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1. Introduction

Sensor-equipped autonomous agricultural 
vehicles (AAVs) are increasingly being used 
for optimizing crop management and other 
agricultural activities, helping to increase 
productivity, reduce costs and improve resource 
efficiency (Bloch, Bechar, & Degani, 2017; Amin 
et al., 2023). These autonomous vehicles are 
designed to perform complex agricultural tasks, 
such as harvesting, irrigation and fertilization, 
without requiring continuous human intervention 
(Dusadeerungsikul et al., 2019). However, the use 
of fixed routes by these vehicles is proving to 
be costly and prone to collisions, especially in 
extensive agricultural operations.

The problem of route management becomes 
apparent in situations where AAVs must 
operate simultaneously under variable terrain 
with dynamic obstacles and unpredictable 
environmental conditions. To this end, many 
researchers proposed a series of studies based on 
traditional route planning algorithms to address 
the specific challenges of modern agriculture.

Bechar & Vigneault (2016) developed a traffic 
control algorithm for multiple autonomous 
agricultural vehicles (AAVs) scheduling through 
system programming, providing theoretical 
and practical support for the simultaneous 
management of multiple autonomous vehicles 
in agricultural monitoring tasks. They also 
designed an efficient system for multiple AAVs 
using a modified algorithm that efficiently 
manages vehicle allocation to avoid collisions. 
They optimized the A* algorithm by adding a 
weighting factor to the Euclidean function and 

using a task segmentation strategy, aiming to 
increase efficiency and accuracy under different 
agricultural conditions. Ban (2024) also improved 
the algorithm performance for obstacle avoidance 
and route planning in the Deep Q-Learning 
network by integrating a genetic algorithm.

Recently, deep learning has shown an enormous 
potential in optimizing planning strategies 
for multiple autonomous agricultural vehicles 
(AAVs) in agriculture. Weiss (2000) proposed 
an automation-based learning model that guides 
AAVs to optimize their paths using an algorithm 
and a simulated remote control strategy. The 
Deep Q-Network-based method addresses 
the shortcomings of traditional algorithms 
in managing large-scale agricultural spaces, 
improving the success rate and efficiency of AAVs 
in monitoring and managing crops over large 
areas. The study of Amin et al. (2023) proposed a 
curiosity-based learning method to solve complex 
agricultural planning problems.

To address these challenges, the present study 
proposes an advanced route planning method for 
multiple AAVs using the A* algorithm, a classical 
algorithm employed for route optimization (Yin 
et al., 2023). By integrating multiple sensor 
technology, the proposed model enables an 
advanced environmental perception, being capable 
of detecting moving vehicles, static obstacles and 
other relevant targets in agricultural fields. This 
allows AAVs to adjust their routes in real time and 
avoid collisions, thereby improving the efficiency 
and safety of agricultural operations.
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This paper also proposes the use of binocular 
cameras and LiDAR sensors integrated in AAV 
vehicles to capture data about the environment 
and to facilitate the perception of obstacles. This 
method uses relative reference points to determine 
short-term goals and it is based on a deep learning 
model that uses reward and punishment for each 
navigation attempt. This approach accelerates 
learning speed and optimizes traffic, which results 
in a longer and faster travel and an improved 
operational efficiency in handling complex 
agricultural tasks.

In addition, to further optimize the behavior 
of autonomous vehicles, this paper introduces 
a reinforcement learning model based on 
Deep Q-Networks (DQN). This model allows 
autonomous vehicles to learn from experience, 
constantly improving their obstacle avoidance 
and path management strategies. The results of the 
simulations carried out for validating these methods 
showed significant improvements in the efficiency 
of agricultural operations, underscoring the 
potential of advanced technologies to revolutionize 
the management of modern agriculture.

This paper is structured as follows. Section 2 
includes a brief presentation of the theoretical 
framework. Section 3 presents the proposed 
model and methodology. Section 4 is devoted to 
a detailed analysis of the results obtained from the 
simulations which were carried out, and Section 
5 concludes this paper while also outlining the 
future development directions.

2. Theoretical Framework

Recent studies have shown that AAV systems can 
be extremely useful for managing large farms 
where variable soil, climate and crop distribution 
conditions make manual planning of operations 
difficult (Ajidarma and Nof, 2021; Sreeram & 
Nof, 2021; Amin et al., 2023). The A* algorithm 
is one of the most widely used algorithms for 
optimal route planning. Developed by Peter Hart, 
Nils Nilsson and Bertram Raphael in 1968, the 
A* algorithm works on the principle of searching 
the search space to find the optimal path from 
the starting point to the destination, taking into 
account the costs associated with each step of the 
path (Yin et al., 2023).

In the context of autonomous farming, A* is ideal 
for route management in a constantly changing 

environment, such as fields with dynamic (farm 
machinery, animals) or static (buildings, fences) 
obstacles. The study of Yin et al. (2023) highlights 
that the A* algorithm is particularly effective when 
combined with perception sensors that provide 
real-time data about the surrounding environment, 
enabling a rapid route adjustment. In this model, 
the A* Algorithm provides the basic structure of 
the route, which would later be adapted by the 
DQN in cases of unforeseen obstacles.

According to the study by Sewak (2019), DQN 
learns through continuous feedback received from 
the environment. Each decision (for example, 
changing the route or adjusting the speed) is 
evaluated based on a reward function, which 
provides positive or negative feedback depending 
on the result obtained. This process allows vehicles 
to learn the optimal strategies for avoiding 
obstacles and navigating efficiently. Thus, DQN 
complements the A* Algorithm, ensuring an 
increased adaptability in unforeseen conditions 
and a prompt response to environmental changes, 
thus optimizing the overall vehicle performance.

In an agricultural context, a DQN can be used 
to teach vehicles to adjust their routes based on 
weather conditions, moving obstacles (such as 
other vehicles or animals), and specific operation 
objectives (e.g. optimizing operating distance or 
time). Various studies indicate that by using deep 
reinforcement learning, AAVs become smarter 
and more capable of operating autonomously in 
unpredictable environments such as agricultural 
farms (Wang & Fang, 2020; Amin et al., 2023). 
The sensors capture data about the environment, 
which is then processed by LSTM neural networks 
to extract data from the LiDAR point cloud 
and information about the vehicle’s condition, 
thereby facilitating obstacle perception. A double 
convolutional neural network is used to process 
camera and LiDAR data, achieving accurate 
classifications of agricultural targets and obstacles.

According to the literature, there are two main 
types of global route planning for sensor-equipped 
autonomous agricultural vehicles (AAVs) 
depending on the application scenarios (Bechar 
& Eben-Chaime, 2014; Amin et al., 2023). The 
first is offline global planning, which applies to 
environments with static obstacles, where the 
location of each obstacle is known in advance 
(Li et al., 2015). This method requires the AAV to 
have a complete map of the working environment 
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with no unpredictable changes during operations. 
The second one is online global planning, which 
targets dynamic scenarios with partially known 
environments and moving obstacles such as 
agricultural machinery, animals or human 
workers. A problem with offline planning is 
that when the AAV encounters an unexpected 
obstacle, it must replan the route, which reduces 
its operational efficiency.

The role of the A* algorithm in the model proposed 
in this paper is to provide a basis for global route 
planning, which is optimized for the known 
conditions related to the agricultural environment. 
The A* algorithm uses a static map, where fixed 
obstacles (e.g. buildings or fences) are already 
known, to calculate the shortest possible route 
between the starting point and the destination. 
This offline approach provides an optimal route 
in terms of distance and travel cost, thus enabling 
an efficient navigation in predictable work areas. 
In this model, the A* algorithm provides the basic 
structure of the route, which will later be adapted 
by the DQN in cases of unforeseen obstacles. 

This paper also proposes a model that is trained 
by minimising the squared errors between the 
predicted values and the actual target cost values   
for key reference points (e.g. field navigation 
points), matching an optimal path with a minimum 
cumulative cost for each AAV. This leads to a global 
planning model for multiple autonomous vehicles, 
capable of solving the problem of replanning 
when encountering unforeseen obstacles. This 
approach allows autonomous agricultural vehicles 
to navigate efficiently with a smoother trajectory 
and an optimized resource consumption.

To facilitate communication between the 
employed algorithms and the environment, data 
is collected and processed by a Long Short-
Term Memory (LSTM) neural network and a 
Convolutional Neural Network (CNN). These 
networks interpret information received from 
sensors, extracting the relevant features related 
to obstacles and terrain conditions. The LSTM 
network is responsible for analyzing spatial 
data, helping to accurately identify obstacles and 
generate short-term predictions with regard to 
their movements. The CNN, on the other hand, 
processes visual data and data captured by sensors 
such as LiDAR, facilitating a correct classification 
of the surrounding objects and obstacles. Thus, 
processing via LSTM and CNN networks provides 
essential information for the A* and DQN 

algorithms, which can adjust their navigation 
strategies according to the immediate context.

By integrating a complex data processing 
structure and an adaptive planning mechanism, the 
proposed model contributes to the development of 
an optimized and adaptive autonomous navigation 
system with significant benefits for operational 
efficiency and sustainability in modern agriculture.

3. Data and Methodology

Convolutional Neural Networks (CNNs) have 
a remarkable ability to capture both the global 
structure and the fine details of an agricultural 
environment, learning heuristically to generate 
structured spatial results (Amin et al., 2023; El 
Hamidi et al., 2019). This ability facilitates the 
smooth transition of heuristic values between 
different terrain configurations.

On this basis, in this paper convolutional neural 
networks  were applied to the heuristic function 
of the A* route planning algorithm with the 
aim of improving the route search efficiency 
for autonomous agricultural vehicles (AAVs). 
The proposed model defines a planning process 
for multi-AAV transportation considering 
specific agricultural characteristics. It introduces 
information about the terrain topography and 
starting coordinates for each AAV.

Using the A* algorithm as the basis and combining 
traditional planning methods with deep learning 
approaches, this model employs automated 
learning functions to minimise search costs in 
complex environments like agricultural fields 
with dynamic or static obstacles. By integrating 
deep learning techniques such as CNN into route 
planning, this paper contributes to the field of 
precision agriculture by creating a navigation 
model that can operate autonomously and 
efficiently in complex conditions.

This approach minimises the errors for each 
point of reference and the total cost, identifying 
the optimal route for each AAV with the lowest 
cumulative cost. This global planning ensures an 
efficient navigation without delays. In this process, 
the key reference points on the path are defined 
as effective nodes, and the nodes connect the 
start and end points, making up a set of least-cost 
nodes, which would serve as the basic heuristic 
real values during training. For the prototype 
proposed by this paper, which is illustrated in 
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Figure 1, the function Fcc(v) is used to expand 
the search edges, thereby accessing the successor 
edges and sub-vertices of vertex v.

Figure 1. The autonomous vehicle equipped with 
sensors used in this study

Given that obstacles render some edges impassable, 
the viability of each potential waypoint was 
validated through the function Valid(n,v,α). This 
function returns true only if the edge n is not 
occupied by obstacles. Based on the environment 
α, each candidate waypoint was evaluated using 
the search score function Score(v,α), and then they 
were added to the priority queue O in order based 
on their scores. In each iteration, the waypoint with 
the highest score from queue O was selected, the 
search scores of its sub-vertices were calculated, 
and they were added to the queue. This process 
continued until the target vertex vp was reached or 
the queue O was empty.

The path cost p(v,α) was calculated by accumulating 
the shortest path edge costs Cost(n,v',α) encountered 
during the search process. As defined by equation 
(1), the heuristic search function  assigned an 
integrated score to each waypoint to balance 
efficiency and accuracy. In this study, which targets 
the environments that contain obstacles, feature 
maps were extracted and a Fully Convolutional 
Neural Network (FCNN) was applied to predict 
the heuristic value of each waypoint. Training was 
conducted by minimizing the squared error between 
the predicted value of each waypoint and its actual 
target cost value. The cost of a waypoint is defined 
as the cumulative cost from a chosen point to the 
target point along the shortest path:

Score(v,a) = p(v,a) + h(v,a)                            (1)

The training was completed by minimizing the 
objective function defined in equation (2), to 
accurately predict waypoint costs in order to 
optimize path planning. In the proposed model,  
represents the target cost value, and R acts as a mask 
function, assigning a value of 1 to each vertex on 
the path, to exclude invalid vertices, such as those 
occupied by obstacles or completely surrounded 
areas, when generating the target values:

2ˆ( , , ) (( ( , ) ( )) ( )
iv V

L C R h v C v R v
∧

∈
= −∑α α

      
(2)

To address the lack of supervisory signals for 
unvisited pixels, this study adopted a temporal 
difference-based method to compensate for the 
insufficient supervisory signals, as specifically 
defined in equation (3). The predicted values  were 
iteratively updated through convolution ˆ( , )h v α  
with fixed kernels and biases, minimising across 
the successor vertex axis, with the loss function 
defined in equation (4). Here, the value of RTD(v) 
is 1 when v R V∈ ∩ , otherwise, it is 0, and λ 
represents the weight coefficient for the temporal 
difference loss. This method refines the target cost 
estimation through multiple iterative updates. 
Training aims to plan the optimal global path for 
AAVs by minimizing the squared error between 
the predicted values and the true target costs.

At the same time, the proposed model used 
machine learning methods to train the A* 
algorithm and constantly update route cost 
predictions based on the feedback from the real 
environment. This method helps to ensure a cost-
optimized route and increases the accuracy of the 
employed model in identifying obstacles, which in 
turn improves autonomous navigation and reduces 
the risk of disruption to agricultural operations.

( ,
ˆ ˆ( , ) min

n v') Fcc(v))
h v Cost(n,v', )+h(v', )

∈
←α α α

      
(3)

{ }2 2ˆˆ ˆ( , , ) (( ( , ) ( )) ( ) ( ( , ) ( )) ) ( )TDv V
l C R h v C v R v h v h v R v

∈
= α − + λ α −∑α   (4)

An alternative method for reducing the time 
required for agricultural operations is to add a 
reactive behavior pattern to the controller, which 
allows obstacle avoidance in real time, but it is 
possible that the robot deviates from the established 
path. When using this approach, if the robot 
deviates from the path, the controller will not know 
how to use the original path data to achieve its goal.

The path is represented as a sequence of 
line segments and thus it contains many 
discontinuities in the direction of motion. For 
the robot to follow such a path, it must come to 
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a complete stop at each of these discontinuities, 
which significantly increases the time required 
for reaching the destination.

Path planning algorithms generate a geometric 
path from an initial point to an end point, passing 
through predefined intermediate points, either in 
the joint space or in the robot’s operating space, 
while trajectory planning algorithms take a given 
path geometry and endow it with time-related 
information. The route planning algorithm is 
dependent on time.

In a multi-agent environment composed of T 
(see Figure 2), AAVs, the starting position vf and 
the target position vp of each AAV are connected 
through a series of waypoints, where the waypoint 
path set is defined as p = {rm}α. Here, rm = {xm, 
ym, θm} represents the m-th waypoint on the path, 
where Tt denotes the total number of waypoints, 
and {xm, ym} and αm respectively represent the two-
dimensional position and direction of the AAV. 
Thus, this methodology also applies to complex 
agricultural environments, where avoiding dynamic 
obstacles and adapting to a changing terrain are 
essential for ensuring the efficiency and safety of 
autonomous agricultural vehicles.

As it is illustrated in Figure 2, crop rows are 
represented by regularly spaced continuous lines, 
and natural obstacles such as trees or rocks are 
rendered as dots scattered around them. This 

representation demonstrates how each AAV 
successfully navigates around obstacles to reach 
its assigned target location, with the final stopping 
point of the AAV indicating the final destination.

Since the signal simulated by the (AND) block 
is a Boolean one (true or false), it is necessary to 
introduce the double block into the motor control 
modeling scheme, which transforms the Boolean 
signal into a digital signal characterized by the 
values 0 (low) and 1 (high) (Figure 3).

4. Results

In modern agricultural automation systems, 
traditional AAVs typically follow predetermined 
routes or are guided by ground sensors to perform 
tasks such as crop handling or material transport. 
However, this dependence on well-maintained 
path planning not only significantly increases 
maintenance costs but also causes congestion 
among AAVs during task execution, leading to a 
decreased efficiency.

To overcome these challenges, this study 
proposed a comprehensive environmental 
perception model that integrates point cloud data 
generated by LiDAR, status information from 
the AAVs, and visual images captured by front-
facing mounted cameras. This model utilizes deep 
reinforcement learning techniques to enhance 
the perception and path planning capabilities 

Figure 2. Simulated route planning based on possible obstacles

Figure 3. Motor control signal modeling
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of multiple AAVs operating simultaneously in 
agricultural environments.

In this study, the AAV vehicle is equipped with 
LiDAR sensors and generates point cloud data. 
Due to the characteristic long sequence of point 
cloud data in time steps, long short-term memory 
networks (LSTMs) are used for processing, 
thereby extracting distance- and angle-related 
information about target points and obstacles, as 
it is shown in Figure 2. The LSTM network starts 
from an empty initial state, receiving the state 
information for the first step to generate the hidden 
state vector ha. After that, the network generates 
a new hidden state hn repeating this process until 
the AAV reaches its destination. In this study, the 
number of LSTM grid cell units was set at 530 to 
handle the 360-degree point cloud data output by 
LiDAR, with an update frequency set at 50 Hz and 
a detection range of [-90°, 90°]. As the AAV moves 
from the starting position to the destination, the 
environmental perception module can obtain and 
process the state information for the surrounding 
environment in real time, providing a real-time 
perception field of view for the AAV.

Moreover, in the block interface, the contact surface 
between the ground and the AAV wheels must be 
defined from the point of view of the frictional 
forces that appear between the wheels and the 
pathway. Both contact surfaces of these bodies 
are characterized at a microscopic level by non-
homogeneities. Initially, when an external force 
induced by the DC motor acts on the wheels, the 
non-homogeneities of the two flat surfaces interact 
with each other, in the sense that they intertwine, 
generating a static frictional force that opposes 
the movement of the wheels and thus prevents 
movement between the two components in contact.

The modeling of the AAV operation is carried out 
taking into account the fact that its movement is 
rectilinear, being performed on a horizontal track 
and based on the assumption that the four wheels 
are driven by motors with the same torque and 
speed characteristics.

By carrying out experiments with 10 auto-guided 
vehicles for dynamic path planning, where the 
start and target points of each AAV are randomly 
generated, the efficiency and effectiveness of the 
proposed dynamic path planning algorithm can be 
deeply explored and validated.

The proposed simulation model analyzes the 
operation of the AAV in an accelerated motion 

regime, allowing the visualisation of its movement 
and of the power flow received from the DC 
motors and transmitted through the wheels to the 
AAV chassis, to set it in motion, and highlighting 
the energy consumption in each analysed case. 
The processing in the Matlab software editor of 
the signals resulting from the query of the general 
simulation model highlights the frictional forces 
that appear during the AAV movement between 
the wheels and the running path (Figure 4).

This simulation experiment not only verifies the 
obstacle avoidance capability of AAVs in complex 
dynamic environments, but it also reflects the 
potential of the proposed model to apply deep 
reinforcement learning algorithms for real-time 
decision making and path planning.

Through the real-time processing of visual 
information and decision-making, the AAVs can 
effectively deal with static obstacles that appear on 
their route, ensuring its safety and fluidity during 
task execution.

Conventional multi-agent planning algorithms often 
represent agents using basic shapes like rectangular 
boxes, and these algorithms are typically designed 
for static and fully known environments. By 
contrast, this study addressed the operational 
challenges faced by AAVs in agriculture, where 
both static obstacles and dynamic ones, such as 
other AAVs, must be accounted for. Additionally, 
the existing AAV path planning algorithms, 
commonly used in fields like warehouse logistics, 
are not well-suited for the dynamic and variable 
conditions found in agricultural settings, which 
highlights their limitations.

Both offline and online global planning assume that 
the environment is largely known. In agriculture, 
AAVs often operate in a partially known 
environment (such as already established vehicle 
paths or previously monitored sections of land). 
This paper proposes the use of the A* algorithm for 
global path planning, assuming that the locations 
of static obstacles in the environment are known. 
This algorithm was combined with deep learning 
methods that allow the vehicle to automatically 
learn heuristic functions in order to minimise 
search costs in complex agricultural environments.

From the perspective of this analysis, it can be 
seen that even in the complex scenarios where 
other Autonomous Guided Vehicles (AGVs) are 
considered as dynamic obstacles, the main AGV 
could effectively avoid these obstacles without 
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any collision. The analytical results obtained from 
the simulations which were carried out not only 
validate the effectiveness of the proposed dynamic 
path planning algorithm, but also demonstrate the 
potential of the algorithm in handling complex 
dynamic environments in practical applications. 
These findings also provide valuable references 
and insights for future applications and research 
related to similar multi-AGV systems.

However, this reliance on a highly maintained 
route planning not only increases the significant 
maintenance costs, but also leads to queue 
congestion among AAVs during task execution, 
leading to a reduced efficiency. To address these 
issues, this paper proposed a comprehensive 
environment perception model that integrates point 
cloud data generated by LiDAR, state information 
related to AAVs, and visual images captured by 
front-facing mounted cameras. This model uses 
deep reinforcement learning techniques to provide 
extended perception capabilities for multi-AAV 
path planning.

The validation results confirmed that even in 
complex agricultural environments, the AAV 
system could successfully detect and avoid newly 
emerged static obstacles, which demonstrates its 
exceptional adaptability and obstacle avoidance 
efficiency. Through the experiments which were 
carried out, the algorithm presented in this study 

has proven its effectiveness and reliability in 
real-world agricultural scenarios, particularly 
in modern farming systems that demand high 
levels of automation and flexible responses to 
environmental changes. These achievements not 
only offer valuable insights for further research and 
development of AAV systems but also establish a 
solid foundation for technological innovation and 
practical applications in the agricultural sector.

5. Conclusion

This paper presented the design and 
implementation of a multi-sensor data processing 
framework with a two-branch structure 
characterised by input data sharing and multiple 
convolutional layers. This approach made it 
possible to distinguish between different types 
of obstacles and targets and integrated LiDAR 
sensors and camera features with the AAV’s 
own information to form a comprehensive 
environmental perception model. The purpose of 
this design is to increase the processing efficiency 
of the proposed model and to achieve an efficient 
memory usage and a reduced inference time 
without compromising the prediction accuracy 
of the two branches. By integrating AAV-
based environmental information and semantic 
scene segmentation, this framework achieved 
an accurate AAV localization and an efficient 
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Figure 4. Variation of the frictional forces between the AAV wheels and the running path
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classification of the visual information obtained 
through the front-facing mounted camera.

The obtained experimental results confirmed that 
this paper successfully addressed the intricate 
requirements related to material handling in 
agricultural environments, making it possible 
to equip AGVs with advanced navigation and 
obstacle avoidance capabilities. The study also 
highlights the significant application potential of 
the proposed model in the context of agricultural 
logistics. Furthermore, the AGVs demonstrated a 
high reliability and safety during the agricultural 
operations, which underscores their strong 
potential for reducing manual labor costs, which 
proves their substantial economic value.

The main contributions of this research include 
a tailored waypoint fitting heuristic algorithm, 

adapted for the distinct characteristics of agricultural 
environments, built upon the A* algorithm, 
a multi-sensor feature fusion environmental 
perception algorithm, which combines data from 
AGVs’ onboard cameras and LiDAR sensors, a 
reinforcement learning framework based on Deep 
Q-Networks (DQNs), which incorporates global 
guidance during the training phase to accelerate 
model convergence and a simulation-based testing 
environment which was developed to further 
explore the AGVs’ path planning capabilities within 
complex agricultural landscapes.

Overall, this paper not only showcases the 
AGVs’ ability to navigate through unpredictable 
obstacles in agricultural settings but it also offers 
a robust experimental support for implementing 
efficient material handling solutions in the 
agricultural sector.
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