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Introduction

The autonomous driving system refers to the 
train operation system with fully automated and 
highly centralized control of the driver`s actions 
(Yuan et al., 2022). It makes use of advanced 
communication, computing, networking, and 
control technologies to enable the timely and 
continuous control of the vehicle. Autonomous 
driving (AD) technology utilizes video cameras, 
radar sensors, and laser rangefinders to understand 
surrounding traffic conditions and navigate the 
road ahead using maps (Wu et al., 2023). Volvo 
distinguishes four levels of driverless driving 
according to the automation level: driving 
assistance, partial automation, high and full 
automation. The Driving Assistance System, 
Partial Automation System, High Automation 
System and Full Automation System are the 
corresponding automated driving systems for these 
four levels (Huang et al., 2023). The current AD 
technology is in a highly automated stage. In the 
autonomous driving system of the car, the quality 
of the decision-making system often determines the 
performance of the entire driving system, which is 
the key for dealing with the traffic environment. 
The current AD decision-making algorithms mainly 
include finite state machines, decision trees, neural 
networks, and Q-learning (Liao et al., 2024). Finite 

state machines cannot represent concurrency and 
cannot describe asynchronous concurrent systems. 
Decision trees have a high degree of subjectivity 
in determining the probability of various options, 
which may lead to decision-making errors (Wang, 
W. et al., 2022). Neural networks are unable to 
explain their own reasoning process and reasoning 
basis, while the Q-learning algorithm cannot 
capture task structures well (Zhang, T. et al., 2023). 
The above methods face difficulties in dealing with 
complex and ever-changing traffic scenarios. The 
Actor-Critic (AC) algorithm fuses the merits of 
both value-based and policy-based algorithms, 
enabling one to obtain a simultaneous output along 
with the evaluation of decisions. Therefore, to 
improve the safety of AD decisions and cope with 
complex and ever-changing traffic environments, 
this paper presents an AD decision model based 
on the Soft Actor-Critic algorithm (SAC) and 
Long Short-Term Memory (LSTM) network. This 
model innovatively introduced the LSTM network 
into the SAC network structure, enabling the 
improved SAC algorithm to accurately represent 
environmental semantics. The contribution of 
this study is to propose an effective autonomous 
driving decision-making method that addresses the 
challenge of taking reliable and accurate decisions 
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related to autonomous driving in uncertain 
environments, thereby effectively improving the 
safety of autonomous driving and reducing the 
incidence of traffic accidents. At the same time, 
this research is expected to provide effective 
solutions for solving high-order autonomous 
driving decision-making problems and promote 
the evolution of automotive intelligence.

The remainder of this article is structured as 
follows. Section 2 is a literature review, which 
briefly described the current research results for 
AD decision-making and AC algorithms. Section 
3 sets forth the proposed research method, 
analysing the AD decision model based on the 
AC algorithm and LSTM. Section 4 discusses the 
experimental findings, analysing the results of the 
decision-making process and the safety of the AD 
decision models in both single and mixed traffic 
scenarios. Finally, Section 5 concludes this paper.

2. Literature Review

In the field of AD, facing complex interactive 
scenes, how to achieve an accurate and efficient 
decision-making with regard to vehicle movement 
has become a current research hotspot. Wang, H. et 
al. (2022) presented a probabilistic reconstruction-
based learning method for recognizing the internal 
state of multi-vehicle sequential interactions 
to enhance the accuracy of AD decisions. This 
approach considered the sequential decision-
making for merging tasks as a dynamic stochastic 
process, and integrated the internal states of multi-
vehicle sequential interactions into a Gaussian 
mixture regression model with a hidden Markov 
model, and utilized the expectation maximization 
algorithm to estimate the model parameters. The 
experimental findings indicated that the extracted 
internal states can semantically represent the 
dynamic decision-making process and make 
accurate predictions (Wang, H. et al., 2022). Nan 
et al. (2022) proposed an intention prediction 
method and a mixed strategy Nash equilibrium 
theory-based framework for decision-making 
problems in uncontrolled intersections. This 
framework used a combination algorithm which 
joined the Hidden Markov Model and SVM to 
predict the driving intention of the target vehicle 
at intersections, and the Bessel curve was adopted 
to fit the predicted trajectory of the target vehicle. 
At the same time, the S-T graph was used to 
determine whether there were spatiotemporal 
conflict points between the target vehicle and the 

self-driving vehicle. The experimental outcomes 
showed that this decision-making framework 
can enable vehicles to safely and comfortably 
pass through intersections (Nan et al., 2022). Xu 
et al. (2022) proposed an integrated decision-
making framework for autonomous vehicles on 
highways to solve the comprehensive decision-
making problem related to AD on highways. This 
framework first used reinforcement learning to 
learn the optimal state-action pairs for specific 
scenarios, and used imitation learning to memorize 
experience pools through deep neural networks. 
The experimental outcomes denoted that the 
framework can efficiently drive the vehicle to the 
predetermined state while ensuring its safety (Xu 
et al., 2022). For safety and personalized driving 
of autonomous vehicles, Huang et al. (2021) 
proposed a decision-making framework with 
integrated trajectory planning and tracking control 
algorithms. This framework utilized dynamic 
potential fields to express the interactions between 
vehicles, and planned and tracked trajectories 
through artificial potential fields and constrained 
Delaunay triangulation. The experimental 
findings illustrated that this framework can 
make safe and personalized decisions, and more 
effectively execute AD motion control in dynamic 
environments (Huang et al., 2021). Zhang, Y. et 
al. (2023) proposed a new algorithm based on 
3D LIDAR point cloud data to identify vehicles 
in the environment for the problem of vehicle 
recognition in automatic driving. The point cloud 
compression method based on nearest neighbour 
points and octree voxel center point boundary 
extraction is applied to the point cloud data, and 
then the vehicle point cloud recognition algorithm 
based on image mapping is used for vehicle 
recognition. The experimental results show that 
this algorithm effectively improves the accuracy 
for vehicle recognition (Zhang, Y. et al, 2023).

The AC algorithm effectively compensates for 
the shortcomings of both value-based and policy-
based algorithms. It can output the policies 
directly and evaluate the quality of the current 
policies in real time by means of value functions. 
Therefore, it is widely used in various fields. Chen 
et al. (2023) suggested a formation control method 
based on a radial basis function neural network and 
an AC algorithm for unmanned surface vehicles 
with collision avoidance and predetermined 
performance. In the context of this method, the 
radial basis function neural network was utilized 
to approximate the modeling uncertainty, and 
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the optimality of formation control was ensured 
by the AC algorithm. Experimental findings 
demonstrated that this method was significantly 
superior to other methods (Chen et al., 2023). 
Wu et al. (2022) put forward a tracking control 
method for robotic knee joint prostheses based 
on AC to address the issue of configuring 
impedance parameters for robotic prosthetics. The 
experimental findings showed that this method 
can enable the robot to walk on flat ground, on 
different terrains, and at different speeds. Zhang 
& Xue (2022) proposed a decision framework 
based on convolutional neural networks and 
AC algorithms for the decision-making problem 
of artificial intelligence commanders in tactical 
warfare games. This framework utilized 
convolutional neural networks and AC algorithms 
to express the situation of the battlefield, and it 
attempted different tactical strategies through 
reinforcement learning. The experimental 
findings showed that the decisions made by this 
framework can lead to achieving higher scores in 
tactical warfare games. Madan & Bhatia (2021) 
proposed a deep network crawling model with the 
asynchronous advantage AC algorithm to address 
the issue of website information crawling. This 
model comprised multiple agents, each of which 
was capable of learning in different environments, 
updating the local gradient of the coordinator, and 
generating a more stable system. The experimental 
findings revealed that the proposed network 
crawling model outperforms other models. Dey 
& Xu (2023) put forth a control model based on 
a hierarchical game-based algorithm and an AC 
algorithm for the distributed adaptive formation 
control problem of large-scale multi-agent 
systems. This model employed cooperative games 
to formulate distributed inter-group formation 
control for leaders and solved the optimal 
distributed formation control problem through 
the AC algorithm. The experimental findings 
proved that this method can effectively achieve 
the control of large-scale multi-agent systems.

In summary, current research on intelligent driving 
systems has been quite effective, but most AD 
decision systems face difficulties with regard to 
decision-making in complex traffic scenarios. The 
AC algorithm has the merit of being able to make 
decisions and evaluate decisions. Therefore, to 
enable AD decision-making in complex scenarios 
and improve the safety of decision-making, this 
paper proposes an AD decision-making model 
based on an improved AC algorithm.

3. Research Methodology

To implement AD decision-making for vehicles, 
an improved SAC-based decision method is 
proposed, which first constructs an intelligent AD 
decision agent and a decision execution strategy 
based on the SAC algorithm. Meanwhile, LSTM 
is introduced to improve the effectiveness of 
decision agents in handling complex tasks.

3.1 Design and Improvement of the 
Autonomous Driving Decision-
making Intelligent Agent  
Based on SAC

Although AD technology brings convenience to 
humanity, there are also some safety risks. The AC 
algorithm combines value-based and policy-based 
algorithms (Zhang et al., 2024), making it easy to 
select proper actions in a continuous action space. 
In the AC algorithm, the Actor network (AN) is 
used to predict the probability of actions (Du et 
al., 2023), while the Critic network (CN) is used to 
guide the updating of the AN (Li, X. et al., 2023). 
Nevertheless, due to the poor convergence of the 
AC algorithm, it is easy for the algorithm to fall 
into local optima. The SAC algorithm introduces 
a maximum entropy-based reinforcement learning 
strategy in the AC algorithm, which can raise 
the learning speed of the algorithm and avoid 
its falling into local optima. The SAC algorithm 
framework is shown in Figure 1.

Figure 1. Framework of the SAC algorithm

As it is shown in Figure 1, the SAC algorithm will 
train four Q networks and the AN simultaneously. 
The Q network is divided into an evaluation Q 
network and a target Q network, and the purpose 
of setting up two corresponding Q networks is to 
avoid the problem of high estimation of Q values 
(Sun & Si, 2023). When training a network, if 
the deviation of the state estimation values is too 
large, it can lead to divergence problems (Zha 
et al., 2023). By setting up two value networks, 
this problem can be effectively avoided (Chen et 
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al., 2022). The optimization objective of the SAC 
algorithm is shown in equation (1):

( ) ( ) ( ) ( )( ),0
,

t t

T
t t ts at

J E r s a H sπρ
π λ π

=
 = + ⋅ ∑

          
(1)

In equation (1), J(π) denotes the optimization 
objective. T represents the number of time steps 
taken by the intelligent agent to interact with 
the environment in each round. E represents the 
mathematical expectation. st represents the state 
of the intelligent agent at the time t. at represents 
the action of the intelligent agent at the t moment. 
ρπ represents the trajectory distribution under the 
employed strategy. r(st ,at) represents the reward 
obtained by the intelligent agent for executing 
various actions in the corresponding state. λ 
represents the regularization coefficient. H(.) 
represents the entropy value used to determine the 
strategy. The strategy function can be obtained by 
optimizing the Kullback-Leibler divergence, and 
its calculation is shown in equation (2):

( ) ( )( ) ( ), log ,
t ts D a t t t tJ E a s Q s a

θπ π θ βθ λ π = −       
(2)

In equation (2), J(θ) denotes the policy function. 
πθ represents the AN. θ denotes the parameters of 
the AN. Qβ represents the CN. β represents the 
parameters of the CN. D represents the experience 
replay pool for storing training samples. When 
constructing AD decision-making intelligent 
agents, it is also necessary to design the state 
space (Khan et al., 2023). Considering that the 
state space is the foundation of decision agents, 
it directly affects the convergence of algorithms 
and the quality of decisions. Therefore, when 
constructing the state space, it is critical to ensure 
that the state space is beneficial for the training 
speed of the model (Belattar et al., 2022). To cut 
down the training time and to reduce the difficulty 
of the algorithm, this study uses structured data 
to construct a state space. Due to the overfitting 
problem for SAC, the intelligent agent finds 
it difficult to adapt to changing environments. 
Therefore, to raise the adaptability of the SAC 
algorithm to the environment, research was 
conducted with the purpose of making decisions 
based on the movement status of environmental 
obstacles and feasible roads. Meanwhile, to 
improve the generalization ability of the intelligent 
agent, the maximum number of adjacent vehicles 
in the state space was set as 6. Moreover, to 
better express the positional relationship between 
vehicles, this study converts the state information 
for relevant vehicles into the Frenet coordinate 
system, and uses the current position of the vehicle 

as the origin of coordinates. The longitudinal 
distance range between the vehicle and the 
vehicles in front of it and behind it is -30 to 100 
meters, the left and right distance range is -5.25 to 
5.25 meters, the speed range of participants is 0 to 
15 m/s, and the width range of obstacles is 0 to 2 
meters. At the same time, to reduce the complexity 
of the network, the research also converts lane 
information into obstacle information. The lateral 
distance between this vehicle and the centerline 
of the lane ranges from -1.75 to 1.75 meters, and 
the absolute speed range of this vehicle and the 
range for the angle between the lane lines are 0 
to 15 m/s and -π/3 to π/3, respectively. Besides, 
the action space has a crucial impact on the 
search efficiency of the SAC algorithm. For AD 
tasks, each action includes three dimensions, as 
well as throttle, steering wheel rotation angle, 
and braking, with significant differences in their 
range of variation. Therefore, it is necessary to 
normalize them (Li, D. et al., 2023). Due to the 
close relationship between AD decision-making 
and trajectory planning, convex optimization 
methods were adopted in the trajectory planning 
module, and for the decision planning scheme 
a horizontal and vertical decoupling scheme 
was adopted (Li, M. et al., 2023). The action 
space constructed in the study includes 7 action 
quantities, as well as the recommended values for 
left and right lane changing, lateral offset of left 
and right roads, lateral offset of middle lane, lane 
keeping and speed, with values ranging from 0 
to 1, -1.75 to 1.75 m, -1.75 to 1.75 m, 0 to 1, 
and 0 to 15 m/s, respectively. By using the above-
mentioned methods, the state space and action 
space can be constructed. As it was mentioned 
earlier, SAC includes a total of 6 networks, where 
the input and output of the AN are the current state 
and action, respectively. The input of the Critic 
state evaluation network is a combination of state 
and action, while the input of the Critic value 
evaluation network is a combination of action and 
value. The AN structure is illustrated in Figure 2.

Figure 2. The Structure of the AN

Based on Figure 2, the AN is broken into the input 
layer, fully connected layer (FCL), activation 
function layer, and hidden layer. After passing 
through the activation function layer, the data 
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is divided into two groups, which are processed 
through the hidden layer, activation function 
layer, and FCL, and then integrated through the 
connection layer function to output action values. 
The CN structure is shown in Figure 3.

Figure 3. Critic network structure

As it is shown in Figure 3, the state evaluation 
network concatenates the state data and action 
data before calculating the state value, and then 
sequentially passes through the FCL, the activation 
function layer, and the action input layer. The data 
processing methods of the value evaluation network 
and the state evaluation network are consistent. By 
using the above methods, an AD decision-making 
intelligent agent based on the SAC algorithm has 
been constructed. But when faced with complex 
tasks, the agent finds it difficult to accurately 
represent environmental semantics. Therefore, to 
improve this issue, the LSTM model is introduced 
in this study to enhance the accuracy of AD 
decisions. As a nonlinear model, LSTM can be 
used as a complex nonlinear unit to construct larger 
deep neural networks. At the same time, LSTM 
can also preserve important features (main features 
associated with the vehicle status) through various 
gate functions, which can effectively slow down 
the gradient vanishing or exploding that may occur 
in long sequence problems. The main feature of 
LSTM is its gate structure control, including forget 
gate, input gate, memory unit, and output gate. Its 
function is equivalent to adding a “processor” to 
determine the usefulness of information, enabling 
it to better process time series tasks. At the same 
time, it solves the long-term dependency problem 
of RNN and alleviates the “gradient vanishing” 
problem caused by backpropagation during RNN 
training. The formula for calculating the forget 
gate of LSTM is given in equation (3):

( )1k f k f k ff W X U h bσ −= + +                           
(3)

In equation (3), fk represents the forget gate, σ(.) 
represents the Sigmoid function, Wf represents the 
weight of the input data for the forget gate, Xk 
represents the input at time k; Uf represents the 
weight of the hidden layer output at the previous 
moment, hk−1 represents the output of the hidden 
layer at the previous moment, and bf represents the 

bias of the forget gate. The calculation formula for 
the input gate is given in equation (4):

( )1k i k c k ii W X U h bσ −= + +                              (4)

In equation (4), ik represents the input gate, Wi 
represents the input data weight for the input gate, 
Uc denotes the weight of the hidden layer output 
at the previous moment, and bi denotes the bias 
of the input gate. The calculation formula for the 
memory unit is shown in equation (5):

( )1tanh _k c k c k cC W X U h b−= +                         (5)

In equation (5), kC  represents the memory unit 
at the current time, tanh(.) represents the tanh 
function, Wc denotes the weight of the input data 
for the memory unit, Uc represents the weight of 
the hidden layer output at the previous moment, 
and bc denotes the bias of the memory unit. The 
calculation formula for the hidden layer is shown 
in equation (6):

( )tanhk k kh o C= ×                                         (6)

In equation (6), Ck represents the memory unit 
value. The calculation formula for the output gate 
is shown in equation (7):

( )1k o t o k oo W X U h bσ −= + +                             (7)

In equation (7), ok represents the output gate, Wo 
represents the input data weight for the output 
gate, Uo represents the weight of the hidden layer 
output at the previous moment, and bo represents 
the bias of the output gate. The improved AN and 
CN are illustrated in Figure 4.

Figure 4. Improved Actor and Critic networks

In Figure 4, in the AN, LSTM was used to replace 
the first hidden layer, while in the CN, LSTM was 
used to replace the FCL after the feature layer, and 
the original input layer was replaced by a sequence 
input layer. Due to the significant influence 
of the amount of hidden units in LSTM on its 
effectiveness, after comprehensive consideration, 
the number of LSTM hidden units selected for 
this study was 64.
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3.2 Design of Autonomous Driving 
Decision Execution Strategy  
Based on SAC

The actions obtained by the decision-making 
intelligent agent need to be processed before 
they can be effectively utilized by the planning 
module to ensure the accurate execution of the 
strategy. Therefore, for an accurate execution of 
AD strategies, research was conducted on decision 
execution strategies. When using SAC to generate 
paths, considering the continuity between decision 
frames, the study selected the lane with the highest 
recommended value as the driving lane. The 
determination of the start and end points of the 
decision path is shown in Figure 5.

Figure 5. Schematic diagram of the start and end 
points of the decision path

In Figure 5, the Frenet coordinate system is 
established based on the centerline of the lane. 
However, since the decision result for the current 
frame needs to wait until the next frame is tracked, 
the projection of the position of the previous 
frame was selected in the coordinate system 
as the coordinate origin, and the length of the 
endpoint corresponding to the lateral offset was 
determined based on the size of the endpoint of the 
previous frame. The path fitting formula is shown 
in equation (8):

5 4 3 2
5 4 3 2 1 0l c s c s c s c s c s c= + + + + +        (8)

In equation (8), l represents the path, co to c5 are 
coefficients and s represents the horizontal axis 
of the endpoint. By pacing the generated path, it 
is possible to determine whether there will be a 
collision between vehicles. For the convenience of 
calculation, it was assumed that the vehicle is moving 
at a constant speed, and the speed of the vehicle on 
the generated path is calculated for an interval of 4 s.  
The current position of the vehicle is calculated 
every 0.2 s to obtain its horizontal axis (Sun, 2023). 
To determine if there is a risk of collision with the 
chosen vehicle, other vehicles in the surrounding 
area are driving at a constant speed in the same 
coordinate system as this vehicle, and are recursive 
at intervals of 0.2 s. Due to the fact that vehicles 
only need to consider the rear vehicles from adjacent 
lanes and the front vehicles from the current lane and 

adjacent lanes when driving, a maximum number 
of 5 obstacles can be calculated. When calculating 
this number, the vehicle is considered as a particle. 
If the lateral and longitudinal distances between two 
vehicles are less than 1.5 meters, then a collision has 
occurred between the two vehicles. At this point, 
the algorithm proposed in this paper will abandon 
the decision result for the given path and calculate 
whether the remaining paths are feasible. If there is 
a collision risk for all paths, the first recommended 
road will be used as the path decision. For paths with 
collision risks, lateral position constraints will be 
determined based on the current vehicle position and 
the collision position. The lateral position constraints 
are shown in Figure 6.

Figure 6. Lateral position constraints for path planning

From Figure 6, when the vehicle chooses a lane 
change decision, due to the collision risk associated 
with that decision, the algorithm will delineate 
lateral position constraints at the collision location. 
To obtain the optimal path decision, it is necessary 
to score and evaluate each strategy (Banerjee et al., 
2022). Therefore, whether the reward function is 
reasonable will determine whether the agent can 
obtain the optimal strategy. In AD, safety is the 
top priority, followed by efficiency and comfort. 
Therefore, when constructing the function, safety 
rewards should be taken into consideration first. 
The calculation method for safety rewards is 
expressed in equation (9):

2* log ,
max , 2

0,

ego obs

safesafe long safe

safe

s
sr s s

s s

−

−

   
     = −≤   
   >        

(9)

In equation (9), rsafe-long represents the safety 
reward. sego-obs represents the following distance 
between the current vehicle and the preceding 
vehicle. ssafe represents the safe following 
distance. In the horizontal direction, if there are 
obstacles that are too close to the horizontal axis 
of the vehicle, a penalty will be imposed, and its 
calculation is given in equation (10):

1

2* log ,
max , 2 *

15
0,

ego obs

safesafe lat safe

safe

D
v

Dr D D
D D

−

−

   
    ∆  = −≤   
   >       

(10)
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In equation (10), rsafe-lat1 represents the horizontal 
penalty. Dego-obs represents the lateral distance when 
the vehicle collides with an obstacle, Dsafe represents 
the lateral safety distance. Δv represents the 
longitudinal speed difference between the vehicle 
and the obstacle vehicle. Due to excessive deviation 
of vehicles from the centerline of the lane, it can also 
cause safety issues. Therefore, the calculation of the 
lateral deviation penalty is given in equation (11):

2 0.2* 0.5safe latr l− = −                                   (11)

In equation (11), rsafe-lat2 represents the lateral offset 
penalty and l represents the horizontal decision 
quantity. The formula for the collision penalty is 
given in equation (12):

50,
0,safe col

if collision
r

other
−

−
= 
                          

(12)

In equation (12), rsafe-col represents the collision 
penalty. At this point, the total safety reward is 
calculated as the sum of equations (9) to (12). 
With regard to efficiency rewards, if the vehicle 
reaches the finish line, a one-time reward of 100 
points will be given. During the driving process, 
the path is decomposed, and a reward of 30 points  
is obtained for each reward point achieved. In 
addition, to improve driving efficiency, overtaking 
rewards have been included in the study, and their 
calculation method is shown in equation (13):

15
2,
0,

eff spd

eff over

vr

overr
other

−

−

 =

  =                                     

(13)

In equation (13), reff-spd represents acceleration, 
while v represents the speed of the vehicle. reff-over 
represents the reward for completing an overtake. 
The total efficiency reward is the sum of the 
endpoint reward, driving reward, and overtaking 
reward. As comfort rewards are concerned, the 
calculation formulas for longitudinal and lateral 
comfort rewards are given in equation (14):

( )
( )( )2 2

0

0.5* 1 0.3*

max 0.05* , 2

com long

n
com lat i ii

r a jerk

r l l

−

− =

 = − ∆ −


′′ ′′′= − + − ∑         
(14)

In equation (14), rcom-long represents the longitudinal 
comfort reward. Δa represents the difference 
between actual acceleration and recommended 
acceleration and jerk represents the rate of change 
in longitudinal acceleration. rcom-lat represents the 
lateral comfort reward, while il′′  and il′′′  represent 

the second and third derivative of the vehicle’s 
position, respectively. In addition, as changing 
lanes reduces comfort, penalties will be imposed 
when changing lanes, and their calculation is 
given in equation (15):

2,
0,com lc

lane change
r

other
−

−
= 
                           

(15)

In equation (15), rcom-lc represents the lane change 
penalty. The planning gap reward is expressed in 
equation (16):

( )0.2*qp e er l v= − ∆ + ∆                               (16)

In equation (16), rqp represents the planning 
gap reward, Δle represents the lateral position 
difference at the endpoint and Δve represents the 
speed difference at the endpoint. The total reward 
can be obtained by summing up the comfort 
reward and the planning gap reward. By using 
the above method, the AD decision model with 
the SAC algorithm has been constructed, and then 
it can be trained. The training parameters for AN 
and CN are included in Table 1.

Table 1. Training parameters for Actor and  
Critic networks

Network Parameter Value

Actor network

Target entropy -log7
Sampling time 0.1 s
Initial entropy weight 1
Learning rate of entropy weight 10-4

Discount 0.998
Experience buffer length 106

Target smooth factor 10-3

Minimum batch size 64

Critic network

Learning rate 0.001
Gradient threshold 1
Optimizer Adam
L2 Regularization factor 0.0002

According to Table 1, the minimum batch size, 
experience buffer length, and sampling time of 
the AN are 64, 106, and 0.1 s, respectively. The 
initial entropy weight and target entropy are 1 and 
- log7, respectively. The learning rate of entropy 
weight, the gradient threshold, the optimizer, and 
L2 regularization factor of the Critical network are 
0.001, 1, Adam, and 0.0002, respectively. Since the 
total reward is the sum of safety reward, driving 
efficiency reward, comfort reward and planning 
gap reward, and the goal of SAC algorithm is to 
maximize state value and strategy entropy, its 
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objective function involves reward and entropy, 
which can be converted into formula (17):

1
0

max [ ( ( , , ) ( ( | )))]t
t t t t t

t
arg E R s a s H s

∞

τ ππ
π γ α π∗

∼ +
=

= ∑ + ⋅
  
(17)

From equation (17), Discount can regulate the 
effects of short-term and long-term rewards, and 
the closer the Discount is to 1, the more long-term 
goals can be considered. The Discount needs to 
be considered comprehensively with a view to 
training difficulty and long-term reward. If the 
reward for the endpoint can be designed at the 
beginning of a round, a rough calculation can be 
made according to the number of steps necessary 
for completing the task.

4. Results and Discussion

To determine the performance of the proposed 
AD decision strategy based on the SAC-LSTM 
algorithm, this study validated it using traditional 
kinematic models as benchmark models. At the 
same time, the improved algorithm was compared 
with the baseline model and SAC model in specific 
deteriorating mixed traffic scenarios.

4.1 Specific Scenario Validation  
and Analysis

Due to the complexity of the actual driving 
scenarios, this study analyzed the AD decision-
making strategies in lane change overtaking, 
front vehicle insertion, and front vehicle cutting-
out scenarios. During the lane change overtaking 
test, the vehicle followed the target vehicle at a 
speed of 15m/s, with a distance of 100m between 
them. After self-stabilization, the target vehicle 
underwent a uniform deceleration of 3m/s2. The 
lane changing overtaking planning results of SAC-
LSTM are shown in Figure 7.

As it is shown in Figure 7(a), at 5.9 s, the vehicle 
output a lane change command and began to shift 

to the left. At the 6-th second, the distance from 
the centerline of the lane reached its maximum 
of -2.4 m. At 9.0 s, it completed the lane change 
and returned to its position at the centerline of 
the lane. With regard to Figure 7(b), the vehicle 
followed the preceding vehicle steadily within 
the first 3 s, with a driving speed of 15.0 m/s. 
After 3.0 s, the speed slightly decreased. After 
issuing the lane change command, the speed 
was basically maintained at around 14.7 m/s. 
The above results indicated that the AD decision 
strategy based on the SAC-LSTM algorithm 
proposed in this study has a good performance 
in lane changing scenarios, and can maintain 
constant speed during lane changing. In the 
case of the front vehicle insertion scenario, the 
vehicle’s driving speed was still 15 m/s. When 
the distance between vehicles was 28 m, the front 
vehicle was inserted ahead of the other vehicle. 
The decision results for four different algorithms 
in the scenario of front vehicle insertion are 
shown in Figure 8.

As it is shown in Figure 8(a), when VT1 crossed 
the lane line, the GSDLCM model made a 
lane change decision at 7.9 s and completed 
the lane change at 10.5 s. The SAC and SAC-
LSTM models made lane changing decisions 
at 7.6 s and 7.2 s, respectively, and completed 
lane changing at 9.3 s and 9.1 s, respectively. In 
Figure 8(b), when the front vehicle was inserted, 
the GSDLCM model and SAC model started to 
decelerate at 5.9 s and 5.2 s, respectively, with 
minimum speeds of 6.8 m/s and 9.7 m/s. The 
SAC-LSTM model started decelerating at 4.2 s, 
with a minimum speed of 9.6 m/s. The above 
results indicate that when the front vehicle was 
inserted, the SAC-LSTM model’s deceleration 
and lane change decision-making timing was 
faster than for other models. The safety of 
each algorithm in the scenario of front vehicle 
insertion is shown in Figure 9.

Figure 7. Lane change overtaking planning results for SAC-LSTM
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According to Figure 9(a), the IDM model and SAC 
model obtained the minimum collision time with 
regard to the preceding vehicle at 6.0 s and 5.2 s, 
respectively, and at 2.1 s and 3.1 s, respectively. 
The SAC-LSTM model also obtained the smallest 
collision time with regard to the preceding 
vehicle at 5.2 s, but the collision time between 
the two vehicles was 3.6 s. As it is shown in 
Figure 9(b), for the IDM model and SAC model 
the distances from the preceding vehicle when 
making lane change decisions were 8.3 m and 
10.2 m, respectively. When making lane changing 
decisions, SAC-LSTM was 10.5 m away from the 
previous vehicle. The above results indicate that in 
comparison with the IDM model and SAC model, 
the SAC-LSTM model features a higher decision 
safety when the front vehicle is inserted. When 

verifying the decision performance for the front 
vehicle in the front vehicle cut-out scenario, the 
driving speeds of the analysed vehicle and the front 
vehicle VT2 were 15 m/s and 10 m/s respectively, 
and there was another vehicle following VT2 at a 
speed of 15 m/s 10 m behind the left side of this 
vehicle, and there was a bicycle in front of it, to 
the right. When the distance between VT2 and the 
preceding vehicle was 40 m, VT2 began to change 
lanes. The decision results for each algorithm in 
the front vehicle cut-out scenario are shown in 
Figure 10.

As it can be seen in Figure 10(a), in the scenario 
where the front vehicle is cut out, the IDM 
model, SAC model, and SAC-LSTM model 
made three different decisions. The IDM model 

Note: VT1 represents the vehicle inserted ahead Note: GSDLCM represents the Gipps Safety Distance Lane Changing Model

Figure 8. Decision results for four different algorithms in the front car insertion scenario

Note: The IDM represents the Intelligent Driver Model

Figure 9. Safety of each algorithm in the front car insertion scenario

Figure 10. Decision results for each algorithm in the front car cutting-out scenario
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made a lane change decision at 6.1 s, driving 
towards the right lane, and then changed lanes 
again at 11.9 s, driving towards the left lane. The 
SAC model made a lane change decision at 6.3 s 
and drove towards the right lane. The SAC-LSTM 
model made a decision to change lanes to the left 
lane at 6.2 s. According to Figure 10(b), all three 
models started to decelerate at the same time, 
while SAC-LSTM reached the minimum speed 
earlier than the other models. The safety of each 
algorithm in the front car cutting-out scenario is 
shown in Figure 11.

Figure 11. Safety of each algorithm in the front car 
cutting-out scenario

As it is shown in Figure 11, the minimum collision 
times for the IDM model, SAC-LSTM and SAC 
model were 4.0 s, 3.2 s, and 3.9 s, respectively. 
The minimum collision time for the SAC model 
occurred when eluding the preceding vehicle 
VT1, and the collision time for the SAC model 
was significantly lower in comparison with the 
other model when eluding bicycles in the right 
lane, namely between 8.1 s and 9.2 s. Overall, 
in the front car cutting-out scenario, the safety 
of the IDM model was not greatly different from 
the safety of the SAC-LSTM model, while the 
safety of the SAC model was greatly inferior to 
the safety of the other two models.

4.2 Validation Analysis for the 
Pedestrian Crossing and Mixed 
Traffic Scenarios

In urban transportation, pedestrians are also very 
important participants, but when facing vehicles, 
pedestrians are in a disadvantaged position. 
Therefore, to verify the impact of AD decision 
models on pedestrian safety, an analysis was 
carried out to verify the decision results and safety 
for pedestrian crossing scenarios. In the case of 
the pedestrian crossing scenario, the vehicle was 
traveling at 10 m/s. When they were 35 m away 
from the vehicle, pedestrians began to cross the 
road at a speed of 1.5 m/s. Meanwhile, bicycles 
with a speed of 3 m/s were starting to come forward 
in the right lane. Since there is no baseline model 
for pedestrian forward interpolation, only the SAC 
and SAC-LSTM models were compared. The 
decision results for each algorithm in the pedestrian 
crossing scenario are shown in Figure 12.

According to Figure 12, when pedestrians crossed 
into the lane where the vehicle is located, the 
SAC model first decelerated to avoid pedestrians, 
and when facing a bicycle that was suddenly 
inserted in front of the vehicle, it braked sharply 
and changed lanes. The SAC-LSTM model 
decelerated and changed lanes to the left when 
pedestrians crossed into the lane where the vehicle 
was located, so there was no need to face a bicycle 
that was suddenly inserted in front of the vehicle. 
As it can be seen in Figure 12(a), the SAC and 
SAC-LSTM models made lane change decisions 
at 6.8 s and 7.5 s, respectively. Further on, as it is 
shown in Figure 12(b), the SAC model and SAC-
LSTM model began to decelerate at 6.0 s and 3.7 s, 
respectively, and reached their minimum speeds at 
10.0 s and 8.3 s, respectively. The average vehicle 
speeds under the decision-making of the SAC 
model and SAC-LSTM model were 10.28 m/s 
and 10.29 m/s, respectively, which are basically 

Figure 12. Decision results for each algorithm in the pedestrian crossing scenario
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the same. The decision safety for the SAC and 
SAC-LSTM models is shown in Figure 13.

As it is shown in Figure 13(a), the collision times 
for the SAC model and the SAC-LSTM model 
were the smallest at 8.1 s and 8.3 s, respectively. 
The minimum collision times for the two models 
were 0.3 s and 1.2 s, respectively. That is, the 
collision time was higher for the SAC-LSTM 
model than for the SAC model. As it can be seen 
in Figure 13(b), at 8.1 s, the SAC model was 
changing lanes and the analysed vehicle almost 
collided with the bicycle. At 12.7 s, although the 
distance traveled by the bicycle and the vehicle 
in the SAC-LSTM model was the same, there 
was no risk of collision at this time because 
the SAC-LSTM model had already completed 
lane changing. The above results indicate that 
in comparison with the SAC model, the SAC-
LSTM model features a higher safety when 
facing pedestrian crossings. Due to the fact that 
vehicles often face different scenarios during 
actual driving, to verify the generalization ability 
of AD decision models, an analysis was carried 
out to verify the decision safety and comfort of the 
employed models in mixed traffic scenarios. When 
conducting mixed traffic scenario validation, the 
traffic density was 20, the number of pedestrians 
and non-motorized vehicles was 8, and the number 
of stationary obstacles was 6. The safety, and 

the efficiency and comfort for each algorithm in 
mixed traffic scenarios are depicted in Figure 14.

According to Figure 14(a), the average collision 
frequency, average lane change frequency, 
average following distance, and average 
distance from the lane centerline for the baseline 
model were 1.4 m, 8.5 m, 43 m, and 0.12 m, 
respectively. The values of these parameters for 
the SAC model were 0.9 m, 11.2 m, 21 m, and 
0.27 m, respectively, while those achieved by the 
SAC-LSTM model were 0.9 m, 9.8 m, 19 m, and 
0.36 m, respectively. According to Figure 14(b), 
the average arrival times for the baseline model, 
the SAC model, and the SAC-LSTM model were 
167 s, 132 s, and 127 s, respectively. The values 
for the root mean square (RMS) of acceleration 
were 0.78, 1.1, and 1.1, respectively. The values 
for the RMS of the acceleration change rate were 
0.85, 1.4, and 1.3, respectively. According to 
the above results, the safety of the SAC-LSTM 
model is higher than that of the baseline model 
and of the SAC model, and the SAC-LSTM 
model provides a higher comfort and flexibility. 
In order to further understand the driving decision-
making performance of the proposed SAC-LSTM 
model, it was compared with the state-of-the-art 
Deep Q-Network Long Short-Term Memory Self 
Attention (DQN-LSTM-SAT) model and with the 
Bayesian Network RoboSim (BNRoboSim) model. 

Figure 13. Decision safety for the SAC and SAC-LSTM models

Note: The baseline models are the IDM and the GSDLCM.
Figure 14. Safety and comfort of each algorithm in mixed traffic scenarios
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The results for the decision-making performance 
of the three models are shown in Figure 15.

As it can be seen in Figure 15(a), the DQN-LSTM-
SAT and BNRoboSim models chose to slow down 
in front of the people who were crossing the street 
on the pedestrian crossing, while in the face of 
sudden forward crossing, the SAC-LSTM model 
simultaneously slowed down and changed lanes to 
the left, in order to achieve the purpose of avoiding 
pedestrians and bicycles simultaneously. According 
to Figure 15(b), both the DQN-LSTM-SAT and 
BNRoboSim models basically started to slow down 
at around 5.0s, reaching the minimum speed at 8.9s 
and 9.7s, respectively. However, the SAC-LSTM 
model started to decelerate at 3.7s and reached a 
minimum speed at 8.3s. The decision safety for the 
three algorithms is illustrated in Figure 16.

According to Figure 16(a), the collision times for 
both the DQN-LSTM-SA and the BNRoboSim 
models are the smallest at 8.1 seconds, with 
minimum collision times of 0.9 seconds and 0.7 
seconds, respectively. The collision time for the 
SAC-LSTM model is the smallest at 8.3 seconds, 
with a minimum collision time of 1.2 seconds. The 
collision time for the SAC-LSTM model is higher 
than that achieved by the two other models. In Figure 
16(b), it can be seen that all three models managed 
to avoid a collision with bicycles and pedestrians, 
but the SAC-LSTM model features a larger distance 
between pedestrians and bicycles. It can be seen that 
the SAC-LSTM model features a higher safety. In 
order to verify the comfort provided by the decision-
making algorithms, the acceleration values for the 
previous front vehicle insertion scenario were 
compared as an example. The acceleration for each 
algorithm is shown in Figure 17.

Figure 15. The results for the decision-making performance of the three algorithms

Figure 16. The decision safety for the three algorithms

Figure 17. Acceleration for the three algorithms
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In Figure 17, it can be seen that for the front 
vehicle insertion scenario, the target vehicle of 
BNRoboSim experiences a sudden brake when 
entering this lane, with a deceleration of -5m/s2 
and a high longitudinal deceleration rate, resulting 
in a significant impact. Although the DQN-LSTM-
SA and the SAC-LSTM models feature smaller 
impacts, the SAC-LSTM model is more stable in the 
subsequent deceleration stage. The root mean square 
values for the longitudinal acceleration of the three 
algorithms are 1.22, 1.09, and 1.10, respectively, 
and the root mean square values for the lateral 
acceleration of the three algorithms are 1.17, 1.09, 
and 0.98, respectively. The above results indicate 
that in comparison with the other two algorithms, 
the SAC-LSTM model provides a higher comfort.

5. Conclusion

In the autonomous driving system, the decision-
making system, as an important component, 
has a great influence on the effectiveness of the 
entire driving system. A good decision-making 
system can effectively ensure the safety of drivers 
and pedestrians, and ensure driving efficiency. 
Therefore, to enhance the safety and driving 
efficiency in the context of AD decision-making, 
a decision model for AD based on the SAC 
algorithm and a LSTM network is proposed and 
tested. The experimental findings showed that in 
the front vehicle insertion scenario, the GSDLCM 

model made a lane change decision at 7.9 s and 
completed the lane change at 10.5 s. The SAC and 
SAC-LSTM models made lane changing decisions 
at 7.6 s and 7.2 s, respectively, and completed lane 
changing at 9.3 s and 9.1 s, respectively. At this 
point, the minimum collision times for the IDM 
model, the SAC model, and the SAC-LSTM model 
were 2.1 s, 3.1 s, and 3.6 s, respectively. In the 
pedestrian crossing scenario, the SAC model first 
decelerated to avoid pedestrians, and when facing 
a bicycle that was suddenly inserted in front of the 
vehicle, it braked sharply and changes lanes. The 
SAC-LSTM model decelerated and changed lanes 
to the left when pedestrians crossed into the lane 
where the vehicle was located, so there was no 
need to face a bicycle that was suddenly inserted 
in front of the vehicle. At this point, the minimum 
collision times for the two models were 0.3 s and 
1.2 s, respectively. For a mixed traffic scenario, 
the average number of collisions for the baseline 
model, the SAC model, and the SAC-LSTM model 
was 1.4, 0.9, and 0.9, respectively. The outcomes 
illustrated that the safety of the SAC-LSTM model 
was superior to the other employed models for 
both single and mixed traffic scenarios. However, 
due to the fact that this study only considered the 
nearest obstacle in relation to the analysed vehicle 
when the proposed model was developed, the 
model lacks foresight. Therefore, further research 
on decision models will be conducted in the future, 
taking into account more obstacles.
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