi:
10.3846/tede.2024.21569.

Mishra, A. R., Chandel, A. & Motwani, D. (2020)
Extended MABAC method based on discrimination
measures for multi-criteria assessment of programming
language with interval-valued intuitionistic fuzzy sets.
Granular Computing. 5(1), pp. 97–117. doi: 10.1007/
s41066-018-0130-5.

Naim, R., Nizam, M. F., Hanamasagar, S., Noureddine,
J. & Miladinova, M. (2010) Comparative Studies of 10
Programming Languages within 10 Diverse Criteria
Revision 1.0. Department of Computer Science and
Software Engineering, Concordia University Montreal.

Padilla, J. R., Montefalcon, M. D. & Hernandez,
A. (2023) Language AI in Programming: A Case
Study of ChatGPT in Higher Education using
Natural Language Processing. In: Proceedings of
2023 11th IEEE Conference on Systems, Process &
Control (ICSPC 2023), 16 December 2023, Malacca,
Malaysia. Piscataway, New Jersey, U.S.A., Institute of
Electrical and Electronics Engineers (IEEE). pp. 1-7.
doi: 10.1109/ICSPC59664.2023.10420194.

Parveen, Z. & Fatima, N. (2016) Performance
Comparison of Most Common High Level
Programming Languages. International Journal of
Computing Academic Research. 5(5), 246-258.

Pejovic, P. (2019) Application of python programming
language in measurements. Facta Universitatis Series
Electronics and Energetics. 32(1), 1-23. doi: 10.2298/
FUEE1901001P.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha,
J., Fernandes, P. & Saraiva, J. (2021) Ranking
programming languages by energy efficiency. Science
of Computer Programming. 205(6), 1-30. doi:
10.1016/j.scico.2021.102609.

Petrovas, A., Baušys, R. & Zavadskas, E. K. (2023)
Gestalt Principles Governed Fitness Function
for Genetic Pythagorean Neutrosophic WASPAS
Game Scene Generation. International Journal of
Computers Communications & Control. 18(4), 2-20.
doi: 10.15837/ijccc.2023.4.5475.

Puška, A., Hodžić, I., Štilić, A. & Murtič, S. (2024)
Evaluating European Union Countries on Climate
Change Management: A Fuzzy MABAC Approach
to the Climate Change Performance Index. Journal of
Green Economy and Low-Carbon Development. 3(1),
15-25. doi: 10.56578/jgelcd030102.

Radovanović, M., Božanić, D., Tešić, D., Puška,
A., Hezam, I. M. & Jana, C. (2023) Application of
hybrid DIBR-FUCOM-LMAW-Bonferroni-grey-
EDAS model in multicriteria decision-making. Facta
Universitatis, Series: Mechanical Engineering. 21(3),
pp. 387-403. doi: 10.22190/FUME230824036R.

Ristić, B., Bogdanović, V., Stević, Ž., Marinković,
D., Papić, Z. & Gojković, P. (2024) Evaluation
of Pedestrian Crossings Based on the Concept of
Pedestrian Behavior Regarding Start-Up Time:
Integrated Fuzzy MCDM Model. Tehnički Vjesnik
[Technical Gazette]. 31(4), pp. 1206-1214. doi:
10.17559/TV-20240414001462.

Sakharkar, S. (2023) Systematic Review: Analysis
of Coding Vulnerabilities across Languages. Journal
of Information Security. 14(04), pp. 330-342. doi:
10.4236/jis.2023.144019.

Sambucci, L. & Paraschiv, E.A. (2024) The accelerated
integration of artificial intelligence systems and its
potential to expand the vulnerability of the critical
infrastructure. Romanian Journal of Information
Technology and Automatic Control, Vol. 34, No. 3,
pp. 131-148.

Stein, M. & Geyer-Schulz, A. (2013) A Comparison of
Five Programming Languages in a Graph Clustering
Scenario. Journal of Universal Computer Science.
19(3), pp. 428-456. doi: 10.3217/jucs-019-03-0428.

Stević, Ž., Subotić, M., Softić, E. & Božić, B. (2022)
Multi-Criteria Decision-Making Model for Evaluating
Safety of Road Sections. Journal of Intelligent
Management Decision. 1(2), pp. 78-87. doi: 10.56578/
jimd010201.

Turskis, Z., Zavadskas, E. K., Antuchevičienė, J.
& Kosareva, N. (2015) A hybrid model based on
fuzzy AHP and fuzzy WASPAS for construction
site selection. International Journal of Computers
Communications & Control. 10(6), pp. 873-888. doi:
10.15837/ijccc.2015.6.2078.

Vrtagić, S., Softić, E., Subotić, M., Stević, Ž.,
Dordevic, M. & Ponjavic, M. (2021) Ranking Road
Sections Based on MCDM Model: New Improved
Fuzzy SWARA (IMF SWARA). Axioms. 10(2), pp.1-
23. doi: 10.3390/axioms10020092.

Zakaria, A., Oualid H., Kaushik S. & Chitrang, P.
(2015) Comparative Studies of Six Programming
Languages. Cornell University, pp. 1-72.

Zakeri-Nasrabadia, M., Parsaa, S., Ramezania, M.,
Royb, C. & Ekhtiarzadeha, M. (2023) A systematic
literature review on source code similarity measurement
and clone detection: Techniques, applications, and
challenges. Journal of Systems and Software. 204,
111796, pp. 1-49. doi: 10.1016/j.jss.2023.111796.

Zavadskas, E. K., Stanujkic, D., Karabasevic, D.
& Turskis, Z. (2022) Analysis of the Simple WISP
Method Results Using Different Normalization
Procedures. Studies in Informatics and Control. 31(1),
pp. 5-12. doi: 10.24846/v31i1y202201.

This is an open access article distributed under the terms and conditions of the
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

