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1. Introduction

Dysarthria, a neurological speech disorder, can 
be caused by conditions such as cerebral palsy, 
amyotrophic lateral sclerosis (ALS), stroke, or 
traumatic brain injuries (Darley et al., 1975).  
People with dysarthria struggle to articulate 
their words, which results in a slurred or 
unintelligible speech due to poorly coordinated 
articulatory movements. 

Augmentative and alternative communication 
(AAC) devices have been developed to help 
individuals communicate effectively.  Among 
the AAC aids, those utilizing automatic speech 
recognition (ASR) systems could significantly 
improve their quality of life without social 
support dependency. However, the current ASR 
systems in use perform very poorly for dysarthric 
speakers as they lack training data from this 
population. A substantial corpus of their speech 
data is essential to develop ASR systems tailored 
to dysarthric speakers. However, gathering such 
a large corpus is challenging. While certain 
corpora of dysarthric speech data exist (Kim et 
al., 2008; Rudzicz et al., 2012; Thekekara Antony 
et al., 2016), they are limited in size and available 
only for analysis. On the other hand, unlike 
normal speakers, acquiring a comprehensive 
corpus for dysarthric speakers is complicated 
because the process entails recording the speech 
of individuals with physical and intellectual 

impairments. Consequently, collecting data from 
these individuals is laborious and challenging.

Data augmentation techniques are used as a better 
alternative for handling the above-mentioned 
issue of data sparsity in dysarthric speech. These 
techniques have been thoroughly studied in the 
context of normal speech recognition tasks, 
employing different techniques, including tempo 
and speed variation (Geng et al., 2020), vocal 
tract length perturbation (VTLP), SpecAugment, 
cross-domain feature adaptation, and noisy and 
reverberant speech simulation. An increased 
augmented data for training enhances the overall 
performance of ASR systems.

The use of data augmentation to enhance 
dysarthric speech data has had a minimal effect 
on research because it is challenging to expand 
the number of instances while preserving the 
unique characteristics of the dysarthric speakers.  
Several approaches were outlined by adjusting the 
spectro-temporal disparities for a normal speech.  
Tempo-stretching (Vachhani et al., 2018; Xiong 
et al., 2019), VTLP (Jaitly & Hinton, 2013), and 
speed perturbation (Ko et al., 2015) are some 
techniques applied to normal speech recordings 
to obtain resultant speech data, characterized 
by attributes like reduced volume and slower 
rate, which are then utilized to augment the 
limited training data for the dysarthric speech. 
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Most of these approaches try to obtain the 
dysarthric speaker’s speech characteristics like 
speech rate, volume, breathiness and hoarse 
voice. However, the most important and higher-
level attributes, like articulatory imprecision or 
speech errors inherent to each dysarthric speaker, 
cannot be inferred or addressed through the data 
augmentation examples obtained from normal 
speakers as a source.

On the other hand, the approaches aimed at 
augmenting data by using the original dysarthric 
speech are employed to address these differences. 
Xiong et al. (2020) increases the size of the 
training dataset by directly modifying dysarthric 
speech samples. The study uses a threefold speed 
perturbation method to expand the data for model 
training. It incorporates factored time delay neural 
networks (TDNN-F) and convolutional neural 
networks (CNNs) to identify isolated words in the 
Universal Access (UA) speech corpus (Kim et al., 
2008).  This paper achieves an overall average 
Word Error Rate (WER) of 30.76% through data 
augmentation and transfer learning. In (Takashima 
et al., 2020), a two-step speaker adaptation 
process is performed. First, a speaker-independent 
(SI) model trained on normal speech is adapted 
to accommodate multiple dysarthric speakers. 
The modified SI dysarthria model is then tailored 
to align with the speech features of a specific 
dysarthric speaker. However, incorporating 
data from normal speakers for training or 
augmentation can introduce variability within 
the speaker’s speech, particularly for those with 
mild to moderate dysarthria.  Severe dysarthric 
speaker categories, especially moderate-to-severe 
and severe classes, encounter difficulties due to 
the substantial acoustic differences from normal 
speech. Consequently, these methods become less 
effective as the severity of dysarthria increases.

In (Thekekara Antony et al., 2020), the authors 
present a data augmentation technique exclusively 
using dysarthric speech data. They introduce a 
VM-MRFE (Virtual Microphone-Multi Resolution 
Feature Extraction) method which is a data 
augmentation approach used by transforming the 
original dysarthric speech data. Initially, dysarthric 
speech samples are produced based on the original 
using virtual microphone array synthesis. This 
expands the original three examples to 21 new 
examples through a 7-set virtual microphone array 
synthesis. This set is further augmented using a 
multi-resolution feature extraction technique 

by applying five different resolutions to the 
virtual microphone signals resulting in 105 new 
examples. The augmented examples are then 
utilized to train a hybrid ASR system for isolated 
words based on DNN-HMM. Assessments on the 
UA corpus indicate average Word Error Rates 
(WERs) of 5.82%, 11.62%, and 50.36% for the 
mild, moderate, and severe dysarthric speaker 
categories, respectively. Similarly, the assessments 
on the SSN-TDSC corpus demonstrate average 
WERs of 20.51%, 29.71%, and 54.04% for the 
mild, moderate, and severe dysarthric speaker 
categories.  This approach was also applied for 
continuous dysarthric speech in (Thekekara 
Antony et al., 2023) using the transfer learning 
approach. It was suggested that the size of the 
augmented data could not be further increased, 
as increasing the array length reduces the signal’s 
energy. Apart from microphone arrays and 
multiple resolutions, data augmentation through 
noise has been a focus in (Nawroly et al., 2023). 

Noisy data is one source that is available in 
abundance in the literature (Muthu Philominal et 
al., 2020; Borrie et al., 2017). The intuitive concept 
of the work of Nawroly et al. (2023) is to introduce 
noise in the dysarthric speech by analysing it and 
selecting the appropriate noise frequency ranges 
that affect the dysarthric speech examples less even 
after augmenting it on them. On that note, low-
frequency noises that affect the intelligibility less at 
the dysarthric speech frequency range are chosen, 
and only noises with a low-frequency range are 
augmented to the dysarthric speech examples. This 
work is conducted solely for individual words, 
and further examination is required to evaluate 
its efficacy in improving the intelligibility of 
continuous dysarthric speech.

It is understood from the data augmentation 
approaches using the original dysarthric speech 
that data augmentation is performed either at 
the isolated word level (Nawroly et al., 2023), 
where there are no limitations on the expansion 
of augmented speech examples, or at the 
sentence level (Thekekara Antony et al., 2023), 
where there are constraints on the number of 
examples generated. To handle this, the proposed 
method blends the advantages of various data 
augmentation approaches to create a data 
augmentation method suitable for continuous 
dysarthric speech recognition that can also expand 
the number of examples with fewer constraints. 
For this purpose, a two-stage transfer learning 
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(TL) approach is proposed in the current work. 
In the first stage, a dysarthric speech recognition 
system is trained using a set of dysarthric speech 
data based on the speaker category which is 
augmented with noisy data to serve as a pre-
trained (source) model. The target model is then 
trained using a data augmentation approach based 
on VM-MRFE, as proposed in (Thekekara Antony 
et al., 2020) for the target dysarthric speaker alone.

Noise augmentation is performed for the source 
model to increase the data volume of the source 
model in transfer learning. As the model parameters 
highly depend on the volume of the source data, 
the noise data augmentation approach that has no 
limit with regard to the augmented examples as 
mentioned in (Nawroly et al., 2023) is used at the 
source side. For augmenting the target dysarthric 
speech data, the data augmentation approach 
in (Thekekara Antony et al., 2020) is applied as 
VM-MRFE has the ability to retain the identity of 
the target dysarthric speaker to its best which is a 
highly required feature for the target model.

The paper is organized as follows. Section 2 
provides details about the dysarthric speech 
corpus and the utilization of noisy data.  Section 3 
details the techniques used for data augmentation 
in the two-stage transfer learning approach. 
Section 4 explains the training process for an ASR 
system based on two-stage transfer learning using 
augmented speech data. Section 5 compares the 
proposed approach with the data augmentation 
approaches in the literature. Section 6 concludes 
this paper.

2. Speech Corpora Used

This study validated the carried out experiments 
using the Nemours dysarthric speech corpus 
(Menendez-Pidal et al., 1996). The speech data in 
this database is from 10 speakers with dysarthria 
who uttered 74 sentences. The first 37 of them 
have two nouns and a verb, followed by the next 
37 sentences with the nouns in reverse order.  This 
means that each word in the entire corpus has two 
examples which were recorded at a sampling rate 
of 16 kHz. Furthermore, it includes transcriptions 
aligned at the word and phoneme levels.

For noise augmentation, the NOISEX-92 database 
(Varga & Steeneken, 1993) is used to supplement 
the noisy data with samples from Babble, Factory, 
Pink, Benz, Car, Bus, Volvo, and Train noises, 
covering a broad frequency range.

3. Data Augmentation Techniques 
for the Two-Stage Transfer 
Learning Approach

This work has used two data augmentation 
approaches to train the source and target TL 
models. Both approaches utilize the dysarthric 
speech data itself to synthesize new examples. 
Data augmentation through noise is performed on 
the first level for the dysarthric speaker category-
based data, and data augmentation through the 
VM-MRFE approach is performed on the second 
level for the target dysarthric speaker model as 
shown in Figure 1. 

Figure 1. Block Diagram of the two-stage transfer learning approach



https://www.sic.ici.ro

86 Sarkhell Sirwan Nawroly, Decebal Popescu, Mariya Celin Thekekara Antony

For any target dysarthric speaker, the source 
model is decided based on the category of the 
target dysarthric speaker. If the dysarthric speaker 
is from a severe category, then the data for source 
model training includes all the dysarthric speech 
data from the severe category along with its noise-
augmented examples. The corresponding target 
data for training the target model is the dysarthric 
speech of the target speaker itself augmented 
by using the VM-MRFE approach as shown in 
Figure 2. Hence, initially category-wise models 
are trained leaving the target dysarthric speaker 
to avoid overlapping of the source and target data.

The Nemours dysarthric speech corpus 
is utilized for both the source and target 
training data, with 37 utterances allocated 
for testing and the other 37 used for training. 
Data augmentation methods are used on the 
training set. The source model is trained in a 
category-wise manner (mild, moderate, and 
severe) using noise-based data augmentation. 
This choice is rooted in the fact that it pre-
trains the initial layers of the neural network 
based on the common characteristics inherent 
to the noise-based data-augmented examples. 
The shared characteristics specific to a category 
(mild, moderate, and severe) in the context of 
the noise-based data augmentation method are 
primarily centered on the acoustic information 
for each category rather than the diverse 
noise characteristics. This is because, in this 
approach, low-frequency analysis-based noises 
are specifically added to the dysarthric speaker’s 
speech, as opposed to introducing a generic 
noise. Consequently, the impact and nature of 

the influence on each original example vary, 
precluding it from being a generalizable feature. 
Furthermore, this approach does not limit the 
number of examples to be augmented (Nawroly 
et al., 2023). The following sub-section discusses 
dysarthric speech augmentation using noise as 
a source.

3.1 Stage 1: Noise-based Data 
Augmentation Approach for 
Source Model Training

Noise categories such as “Volvo,” “Golf,” “Car,” 
“Benz,” “Babble,” “Train,” “Bus-i,” and “Bus-j” 
are chosen for noise-based data augmentation.  By 
contrast to the approach mentioned in (Nawroly 
et al., 2023), noises such as “train” and “babble” 
are also being considered in this work. The reason 
for this is that the original model is a pre-trained 
version that is tailored to the specific category of 
the dysarthric speaker being targeted, rather than 
being a model dependent on the individual speaker 
used for recognizing dysarthric speech.  

Signal-to-Noise ratio (SNR) dB levels ranging 
from -5dB to +20dB in steps of 5dB were used for 
augmenting noise data to dysarthric speech data.  
Eight different noise conditions across five SNR 
dB levels (-5, 5, 10, 15, and 20dB) were applied, 
and the noise data was added to dysarthric speech 
data on a frame-by-frame basis. Figures 2(a) and 
3(a) show the original dysarthric speech signal 
and its spectrogram for the speaker BB with mild 
dysarthria, and Figures 2(b) and 3(b) show the 
augmented version with noise data for the same 
speaker. It’s apparent that the augmented example 

Figure 2. Dysarthric speech signal for a mild dysarthric speaker (BB) and its augmented versions
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is not simply a copy of the original but it also 
represents a new instance of speech produced by 
the dysarthric speaker. The spectrogram in Figure 
3 shows that the general shape and characteristics 
of the spectrum are largely preserved across the 
augmented dysarthric speech examples with 
respect to the original dysarthric speech retaining 
the dysarthric speakers’ identity and speech 
errors, that is represented by drawing a black 
box as it is also shown in Figure 3. This fact is 
also represented as a line graph in Figure 4 which 
was plotted using the Mel Frequency cepstral 
coefficients (MFCCs) features derived from the 
speech signal for a mild dysarthric speaker (BB), 

along with the noise-augmented MFCC versions 
at various SNR levels and for different noise types. 
MFCCs are the set of coefficients that capture the 
shape of the power spectrum of each sound unit, 
here the MFCCs of each sound are calculated at 
the frame level for each sound and plotted in a 
line graph to compare the characteristics of the 
original dysarthric speech data with its noise-
augmented versions across various Signal-to-
Noise Ratio (SNR) levels. The Mel-Frequency 
Cepstral Coefficients (MFCCs) were chosen as 
they are used for feature representations to analyze 
the impact of added noise on the speech data’s 
spectral properties. From Figure 4, it is evident 

Figure 3. Spectrogram of dysarthric speech signal for a mild dysarthric speaker (BB) and its augmented versions

Figure 4. Line graph comparing the features of original dysarthric speech data for mild, moderate, and severe 
dysarthric speakers
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that not all the lines are identical or completely 
overlapping as it is shown through the black box in 
this figure. Complete overlapping would indicate 
that the augmented features are mere copies of the 
original ones, potentially introducing bias during 
training. Instead, the observed variations confirm 
that the augmented examples are transformed 
versions of the original data.

Furthermore, while these transformations alter the 
feature values, increasing or decreasing them, the 
overall MFCC feature shape of the signal in the 
line graph remains unchanged. This preservation 
of the MFCC feature shape indicates that the 
speech characteristics of every phoneme (rightly 
articulated or misarticulated by the dysarthric 
speaker), including the inherent errors typical of 
the dysarthric speaker, are retained. Specifically, 
the frequency components corresponding to 
each sound unit remain intact, ensuring that the 
augmented examples represent the original data 
in a transformed but meaningful way.

Additionally, the correlation coefficient in Table 1 
shows the extent to which the speech characteristics 
are retained from the original in the noise-
augmented version as this correlation is obtained 
using the MFCC features.In a similar way, each 
dysarthric speech example was augmented with 
noise data across various SNR ranges, resulting in 
40 additional unique examples (8 types of noise 
and 5 dB levels). Therefore, after augmentation, 
each word has a minimum of 80 examples.

Table 1. Correlation Between the MFCC of the 
Original Dysarthric Speech Data (Speaker (BB)) 
and Noise-Augmented Speech Data for the Same 

Speaker (BB)

Category of Noise Correlation Coefficient
Volvo 0.79
Gulf 0.62
Car 0.73

Benz 0.68
Train 0.61
Bus-i 0.7
Bus-j 0.74

Babble 0.58

The noise-based augmentation approach is quite 
flexible regarding the number of augmented 
examples, as it is not limited to a specific number. 
By contrast to the previous work of (Nawroly 
et al., 2023, the current study demonstrates 
the flexibility of incorporating additional low-

frequency noises for augmentation by utilizing 
different noises. This noise-based dysarthric 
speech augmentation technique is applied to train 
the source model.

This study incorporates data from three categories 
of dysarthric speakers: individuals with mild, 
moderate, and severe symptoms. Training the 
source model for a specific dysarthric speaker 
follows a category-based approach. For example, 
when training the source model for a mild 
dysarthric speaker “X” all the examples from 
the mild category except for “X” are used. As a 
result, new source models need to be trained for 
each dysarthric speaker based on a “leave 1-out” 
approach. Further details on training the model 
will be provided in Section 4.

3.2 Stage 2: VM-MRFE-based Data 
Augmentation Approach for Target 
Model Training

In the second stage, virtual microphone array 
(MA) signals are synthesized using the original 
sample from the dysarthric speaker, followed 
by the application of multi-resolution feature 
extraction (MRFE) to these synthesized MA 
signals (Thekekara Antony et al., 2020; Thekekara 
Antony et al., 2023). A linear array configuration 
with 7 microphones generates the virtual 
microphone array (MA) signals. To prevent spatial 
aliasing, the microphones are positioned 0.02 
meters apart. The virtual MA signals are produced 
using the phase spectrum, incorporating a phase 
shift ejkd (Arcienega et al., 2000), corresponding to 
a time delay denoted by d.  In this context, k =2πf/c, 
where c represents the speed of sound (343 m/s).

Let M represent the spectrum of the source signal, 
and Mn represent the spectrum of the nth element, 
which is given by:

Mn = Mejk(n−1)d ;  n = 1,2,.....,N           (1)
where N is the total number of elements in  
the array.

In Figures 2(c) and 3(c), the virtual MA signals 
and their corresponding original dysarthric speech 
signal are shown. These virtual MA signals are 
used for multi-resolution feature extraction 
(MRFE) (Priyanka et al., 2013) to increase the 
number of examples at the feature level. The 
signals undergo extraction of 39-dimensional 
MFCC features, which consist of 13-dimensional 
static MFCCs, and 13-dimensional (delta and 
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acceleration) coefficients. Various resolutions of 
these characteristics are derived using different 
window sizes, ranging from 10 ms to 20 ms at 2 
ms intervals, with each window size operating at a 
50% frame rate, resulting in 5 unique resolutions.

This paper uses a starting window size of 10 ms 
for MRFE to guarantee that the frame size exceeds 
one pitch period for every speaker.  Consequently, 
by using the VM-MRFE method, each source 
example is expanded by a factor of 35 (7 (virtual 
MA examples*5 (MRFE)) through this VM-MRFE 
data augmentation technique.

An interesting aspect of these two data 
augmentation methods is that they use the original 
dysarthric speech samples to create augmented 
data while preserving the identity and speech 
errors of the dysarthric speaker. These techniques 
are used with continuous dysarthric speech 
data, and the approaches for expanding the pool 
of augmented dysarthric speech samples are 
considered. As it was discussed in the previous 
section, a two-stage transfer learning approach 
is then trained using a specific dysarthric speech 
example and its corresponding source model.

4. Training Two-Stage  
Transfer-Learning

4.1 Approach for Dysarthric Speech 
Recognition System

The concept of transfer learning entails 
commencing with a pre-trained model using a vast 
dataset and subsequently adjusting the parameters 
with a smaller dataset. This approach allows the 
model to learn general features from the source 

model and then adapt them to the target model, 
improving its performance with less labelled 
data.  The model used in this study is a pre-
trained model that is trained on specific categories 
using a noise-data augmentation technique. 
To perform this, a pre-trained model is trained 
using a category of dysarthric speakers’ speech 
data and its corresponding noise-augmented 
examples, leaving the target dysarthric speaker 
out of this pre-training process. Thus, for each 
target dysarthric speaker a separate source model 
is involved. For the Nemours corpus, as shown 
in Table 2 (sourced from (Thekekara Antony et 
al., 2019)), dysarthric speakers are classified into 
mild, moderate, and severe categories.

In Table 2, the distribution example for pre-
training the TL model while leaving out the 
target is shown. The original training of the 
source model includes extracting 13-dimensional 
MFCC features. These features are later 
transformed into a 40-dimensional vector using 
linear discriminant analysis and maximum 
likelihood linear transform, as it was shown 
in Figure 1.  Additionally,  a speaker adaptive 
training along with a Gaussian mixture model – 
Hidden Markov model (GMM-HMM) training, 
using feature space maximum likelihood linear 
regression as described in (Xiong et al., 2019) is 
performed. Next, a DNN architecture, referred to 
as factored time delay neural networks (TDNN-F), 
is employed, combined with convolutional neural 
networks (CNNs). The core of this architecture 
consists of five CNN layers that receive input from 
40-dimensional log-Mel spectrogram features. 
Following these layers are nine TDNN-F layers 
and one linear layer, culminating in the output 
layer. The TDNN-F training process utilizes 

Table 2. Number of dysarthric speakers in each category and number of examples for pre-training the source 
model in stage 1

Dysarthric Speaker ID Category No. of Examples for pre-training the source model
FB

Mild 40 (8 noises * 5dB levels)  * 37 (training utterances) * 3 (speakers leaving the 
target) = 4440 examples

BB
MH
LL
RL

Moderate 40 (8 noises * 5dB levels) * 37 (training utterances) * 2 (speakers leaving the 
target) = 2960 examplesJF

BV
SC

Severe 40 (8 noises * 5dB levels)  * 37 (training utterances) * 2 (speakers leaving the 
target) = 2960 examplesBK

RK
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the lattice-free maximum mutual information 
criterion.  The linear layer is an additional hidden 
layer incorporated specifically for speaker 
adaptation purposes. The learning rates initially 
set at 0.0002 for training the source model over 
five epochs gradually decrease at 0.0005.

Since the source model pre-trains the initial layers 
of the neural network based on the common 
characteristics inherent to the noise-based data-
augmented examples, the common characteristics 
are specific to a dysarthric category (mild, 
moderate, and severe) in the noise-based data 
augmentation method, which is centered on the 
acoustic information for each category rather 
than the diverse noise characteristics captured 
in the source model. This is because, for this 
approach, low-frequency analysis-based noises 
are specifically added to the dysarthric speaker, as 
opposed to introducing a generic noise. Hence, the 
speaker characteristics are preserved over the noise 
characteristics, which have a very poor influence in 
the dysarthric speech recognition systems. 

With the pre-trained source model, the target 
model with VM-MRFE examples is fine-tuned 
at the second stage of the TL approach. The 
examples for each dysarthric speaker, as given 
in Table 1, are used to fine-tune each speaker 
individually, making this system a speaker-
dependent one. For fine-tuning, for each 
dysarthric speaker there are 1295 dysarthric 
speech examples (35 * 37), 35 of them being  
related to VM-MRFE-based data augmentation, 
and the other 37 examples being allocated for 
training. In stage two, three epochs were used, 

and the learning rate was set at 0.0005, which 
is half of the value used by the original model.

The hyper-parameters are transferred from the 
original noisy dysarthric speech data to the VM-
MRFE data by linearly adjusting the weights of 
the original model within the final TDNN-F layer.  
This is tailored to align with the characteristics of 
the augmented target dysarthric speech data. This 
two-stage transfer learning process is conducted 
separately for ten dysarthric speakers. The original 
model is selected for each speaker based on the 
category of the target dysarthric speaker.

As it was noted in Section 3, the remaining 37 
utterances from each dysarthric speaker as test 
data without applying data augmentation are 
used. Table 3 shows the WER performance of 
the dysarthric speech recognition system based 
on two-stage transfer learning using this test 
data. Since it is a continuous dysarthric speech 
recognition system, word error rate (WER) would 
be a more appropriate scheme of evaluation. It 
can be observed from the table that for the mild 
category of dysarthric speakers, the reduction in 
the value of WER is almost 16.47%, while for 
the moderate category, it is 24.66%, and for the 
severe one, it is 34.54%. A greater reduction of 
WER is observed as the severity of the condition 
increases, which could also be attributed to the 
flexibility of the utterance syntax related to the 
analysed corpus. A paired t-test is conducted 
with regard to the WER obtained before and 
after data augmentation. The results of the paired 
t-test indicated that there is a significantly large 
difference between the Before (Mean = 31.8, 

Table 3. WER performance of the Two-Stage TL-based dysarthric speech recognition system

Category Dysarthric Speaker ID
WER for dysarthric speech 

recognition without  
data augmentation

WER for dysarthric speech 
recognition using two-stage  

TL-based data augmentation

Mild

FB 14.31 4.89

BB 15.87 4.18

MH 10.98 6.9

LL 22.11 5.64

Moderate
RL 23.12 8.55

JF 24.21 10.85
BV 34.12 9.46

Severe
SC 52.33 22.4
BK 58.12 26.05
RK 63.19 38.65
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SD = 19.2) and After (Mean = 13.8, SD = 11.5) 
category based TL-approach, where t(9) = 6.2, 
with p < .001. Since the p-value < α, the Null 
hypothesis is rejected, indicating that the alternate 
hypothesis of accepting the TL-model has shown 
a better improvement.

The source model comprises noisy dysarthric 
speech data, while the target model consists of 
VM-MRFE data, which primarily offers diverse 
feature examples without significantly altering 
the speech acoustics. This setup allows for the 
effective fine-tuning of general dysarthric features 
from the source model to the target model. 
Conversely, if the data augmentation approaches 
for the source and target model were reversed 
then the system would be more noise-resistant, 
rather than showing a reduction in word error rate. 
Nevertheless, the system could have been robust 
enough to handle noise.

5. Comparison of the Proposed 
Approach with the Data 
Augmentation Approaches  
in the Literature

The current research work is derived from the 
limitations of the works of Thekekara Antony 
et al. (2023) and Nawroly et al. (2023). The data 
augmentation approach in (Nawroly et al., 2023), 
provides the objective of augmenting the category-
wise source model, as it inherits the speech 

characteristics specific to the three categories of 
dysarthric speakers, without any limits in creating 
a number of augmentation examples. The data 
augmentation approach in (Thekekara Antony et 
al., 2023) is used for the target model to make the 
target model specific to the speech characteristics 
of the target dysarthric speaker. 

Hence, it would be fair to compare the results 
of the current work with the results obtained 
by these two approaches. Table 4 provides the 
WER performance comparison for the approach 
proposed in this paper with the data augmentation 
approach using VM-MRFE in (Thekekara Antony 
et al., 2023) for continuous dysarthric speech 
recognition and noise augmentation in (Nawroly 
et al., 2023). 

The Table 4 shows that the approach proposed by  
the current paper continues to perform well with 
a low WER compared to both previous studies, 
especially when dealing with severe dysarthric 
speeches.  Compared to the work of Thekekara 
Antony et al. (2023), that used normal speech 
data as the source model, the current work has 
used category-based dysarthric speech data, that 
has highly supported the reduction of WER to 
up to 11.369% for the severe dysarthric speaker 
category. Additionally, a comparative analysis 
with the works of Shahamiri et al. (2023) and 
Shah et al. (2023) is provided, where a dysarthric 
speech Transformer model is used for training. 

Table 4. WER Comparison for the proposed approach and two other approaches in the literature

Category Dys. Speaker ID

Dysarthric speech 
recognition  

system 
augmented with 

VM-MRFE 
(Thekekara Antony 

et al., 2023)

Dysarthric speech 
recognition  

system using noise 
augmentation 
(Nawroly et al., 

2023)

Dysarthric 
Speech 

transformer 
(Shahamiri et al., 

2023) 

The 
Proposed 
Approach

Average 
of the 

proposed 
approach

Mild

FB

5.284 3.618 12.0

4.89

5.4025
BB 4.18

MH 6.9

LL 5.64

Moderate

RL

14.91 11.394 35.0

8.55

9.62JF 10.85

BV 9.46

Severe

SC

40.402 50.69 43.0

22.4

29.03BK 26.05

RK 38.65
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In (Shahamiri et al., 2023), an attention model 
was trained on the UA corpus, utilizing transfer 
learning with the dysarthric speech dataset to 
address data sparsity. While this approach showed 
an improved accuracy for certain mild to moderate 
dysarthric speakers in the UA corpus, the overall 
average performance was comparatively lower. 
Hence, it can be understood from this comparison 
that the reduction in WER can be related to an 
increase in quality and in the number of unique 
examples from data augmentation. An increase in 
the low-frequency noise-based data augmentation 
for the category-based source model and in the 
target-specific data augmentation for the target 
model contributes to reducing the value of WER 
to approximately 11.369%.

6. Conclusion

This research introduces a category-based 
two-stage transfer learning method to enhance 
dysarthric speech recognition accuracy by 
addressing sparse data conditions through data 

augmentation. In the first stage, a category-based 
dysarthric speech recognition model for the mild, 
moderate, and severe dysarthric speaker categories 
using noise-augmented data is trained.  

In the second stage, based on the category-
wise source modelling, the target dysarthric 
speaker which is augmented by employing 
the VM-MRFE approach is trained using its 
corresponding category-based source model. 
Hence, each target dysarthric speaker uses his/
her category-based source model for weight 
updating using transfer learning. 

This paper uses two levels of data augmentation 
to create new dysarthric speech examples from the 
original dysarthric speech data and maintaining 
the dysarthric speaker’s acoustic characteristics is 
important. The proposed two-stage approach led 
to more benefits for the severe dysarthric speaker 
category compared to the approaches in other 
similar works because it used speakers from the 
same category to train the source model.
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