Intelligent Computer-Aided Design in the
XRL Object-Oriented Knowledge
Processing Environment

Stefan Trausan-Matu and Mihai Barbuceanu

Expert Systems Laboratory
Research Institute for Informatics
8-10 Averescu Avenue,

71316 Bucharest

ROMANIA

Abstract: This paper presents some applications written in the
XRL object-oriented knowledge processing environment. All
of them are expert systems for design. Several considerations
concerning such systems are introduced. The architecture,
knowledge representation and processing in the XRL design
applications are discussed.

Stefan Trausan-Matu received the engineer degree in
computers from the Polytechnical University of Bucharest in
1983. Between 1983 and 1985 he worked in the CAD of
integrated circuits at "Microelectronica® Company in
Bucharest. Since 1985 he has worked in the domain of
Knowledge Representation and Processing at the Research
Institute for Informatics in Bucharest. Now he is the head of
Expert Systems Laboratory in this institute. He has taught
several courses on Artificial Intelligence, Data Structures and
Algorithms, and Advanced Programming Languages at the
"Politehnica” University of Bucharest.

His reasearch interests are knowledge representation,
constraint processing, object-oriented systems, expert
systems, and artificial intelligence applications in software
engineering (which is also the subject of a Ph.D. thesis which
will be completed this year).

Mihai Barbuceanu got the Ph.D. degree from the
"Politehnica" University of Bucharest in 1993. After
graduating in 1979, he joined the Research Institute for
Informatics as a research fellow, a senior researcher, and,
finally, as head of laboratory. For several years he has worked
together with Stefan Trausan-Matu on the development of the
XRL environment. The original research results have been
presented at various scientific events and published in
international journals.

His reasearch interests include knowledge representation,
object- oriented systems, expert systems, knowledge
acquisition, term subsumption languages.

1. Introduction

Expert systems are programs developed in the idea
of having a similar behaviour to that of human
experts. What does it mean a "Similar behaviour"?
It means that they can store an amount of
knowledge, use their knowledge to infer some facts

Studies in Informatics and Control,Vol.2,No.2, June 1993

which are directed towards the attainment of a
goal, explain their reasoning, and, eventually,
acquire new knowledge or restructure the existing
knowledge. An expert system can be considered as
a thesaurus of human knowledge in its domain of
competence. From a software engineering
perspective, the rapid prototyping and
evolutionary life cycle of expert systems [3] enables
the iterative transfer of knowledge from the expert
to the system.

The expert system approach can extend the
Computer-Aided Design (CAD) paradigm by
automating some complex parts of the design
process. Design can be considered a knowledge
intensive domain and, therefore, expert systems
can be a real help to designers by extending the
traditional CAD systems with an intelligent
dimension. In this way, expert systems for design
might be considered as intelligent assistants that
enable the human designer to concentrate on the
creative aspects of design.

XRL is an object-oriented programming
environment written in LISP, developed along
several years at ICI for knowledge processing
applications [1,2,4]. It has a layered architecture
based on an object-oriented substrate and including
layers for rule-based knowledge representation and
processing, concurrent refinement of structured
objects, constraint processing, logic programming,
Several applications in XRL were written, mainly
expert systems for design. In this paper there are
described two representatives of classes of expert
systems developed in XRL.,

9



2. Expert Systems for Configuration Design

Two expert systems for configuration design were
the first applications of XRL. The first one
configurated a programmable logic controller and
the second the microPDP-11 computer. Both of
them used only the object-oriented substrate and
the concurrent refinement system. Both systems
have a similar architecture. Each of them
employed a blackboard with two spaces, one for
specification acquisition and the other for
building the configuration. Thus, these spaces
correspond to the specification and configuration
subtasks of the design task. For both systems
specification and configuration were carried out
by concurrent refinement of the generic objects
describing specifications and configurations.

For the specification subtask the system had a
knowledge base consisting of a taxonomy of
objects representing available modules and top
level specification objects which were generic
descriptions of whole specifications. The
refinement of a specification object consisted in an
interactive selection of the modules to be included
in the configuration. During refinement, some
constraints were taken into account. For example,
for the microPDP-11 computer, thzre may be at
most two disk units and one CPU. As the
constraint language was not available at the time,
constraints were enforced by the structure of the
specification acquisition object and by the
attached methods performing refinement.

The second subtask was the configuration design.
This was accomplished by refining in a special
space a collection of objects starting with a
top-level configuration design object. The
refinement of this object means filling its slots with
modules from the specification acquisition object
net built in the first phase. This operation is driven
by a set of constraints regarding the current and
power consumption, the placement of the modules
in some required order and the verification that
the placed modules correspond to the
characteristics of the backplane slots where they
have been inserted.

To illustrate this style of building systems with
complex frames and refinement processes, we
show below a sketch of the PDP11 configuration

80

system. This is a simplified version which uses only
one space on the blackboard doing both
specification and configuration in the same
instance network. First, the top level frame to be
refined is the following:

(unit MPDP11Configuration
self (an ExpandUnit)

module-groups (cpu fpp very-high-p high-p
medium-p low-p tbd-p)

standard-confs (an AskableSelection

alternatives (mpdp11-11a32-r-f mpdp11-11c23-r-
f mpdp11-sxra500-f-a))

cpu (an AskableModule type cpu from
mpdp11Specs)

fpp (an AskableModule typr fpp from
mpdp11Specs)

very-high-p (an AskableGroup type vh from
mpdp11Specs)

high-p (an AskableGroup type h from
mpdpl1Specs)

medium-p (an AskableGroup type m from
mpdp11Specs)

low-p (an AskableGroup type 1 from
mpdpl1Specs) tbd-p (an AskableGroup type
tbd from mpdp11Specs)

selected-modules (selected-of cpu fpp very-high-p
high-p medium-p low-p tbd-p)

backplane (a mpdpl1Backplane modules (my
selected-modules))

resource-usage (a resourceUsage modules (my
selected-modules))

(a SlotMeta when-out-done ShowResource Table))

This unit organizes the task of configuration design
by dividing it into several information acquisition
tasks (the Askables-s), one backplane design task
and one resource consumption calculation task.
The information acquisition task consists in
refining several slots: standard-confs, cpu, fpp, etc.
Their refinement is driven by units
(AskableSelection, AskableGroup, Askable
Module) with method protocols for accessing a
database of modules indexed according to their
type and for carrying out an interactive dialogue
for selecting from among them. For example, the

Studies in Informatics and Control,Vol.2,No.2,June 1993



AskableGroup unit specifies the selection of
modules from a group of modules with the same
bus priority:

(unit AskableGroup
self (an ExpandUnit)

group (msg from ’get-type type)
selected (ask-menu group)).

Here, the group slot is filled by sending the
"get-type" message to the object in the "from" slot
(assumed to hold a database of modules) which is
supposed to return all modules of the given type.
Then, with the ask-menu function some will be selected.

When selections are over, in the selected-modules
slot the list of all selected modules is built. This list
is then used to configure the backplane and to
compute resource consumption. The task of
backplane configuration is achieved by the
refinement of the following unit:

(unit MPDP11-Backplane

self (an ExpandUnit)

slots (slot1 slot2 slot3 slot4 slot5 slot6 slot7 slot8)
slot1 (a cpu-slot)

slot2 (an one-module-slot)

slot3 (an one-module-slot)

slot4 (an one-or-two-module-slot)
slot5 (an one-or-two-module-slot)
slot6 (an one-or-two-module-slot)
slot7 (an one-or-two-module-slot)
slot8 (an one-or-two-module-slot))

According to the semantics of concurrent
refinement, to refine the backplane unit
refinement tasks are created for each of its slots.
Then the unit in each slot is delegated to refine
itself. In the above case each of these units refines
itself by placing modules from the
selected-modules in its slot. The first slot is
restricted to the cpu, the next two accept only one
module and the rest accepts one or two modules
depending on their dimension. Each of these units
has its own refinement protocol that defines its
refinement.

Studies in Informatics and Control,Vol.2,No.2,June 1993

This example shows how the hierarchical refinement
model, consisting of collections of actors which
collaborate to build a structured object network, can
be used to build knowledge based expert systems.
This model has been applied in several other tasks,
the most complex of which being discussed next.

3. DEXTY - An Expert System for the
Design of Industrial Halls

Several expert systems were developed for the
field of civil engineering in collaboration with a
company specialized in civil engineering design.
These systems made it possible to integrate the
classic CAD approach based on graphics and
numeric computation with knowledge based
problem solving as supported by XRL. In this
presentation we mention only the DEXTY system,
probably the most complex expert system
delivered to industry in Romania to date.

DEXTY [5] is a fully antomatic system for
designing industrial halls. It provides the following
major functions:

a. Acquisition of the specification of the hall to be
designed. In this phase, the user is asked to furnish
some basic characteristics of the hall, for example
the geometry of the hall (the number of bays and
openings), the characteristics of the geographic
region (earthquake degree, snowing
characteristics), the destination of the hall, etc.

b. Automatic design of the structure of the hall.
Here the system builds a network of generic
objects for the geometric elements of the hall. For
example, objects will be generated for each row of
bays. Each row of bays will contain the generic
objects which constitute its typical components
(chessons, beams, pylons, foundations).

c. Architectural design for the placement of
sky-light on the roof. This phase implies interactive
graphics and the use (and possibly extension) of a
collection of standard configurations.

d. Refinement of the generic elements from the
above generated structure according to a
collection of standard elements retrieved from
design catalogues. The refinement of each element
(chessons, beams, etc) is followed by stress
verification using specialized programs developed

81



in FORTRAN. In case of a negative answer to the
verification, another element is chosen.

DEXTY uses most of the knowledge
representation techniques available in XRL.
Structured objects are used both in the style of
frames (as taxonomies of typical situations or
expectations) and in the style of objects (as
reusable entities with state, inheritance, message
passing protocols, etc.). For example, the
expectations about the characteristics of the hall
are described as objects used for specification
acquisition. The generic and instantiated
components, like chessons and beams, are structured
objects in the OOP sense. Problem-solving
mechanisms, such as generic decision-making
processes about let’s say choosing a typified element,
are also encoded as structured objects.

Rule-based representations are also used in
DEXTY. Rules are mainly used for capturing
expertise regarding design decisions in the
following classes of problems:

a. Validation of user supplied data in the first
phase. Invalid data configurations are detected by
specialized rule systems.

b. Major design decisions such as deciding the
space orientation of the chessons in the hall. The
cross or the longitudinal orientation is chosen
depending on the geometric input data, the
available standardized elements and the expertise
embodied in rules.

c. Refinement of generic beams into particular
ones. The refinement is done by selecting an
appropriate beam for the characteristics of the
current problem. The rule systems embody the
knowledge usually employed by the human in
solving a similar design decision problem.

The problem-solving structure of the system is
more complex. DEXTY is composed of several
smaller cooperating expert systems, each
implemented as a separate refinement system
having its own blackboard spaces and being
allowed to access other’s spaces as well, The first
refinement system, which must always be invoked
first, deals with requirements acquisition,
consistency checking of requirements and
preliminary geometrical design for the whole
building. Then, according to the user’s desire, one

82

or several refinement systems designing various
parts of the building can be invoked. These
refinement systems perform (1) roof design (2)
selection of the columns and beams supporting the
building (3) walls design, and (4) foundation
design. They must be invoked in this order. Design
undoing and redoing is also supported based on
the replay and event handling facilities of the tool.

This organization is interesting for several reasons.
First, refinement systems have proven to be a
useful vehicle for modularizing systems and for
modelling the global problem-solving strategy.
Second, the system integrated both constructive
and selective problem-solving. The latter activity
led to the evolution of specialized annotation
protocols, i.e. the usual way of extending and
customizing concurrent refinement. Third,
DEXTY was extensively modified during
development. If the first prototype was built in
about two months, during the next two months it
underwent about ten substantial revisions. Our
belief is that it was so easy to modify due to the
declarative and understandable programming
style figured up with annotated structured
concepts and refinement architectures. This is also
confirmed by the experience with modifying the
earlier systems years after their development.

4. Conclusions

Our experience with building expert systems for
design enables us to conclude that they can both
reduce the design process time and enhance the
quality of the results. Expert systems for design are
also means thereby the expertise of skilled
designers can be used by novices. On the other
way, as a feedback result in building expert
systems, skilled designers can better realize what
they do know and which are the directions where
they must do some research,

Other important conclusion from our work is that,
even on ordinary computers, there can be developed
complex knowledge processing systems.
Nevertheless, the usage of a powerful
structured-object, multi-paradigm environment like
XRL was decisive in coping with the permanent
change of the specifications. We consider that

"classical' languages (e.g. C, FORTRAN) or even

Studies in Informatics and Control,Vol.2, No.2 June 1993



other knowledge representation paradigms alone Research Institute for Computer Technique
(rules or logic programming) could not handle the and Informatics, Bucharest, Romania, 1988.
problems encountered. 3. DOYLE, I, Expert Systems and the "Myth" of

REFERENCES

. BARBUCEANU, M,, TRAUSAN-MATU,S.
and MOLNAR, B., Integrating Declarative
Knowledge Programming Styles and Tools in
a Structured Object AI Environment,
Proceedings Tenth International Joint
Conference on Artificial Intelligence, Milan,
Italy, 1987, pp. 563-568.

. BARBUCEANU, M., TRAUSAN-MATU, S.
and MOLNAR, B., The XRL2 Manual,

Studies in Informatics and Control,Vol.2,No.2 June 1993

Symbolic Reasoning, [EEE TRANSACTIONS
ON SOFTWARE ENGINEERING, SE-11, No.
11, November 1985.

. TRAUSAN-MATU, S., MicroXRL- An

Object-Oriented Programming Language for
Microcomputers, Institute for Technical
Cybernetics of Slovak Academy of Sciences,
Bratislava, Slovakia, 1989,

. TRAUSAN-MATU,S.and BARBUCEANU,

M., Generic Knowledge Processing
Architectures for CAD in Civil Engineering,
Proceedings of INFOTEC’88, Bucharest,
Romania, September 1988 (in Romanian).

83





