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Abstract: O3is an object-oriented language developed with the
explicit aim of providing a rational framework for extensive
language customization. This framework goes as far as to
support a different view of programming. According to this
view, programming in O3 is a two-stage process: the first is a
language construction process in which users design the
structure and behaviour of the sorts of objects they need and
the second is the normal language use process in which the
custom designed language is being applied to model
applications. O3 is implemented as layered reflective
architecture clearly separating the kernel, interface and
application levels. Reflective, self-modifying behaviour is
acquired by dynamic, yet efficient dispatching to kernel
operation protocols which programmers can use to create and
integrate various language features. Experience in building O3
versions supporting the development and integration of
significant languages and tools with stringent requirements is
reported.
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1. Introduction

Programming language constructs can be
classified according to two features: usability and
reusability. The usability of a construct can be
defined only in relation to a given application or
application domain and depends on the degree of
match between the construct and the application.
For example, string processing constructs are
usable for text editing applications. Usable
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constructs are thus application specific and reflect
features of the application. Reusability, on the
other hand, depends on the case of using a
construct in many different application types. An
if-then-else construct is for example highly
reusable. For that reason it is also a very abstract
construct. Usability and reusability are
contradictory features. The more usable a
construct, the more specific and hence
non-reusable it is, and viceversa.

Programming languages make various
compromises between these features. Specialized
or problem-specific languages have usable
constructs for their designated application types.
General-purpose languages offer reusable
constructs for a large class of domains.

Ideally, a language ought to offer both types of
constructs in order to be at once useful for many
domains and suitable for each domain in part.
This is however, not possible unless the language
is extensible in a way allowing users to create or
customize specific constructs and to get rid of
constructs they do not need.

Object-oriented languages do offer such a
capability to an important extent as they allow
users to define and combine objects with specific
structure and behaviour. This kind of an
extensibility offered by "classic' OO languages like
C+ + or SmallTalk, is nevertheless not enough.
The kind of extensibility we need goes further than
what the languages allow, touching deeper aspects
related to the behaviour of "primitive" services like
inheritance, message-passing or demonization or
to the implementation of the internal data
structures of the language.

As an example of the extent of flexibility we really
need, consider the case of building a modern



hybrid programming environment integrating
distinct paradigms such as objects, rules,
constraints and graphic interfaces. We have for
long been involved in the development of such
environments [Barbuceanu, Trausan and Molnar
87] and always needed customize the intimate
structure and behaviour of the basic services of the
OO implementation language we used in order to
obtain clear and efficient implementations. For
example, we often needed objects which could
efficiently store a large number of slots, or objects
which would only accept a predefined collection
of slots, or objects which would enforce a minimum
and maximum number of slot fillers,

Such requirements may in general be either
simulated with existing machinery or simply
avoided. However, when simulating such
mechanisms one has to pay for the overhead
ensued by unused, partly used or inadequately
used features, while avoidance leads to
incomplete or otherwise inadequate
implementations. Even worse, when many such
"simulations" accumulate over time, the system
grows in ways hard to understand and modify.
That is why the best is always being able to create
the right construct for the task at hand.

O3 is an OO language developed in the Expert
Systems Research Laboratory of the Research
Institute for Informatics with the explicit aim at
providing a rational framework for extensive
language customization. This framework goes as
far as to support a specific programming
paradigm. According to this paradigm,
programming in O3 becomes a two-stage process:
the first is a language construction process in
which users design the structure and behaviour of
the sorts of objects they need and the second is the
normal language use process in which the custom
designed language is being applied to model
applications. O3 is now used as the underlying base
or carrier for developing and integrating expert
system languages and tools implemented in our
laboratory.

2. O3 Architecture

The major goal of O3 is offering a uniform
framework for systematically developing
specialized language mechanisms and OO
language versions which can be consistently
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integrated into and used in a single AI oriented
0O environment.

The language evolution mechanisms provided by
O3 can control both the internal data structures for
representing objects - e.g. the data structures used
for implementing slots - and the behaviour of the
basic language operations, including e.g. object
creation, slot inheritance, method activation,
demon invocation, etc.

An O3 environment can any time contain any
number of objects with distinct implementations
and distinct behaviours of their basic operations.
All of them are manipulated through a uniform
functional interface allowing programmers to
uniformly operate upon internally distinct objects.
For example, an O3 environment can
simultaneously work with objects whose slots are
implemented as lists, hash tables or records, or
with objects which inherit in totally distinct
manners.

Unlike other attempts to attain this goal [Filman
87], we tried to come with a rational language
design yielding this flexibility rather than
attempting to bend an existing language to fit these
needs.

The major lines of this design are briefly reviewed
now. First, O3 has three major software layers
depicted in Figure 1. At the first layer - the O3
kernel - there are the basic O3 operations and
internal data structures. At the second layer, there
is a functional interface programmers can use. At
the third layer there are application programs
written in terms of the functional interface. Each
layer can only use the functions provided by the
layer beneath it.

To customize the language, the O3 programmer
can use special mechanisms which modify the first
layer. Once made, these modifications are
automatically applied by the functional interface
which stays as such. This is possible due to the
following arrangement. First, the functional
interface makes no assumption on the internal
representation of objects. Interface functions
perform only type checking of arguments and
dispatch to internal (first layer) operations.
Second, internal operations are organized in
protocols and dynamically linked to the O3 objects
they apply to. This is illustrated in Figure 2.

According to this organization, each O3 object,
whatever its implementation, has a pointer to a
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Application layer

Functional interface
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Figure 1.03 Layers.

special object named its LanguageObject. The
LanguageObject contains for each internal
operation applicable to the object a Common
LISP function which implements it. An O3
environment can have any number of Language
Object-s.

Consider now that the interface performs operation

Op on object O. The interface will actually take the
following actions as part of this invocation,

1. Check the syntactic correctness of the operation
application.

2. Determine which kernel operations are
required to execute the requested operation.

3. Invoke the functions associated with the
requested kernel operations. They are retrieved
from the LanguageObject linked to the object O.

4. Assemble the result of the Op operation from
the results produced by the kernel functions.

Defining as many kernel operation protocols as
needed and associating them with objects allow
programmers to create structural and behavioural
diversity which can be uniformly handled.

3. The Functional Interface

O3 has five sorts of entities: worlds, objects, slots,
values and operation protocols or language
objects. An O3 world is a collection of objects

operation1

Fn1
Language
Otsst LanguageObject
Object

Figure 2. Dynamically Linking Operation
Protocols to Objects

which can be manipulated by special operations.
There exists an inheritance relation among worlds
along which objects are inherited. Worlds offer an
efficient storage mechanism for objects as an
object is stored only once in its definition world
and inherited without copying. Object
modification in a world is marked locally, thus
avoiding copying and allowing local versions to be
created. Worlds are useful in search problems and
can be backed up by a truth maintenance system.
O3 provides an assumption based TMS [De Kleer
86], similarly to KEE [Filman 88, Fickes and
Kehler 85], but this is outside the scope of this
paper. As far as the other O3 entities are
concerned, operation protocols are encoded in
LanguageObjects while slots and values have the
usual meaning in frame or object-oriented systems.

The functional interface provides three operations
for each entity type: one creation operation, one
query operation and one deletion operation. Table
1 shows all these operations. Each interface
operation has a number of formal parameters for
which actual values must be provided as well as a
number of parameters for which default values
exist. These defaults can be set by the programmer

Table 1: Operations of the Functional Interface

Entity Creation Deletion Query
World world noWorld world?
Object object noObject object?
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in different manners. O3 extensions can introduce
new parameters.

Here are some examples concerning the use of the
functional interface.

1. (world ’w :LanguageObject "*worldLanguage™
:delete t :result 'node)

Creates a new world w, deletes any other world
with the same name and returns the "node" created
for the world, that is the O3 data structure created
for the w world. The :LanguageObject parameter
gives the special object storing the kernel
operations which will be used upon this world. If
omitted, an O3 supplied default will be attached.

2. (object ’o :world ’w :LanguageObject
**(QbjectLanguage®)

Creates an object o in world w. If an object o already
exists, it will be deleted or an error will be generated
depending on the default value of the :delete option.
The returned result is the default value of the :result
option. As above, the :LanguageObject parameter
gives the special object storing the kernel operations
which will be used upon this object. If omitted, an O3
supplied default will be used.

3. (slot ’s :object "o :world 'w :result ‘name)

Creates slot s of object o in world w and returns
the name of the slot. The :object an :world
parameters can be defaulted to the top values of
two systems or user managed stacks.

4. (value 12 :slot’s :object 0 :world "w:result ‘node)

This puts 12 as a value of slot s of object o in world
w. The result is the "node" - the O3 data structure
- of the value (provided the used O3 version
creates such nodes, otherwise an error is
reported).

5. (object ’o

:world *w :result ’slots
(s1 ((12 13) :multiple t))
(s2 ("exx"))
(s3(C(abo))

This is a compact notation describing the creation
of the o object in the w world. Three slots of o are
also created, s1 s2 and s3 and values are also given
to them. The :multiple option associated with a
value indicates multiple values. Thus, slot s1 will
receive two values, 12 and 13 and not the value (12
13). Slot s3 on the other hand has one value, (a b
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¢). The :result option makes the expression return
the data structure holding the slots of the object.
In general this is a list, but other data structures are
also possible, such as hash tables.

6. (noslot ’s2 :object *o :result ’values)

Deletes the s2 slot from object o in the current
(default) world and returns the list of values of s2.

7. (novalue 13 :slot ’s1 :object o
:value-delete-key ’k1
wvalue-delete-test 't1)

Removes value 13 from the values of slot s1 of
object o. The :value-delete-key and
:value-delete-test options supply the key and test
functions used to remove a value from a sequence.
This actually applies the Common LISP :key and
‘test mechanism to removing slot values.

8. (object o :options ’(:slot-delete-key k1
:slot-delete-test 1))

This illustrates the use of the :options parameter.
As shown in the previous examples, O3 has many
options (:delete, :multiple, :result,
-value-delete-key, etc.) to direct its operation.
Options values can be supplied as actual
parameter values (see the above example), but
default values can also be specified for each object
and world in part. This is done by the :options
option at entity creation time, as illustrated.
Option values given at operation innovation time
override any existing defaults.

In general, the O3 interface operations permit the
following several levels of default values, in their
increasing order of precedence: (i) defaults fixed
by implementation of all options, (ii)defaults
specified at entity creation time, (iii)defaults
specified at operation invocation time.

9. (object? ’o :result *slots)

Returns the data structure holding the slots of o if
o is an object and nil otherwise. (object? ’0) is an
idiom for checking if o is an O3 object.

10. (options? ’o :slot-delete-test)

Returns the value of the :slot-delete-test option of
object o.

11. (slot? ’s :object ’o :inherit t :result 'node)

Returns the node of the s slot of object 0. The
inheritance operation is activated for retrieving
the s slot (:inherit is usually t).
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12. (execute ’s :object "o :control *progn)

Executes any methods found as values in the s slot
combining them with the progn combiner and
returns the resulting value. This is the O3 way of
activating methods.

4. The Prototype/Clone Mechanism

O3 isa classless language where an object can play
at the same time the role of "class" for some objects
and the role of "instance" of another object. This is
achieved through a prototype/clone mechanism
which allows an object to be copied for creating
other objects. Copies can then be modified locally
or get copied themselves for creating other
objects.

Suppose O is an object. Then a clone (copy) O1 of
it can be created using the assertion service as

(object *O1 :prototype *0).

This creates a new object O1 and links it with O
through the prototype link. O is linked to O1
through a clone link. In this moment all queries
concerning O1 are handled by first trying to find
the requested information locally in O1 and, if not
possible, by forwarding the query to O. Thus, O1
has all features of O except those locally
overridden or removed. This mechanism allows
one to simulate all features of a class/instance
organization and define many other features.

An important use of this organization is in
connection with the worlds system. In presenting
it, we will first describe the most important
features of worlds in O3.

An O3 world W can be created using the interface
assertion service as, for example,

(world "W :superworlds ’(W1 W2)).

We will have W1 and W2 as superworlds
inheriting objects from them. The object
inheritance algorithm is of the "shortestpath" type,
being identical to the default O3 algorithm for slot
inheritance. When an object is created, the world
mentioned at its creation time is considered its
world of origin. Objects are inherited by subworlds
of their world of origin. When an object is modified
in its world of origin, all subworlds will inherit the
modification. When an object is modified in a
world where it was inherited, it is cloned in that
world so that its definition in the superworlds of

Studies in Informatics and Centrol,Vol.2,No.2, June 1993

the cloning world (including the world of origin) is
unaffected but subworlds of the cloning world
inherit the modified version. This is implemented
with the prototype/clone mechanism discussed.

5. 03 Kernel Operations

O3 objects and worlds point to special
LanguageObject objects which hold kernel
functions implementing O3 kernel operations.
They are dynamically retrieved and executed by
the previously discussed interface operations. The
collection of kernel operations associated with
objects forms the object protocol while the
collection of operations associated with worlds
forms the world protocol. The two protocols are
stored in special objects named LanguageObjects.

Table 2 shows the object protocol and Table 3 the
world protocol.

Creating an operation protocolis done by creating
a LanguageObject and specifying the operations
for which implementation functions are provided.
Operations not explicitly mentioned are handled
by the default implementation functions defined
in Tables 2 and 3. For example, to create an object
protocol which constructs and uses a hash table to
store slots, the following LanguageObject can be
created using the O3 service for creating
LanguageObject-s:

(ObjectLanguage *ObjectLanguageHT*
:assert 'ObjectAssertHT

:slotquery “SlotQueryHT

slotassert *SlotAssertHT

:slotdestroy *SlotDestroyHT

:slotupdate *SlotUpdateHT
:valuedestroy *ValueDestroyHT).

The above expression defines the language object
named *ObjectLanguageHT* which contains
special functions implementing the mentioned
kernel operations. Once created, this language
object can be used to create objects behaving
according to this protocol. To create such an
object, one simply has to set the value of the
:LanguageObject parameter to the desired
language object as in the following example:

(object ‘O :LanguageObject *Object LanguageHT*).
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To create, remove and query language objects O3
provides a set of mterface operations shown in Table 4.

6. Dispatching Kernel Operations

6.1. The Dispatch Mechanism

Functional interface operations call kernel
operations through a dispatching mechanism
which has two major features. First, it is dynamic
in that the kernel functions implementing the
kernel operations are retrieved at execution time.
This allows dynamic modification of the set of
kernel functions. Second, the dispatching process
is carried out by a kernel meta-operation,
ApplyOp, which - as any other operation - can be

(object O
LanguageHT*
:delete t
:result ’slots).
Dispatch sequence inside the interface operation :
(apply (ObjectLanguage-ApplyOp Language Object)
(ObjectLanguage-Assert LanguageObject)

name

:LanguageObject *Object

parameters)

where name is bound to Oand parameters is bound
to (:delete t :result slots).

In this example, LanguageObject is bound to the
used language object, *ObjectLanguageHT*,

tailored by the programmer. name is the name of the new object and parameters
i _ is the list of parameters of the object assertion
Interface operation call: interface operation. The dispatch sequence takes
the ApplyOp operation from the language object
Table 2: The Object Protocol
Interface operation Kernel Implementation fn Purpose
Assert ObjectAssert Creates a new object
Destroy ObjectDestroy Destroys an object
ApplyOp ApplyD Meta operation for applying an operation
SendMessage SendMessage Activates methods
Table 3: The World Protocol
Interface operation Kernel implementation fn Purpose
Assert WorldAssert Creates a world
Destroy WorldDestroy Destroys a world
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and applies it to a list of arguments containing the
Assert operation also retrieved from the language
object and the rest of arguments supplied to the
object creation interface function. The ApplyOp
operation is free to do whatever it desires with its
arguments. In principle, the default O3 ApplyOp
(named ApplyD) checks and applies demons and
then applies the kernel operation (in the example
assert).

Table 5 shows the dispatch sequences of the O3
interface operations and of some kernel
operations which must also dispatch.

As concerns the overhead introduced by the
dynamic dispatch sequence, we have measured it
by comparing the standard O3 version against a
specially configurated O3 system where dynamic
dispatch has been eliminated (that is interface
services directly called the kernel services with no

will yield the needed result, but will involve alot of
processing such as arguments checking,
dispatching to the ObjectQuery kernel service,
looking for demons, etc. An efficient way of

acquiring the requested information is doing
something like

(object-slots O).

Knowledge of implementing data structures of
objects is nonetheless required. One can see that
if kernel services are to make as few assumptions
as possible about the rest of the system, one must
adopt inefficient solutions, while if efficiency is
planned the modularity and independence of
components must be reduced.

The general solution is to start with a modular
organization (few assumptions) and to optimize it
manually or automatically. We have manually
optimized our used versions. An intermediate

Table 4: Operations for Language Objects

Operation Purpose
ObjectLanguage Creates a language object for object operations
ObjectLanguage? Queries a language object(for object operations)

language object looking for the kernel service).
Tests run on both versions revealed the standard
version as being only 4-5% slower. The careful
implementation of the dispatch sequence and of
the data structures for language objects accounts
for this. On designing this, the extensibility costs
have been saved considerably.

6.2. Issues of Optimization

Dispatching is a connection between the interface
level and the kernel level. Kernel operations have
to use services of the interface level to do their job,
thus creating the reverse connection. This second
connection is a source of inefficiency if achieved
by directly calling interface services. Suppose a
kernel operation needs have a list of slots of an
object O. Issuing a request of the form

(object? ’O :result "slots)
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solution to avoiding such optimizations would be
to add a set of data structure accessors to
Language Object-s to be used by all services in the
language.

7. Slot Inheritance

03 provides a flexible slot inheritance capability
allowing any relation to be used as an inheritance
path and practically unlimited inherited value
combination.

7.1. Inheritance Sources

An inheritance source is any slot S of an object O
which has O3 objects as values and an attached
Tolnherit option. The value of this option must be
a function able to return a sorted list of objects,
called the InheritanceList. The objects will be
those from which slots will be inherited in O
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Table 5: Dispatch Sequences

Operation Dispatch sequence
execute ApplyOp + SendMessage
object ApplyOp + Assert (object)
noObject ApplyOp + Destroy(object)
slot ApplyOp + SlotAssert

ApplyOp + SlotDestroy

through the S relation. For illustration, consider
the following definition of the ISA slot as an
inheritance source:

(object’O

(ISA ’(01 O2) :multiple t :Tolnherit Shortest
Path)).

In this example, object O inherits through slot ISA
from O1 and O2. The ShortestPath function
(supplied by the O3 kernel and used as default
value for Tolnherit) returns the transitive closure
of objects reachable through ISA relations from
01 and 02, ordered according to a shortest path
criterion also used in CLOS and other languages.

Users can define any number of inheritance sources.
Inheritance comes from the SlotInherit kernel
operation which implicitly assumes ISA as an
inheritance source with ShortestPath inheritance.

7.2. Combining Inherited with Asserted Values

Suppose we interrogate slot S1 about its values:
(slot? 'S1 :object 'O :result *values).

Provided that O has inheritance sources, they can
contribute values to S1. Of course, this is possible
even though S1 has already been asserted at the
moment the above query takes place. In this case,
the SlotInherit operation allows programmers to
define the following aspects of inheritance.

1. The inheritance sources thereby values can be
contributed to S1. This specification is made using
the InheritThru option as in the following case:

(object’O
(ISA (01 02))
(S1 :InheritThru *(ISA))).

In this case, values for S1 can derive from the
objects in the InheritanceList computed for the
ISA slot. These values can be combined with the
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locally stored values in S1 in order to create a new
set of values for S1.

2. Combining and storing inherited values. These
aspects are specified using the IValuesCombine
and IValuesMemo options as in the following
example:

(object’O

(ISA (01 02))

(51 :options (:InheritThru (ISA)
:IValuesCombine Max

:IValuesMemo Store))).

In this example, the inheritance service builds a list
of all inherited values for S1, with the local values
of S1 added to it and sends the list to the function
Max. This function will return the maximum of the
received arguments which will become the new
value of slot S1. As option IValuesMemo has value
Store, the newly computed value will be stored in
S1overriding old values therein. Instead of storing,
the new values can be recomputed each time.

3. Inheritance of options. Slots can besides values
inherit and combine options. This is specified as
above, using the IOptionsCombine and
IOptionsMemo options.

7.3. Inheriting Non-asserted Slots

When a slot S1is inherited by an object which has
no S1 slot, inheritance options must be specified in
the query expression as follows:

(slot? ’S1 :object 'O
:inherit t

:InheritThru *(ISA)
:IValuesCombine "Max
:IValuesMemo "Store).
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Note the :inherit option whose non-nil value
triggers inheritance. Slot ’S1 is automatically
asserted in O if inheritance is successful. Special
values of the :inherit option determine inheriting
only values, only options or both values and
options.

8. Methods

An O3 method is a function appearing among the
values of a slot. Hence, methods are treated like
any other values (e.g. asserted, searched for,
inherited, replaced, etc.). Methods are only
treated differently when they are activated.
Different ways of activating methods are shown
next.

8.1. Activating a value-method

Let O be the following object

(object 'O

(51 (*(12 f1 13) :multiple t)))

and let f1 be a function defined in the LISP

environment. Function f1 can be activated as an
effect of the following query expression:

(value? ’f1 :slot *S1 :object O

:applyt

:args ’(a b)

replace t

rresult ‘result).

In this query, the :apply option indicates that if a
function is retrieved, it must be applied. The :args
option contains the actual arguments of the
invocation and the :replace option specifies that
the f1 value will be replaced in S1 by the result of
activating f1 with the given arguments (which
implies that next time f1 may not be found in S1).
Finally, the :result option specifies that the query
must return whatever fl1 returns (but any other
:result may be specified as well).

8.2, Activating All Methods in a Slot
The above mechanism can be extended to activate

all methods found in a slot. For illustration
consider the following object:
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(object 'O

(S1 C(f1 x 2 y) :multiple t
:options (:control ’and
:replace nil)))).

Suppose f1 and f2 are LISP functions and x and y
global variables. The execute interface service can
be used to activate all methods from slot S1 as in
the following example:

(execute ’S1 :object *O :control "or :args ’(11 12)).
The activation proceeds as follows:

1. Retrieve all methods in S1 and replace them by
callsin the identified functions using :args as actual
arguments. In the example producing the List is the
result

((f11112) x (211 12) y).

2. Put in the first position of the above list the
specified :control. Priority option values from
actual calls yield the list

(or (f1 11 12) x (2 11 12) ).

3. Execute the expression thus constructed and
save its value.

The uniform treating of methods as values fits well
in the inheritance scheme as inheritance can build
lists of inherited/combined methods which can
then be activated in various ways in the illustrated
manner,

9. Demons

O3 demons are LISP functions automatically
executable before, after or instead of any kernel
operation. Demons are activated by the kernel
meta-operation ApplyOp. The possibility for
demonizing any O3 kernel operation (except
ApplyOp) makes O3 demonization more general
than in any language we are knowledgeable about.
The possibility of using demons to dynamically
replace any operation brings new flexibility to the
system,

9.1. Specifying Demons

Demons can be either defined at object, slot or
world creation time using the options mechanism,
or specified among the arguments of interface
operations, at the time such operations are used.
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There exist three kinds of demons. Before demons
are executed before a given kernel operation.
After demons are executed after a given kernel
operation. When demons are executed in place of
a given kernel operation.

To specify demons at object, slot or world creation
time the following options can be used:

(object *O :options ’(:demons t
:before-objectassert d1
:after-objectassert d2)).

The :demons option allows firing demons.
Demons are specified by options whose name is
formed by a prefix indicating the type of the demon
(before-, after- or when-) and a suffix indicating
the name of the demonized kernel operation.
Thus, in the above example d1 is fired before the
ObjectAssert operation and d2 after if.

To specify demons at interface operation use time,
demons are similarly specified among the arguments
of the interface operation. For example,

(slot? ’S :object ’O :when-slotinherit *d3)

will activate demon d3 instead of the SlotInherit
operation.

9.2, Activating Demons

Any demon receives the following arguments: (i)
the object, slot or world on which the demonized
operation is executed(the <node> below), (ii)
the name of the demonized operation (e.g.
SlotInherit) and (iii) the list of arguments of the
demonized operation.

Demons are activated by applying the demon
function to the above three arguments according
to the scheme:

(apply <demon>
<op-args>).

<node> <op>

Thus, the demon function must have two required
parameters - the object,slot or world and the
operation - while the rest can be organized
according to the expectations of the demonized
operations. Also, this allows "when" demons to
execute the demonized operation by another
apply, according to the scheme:

(apply <op> <op-args>).
In this manner, "when" demons can control in any
way the execution of the demonized operation.
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9.3, Combining Demons

One can specify several demons of a given type by
listing all demons under the associated option. In
this case demons must be combined. The current
implementation of ApplyOp does this in the
following manner. "Before" and "after" demons are
executed in the declared sequence. "When"
demons are combined through a more complex
procedure involving two steps.

In the first step a unique expression is built. For
example, assuming that the declaration is

:when-slotinherit (d1 d2 d3),
the constructed expression will be:

(d3 <node> d2(<node> dl(<node> <op>
<op-args>)))

which is a recursive application of the activation
expression for a single demon. In the second step,
the above expression is evaluated. In the example,
this takes place as follows:

(i) first execute d3 with <op> = d2 and <op-args>
= (<node> d1 ..)) (ii) now d3 can execute its
operation (activating d2) by doing

(apply <op> <op-args>)

which will evaluate

(d2 <node> d1 (<node> <op> < op-args>))
which in turn activates d2 with

<op> = dl and <op-args> = (<node>
<op> <op-args>), a.s.0.

This mechanism delegates to a demon full control
over the execution of the previous operation or
demon. This may be used in many ways such as
using demons to execute code sequences before or
after the demonized operation. In the example,
assuming that all demons contain such sequences,
the global evaluation will effect into the following:

< before sequence d3 >
<before sequence d2 >
< before sequence d1>
< demonized operation >
< after sequence d1>

< after sequence d2>

< after sequence d3>
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10. Creating O3 Languages

03 was designed to explicitly support the view of
programming as language construction plus
language use. Language construction is supported
at different levels in 03, from simple
parameterizations to proper construction of new
language mechanisms. Opportunities of
customization through parameterization have
already been illustrated. They consist in setting
values for options either at entity creation time
(with lower priority) or at service request time
(with higher priority). This is useful due to the
large range of options available. In this section, we
will present the opportunities for constructing new
language mechanisms and for integrating them in
order to create new O3 languages.

10.1. Language Flavours

An O3 language flavour is a subset of kernel
operations implementing a language feature. This
subset can be placed in a dedicated language
object. For example, a useful language feature has
objects which store their slots in a hash table. This
feature can be implemented by customizing
several O3 kernel operations. These new
operations can then be placed in a new language
object - the flavour - which can be loaded in any
O3 system needing this capability. In this
particular case, the O3- HASHTABLE flavour
currently used is the following:

(ObjectLanguage *ObjectLanguageHT*
:assert ’ObjectAssertHT

:slotquery ’SlotQueryHT

:slotassert *SlotAssertHT

:slotdestroy "SlotDestroyHT

:slotupdate *SlotUpdateHT
:valuedestroy "ValueDestroyHT).

Currently we build O3 flavours manually. The
process requires identification of the kernel
operations to be modified - identification through
inspection - modification of these operations and
the construction of the new language object. In the
above case there were six kernel operations to be
modified, the modifications affecting about 2-3
lines of code in each of them. For these reasons,
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creating the above flavour took less than two hours
of work.

Other useful flavours include O3-RECORD and
03-VALUE-NODES. 03- RECORD stores slots
as a record with static fields. The objects of this
kind have a fixed (predefined) number of slots
declared through a special option at object
creation time. For this reason declared slots are
automatically asserted and programmers cannot
delete them  or  assert others.
03-VALUE-NODES is a flavour allowing objects
to create a special data structure (a node) for each
slot value. This may waste space, but isneeded e.g.
when meta-information must be associated with
values. One such case is when using an
assumption-based truth maintenance system
[DeKleer 86]. In this case the value must be labeled
with sets of assumptions maintained by the ATMS.

The use of flavours in an O3 system is
straightforward. One simply has to load the files
containing the requested kernel functions and the
definition of the flavour. Then, any object created
with a flavour as its :LanguageObject parameter
value will behave according to the flavour.

10.2 Some Existing O3 Languages

In this section we tackle the design of two
specialized O3 languages. In both cases the goal of
the design is to provide the best support for
implementing a specialized representation
language.

The first problem is that of implementing an O3
language supporting a term-subsumption
representation server. Term- subsumption
languages (TSL-s) (such as KLONE [Brachman
and Schmolze 85]) are well-defined frame
languages allowing the description of concepts and
roles by means of a finite set of descriptors whose
semantics is axiomatically defined. A TSL- based
server is an implementation of a TSL used as a
general representational service in a large range of
applications.

The major requirements for implementing a TSL
can be stated as follows:

1. A large number (thousands) of concepts, roles
and instances to be accommodated.

2. Fast access to concepts, roles and instances.
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3. Usage of worlds and assumption-based TMS to
allow non- monotonic reasoning.

The simplest solution that comes to the mind is to
implement each concept, role and instance as an
O3 object. Thisidea is misleading because very few
features of O3 objects are actually needed and
unused features will induce great overhead. For
example, TSL concepts inherit in a very specific
manner so that O3 inheritance would rather be
completely avoided than tried to be adapted.
There is no real need for methods, options,
demons as far as TSL entities are concerned. As
O3 objects occupy a rather large space,
accommodating many of them may create storage
space problems.

Because of these arguments, TSL entities are
better encoded with customized data structures.
On the other hand, some of the O3 features are still
needed. These include the worlds mechanism and
the ATMS which would provide a ready-made
environment for producing alternative versions,
supporting retractions and non- monotonicity. These
features would have to be preserved after all.

We have adopted the solution of using the
0O3-HASHTABLE flavour for creating hash-table
objects where TSL entities would be stored as
slots. This ensures fast access. The concepts, roles
and instances are coded as special data structures.
The O3-NODE-VALUES flavour is also used to
allow labelling by the ATMS. Furthermore, in
order to get higher speed, we remove the standard
ApplyOp service (removing the possibilities of
demonization as well) for hash- table objects and
customize SlotInherit to support only a primitive
inheritance scheme.

The second problem to be discussed is that of
designing an O3 language supporting the
implementation of a constraint propagation
system. Constraints are defined as predicates
among given variables whose domains can be
continuous or discrete sets. A set of values for all
variables is a solution to the constraint satisfaction
problem iff it satisfies all constraints. The constraint
satisfaction process propagates values locally (within
a constraint) and globally (among constraints which
share variables) in order to reach a solution [Davis
87], [Sussman and Steele 80].

The requirements for a large number of
constraints and fast access apply here as well. As
in this constraint language users can define
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specific local propagation mechanisms, constraint
propagation is usefully carried out by activating
the attached methods. Constraints are both
generic and instantiated and methods must be
inherited from the generic constraints by the
instantiated ones. These elements suggest that
constraints should be implemented as customized
objects providing method attachment and
inheritance along a simple "instance-of" relation.

The solution will be to use the O3-RECORD
flavour for creating objects with a fixed number of
slots to model constraints. The sort of inheritance
needed is supplied by the prototype-clone relation
so the SlotInherit service may be dispensed with.
Hash-table objects are again used as databases for
storing constraints. Using a different (logical)
TMS system dismisses the thought of node values.
As in the previous example, many other smaller
customizations are applicable to make the
implementation better suited (e.g. placing caches
handled by kernel operations in database objects).

Both examples are implemented creating and
importing specific language flavours. Both
implementations can co-exist in the same O3
environment together with the standard O3
version and possibly other versions, with the
programmer using the same interface to all of
them.

11. Comparisons

O3 uses a reflective architecture as a solution to
the problem of creating a language able to provide
the right programming constructs to each given
problem. Similar motivations urge an effort to
integrate extensive customization facilities in the
KEE language [Filman 87]. This project tried to
add such capabilities to an existing language. It
relied on programmatic manipulations of the
implementation in order to include some dispatch
sequences which would apply alternative
mechanisms, Being an afterthought rather than an
initial design objective, the result is, we think, less
clear than ours.

Another language whose motivations are not far
from ours is 3-KRS [Maes 87]. The solution here
is to make extensive use of meta- objects handling
all service requests addressed to objects. This
solution may function at several "meta" levels. We
use a more restrictive form of language objects at
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one level which gaarantees efficiency and does not
prevent flexibility. An explicit common interface
level is more helpful than the general message
passing access style of 3-KRS. Unfortunately,
many of the examples in [Maes 87] are referring to
mundane capabilities which can be implemented
in many languages (e.g. tracing, stepping, elc.)
rather than concentrated on harder issues. The
basic concepts on reflective computation have
been discussed in [Smith 82).

Not fewresearchers did attempt to build reflective
languages as a way of improving expressive power
in knowledge representation. RLL [Greiner and
Lenat 80] is an earlier attempt based on a clever,
flexible but lower level dispatching mechanism.
Besides, while being used to make programming
languages better suited to various task demands,
reflective computation has also been applied to
build more powerful problem-solving systems. The
SOAR [Laird, Newell and Rosenbloom 87]
problem-solving architecture uses reflection to
build layered problem-solving strategies. Systems
like CYC [Guha and Lenat 90] or FOL
[Weyhrauch 80] duplicate the represented
knowledge at two levels. The first is a clear
predicate language to be used by the programmer
while the second is a scruffy procedural language
for efficient implementation. Reification makes
the implicit procedural mechanisms explicit,
allowing communication between these levels.

12. Conclusions

Ideally, programming languages should provide
constructs which are both usable (for specific
application domains) and reusable (for a large
range of application domains). In order to provide
both sorts of constructs, languages must be open
to extension and customization. As the language
aspects which have to be modified affect intimate
language mechanisms, a rational language design
having extensibility as an explicit purpose is
needed in the first place.

We have proposed such a design based on two
main ideas:

(1) a clear decomposition of the language into
kernel, interface and application layers,

(i) an economical way of dynamically linking
objects to distinct and modifiable protocols of
kernel operations.
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With this architecture the language is causally
connected to itself in an efficient manner and can
integrate any number of "language flavours"
implementing specific language features. The
interface layer ensures uniform access to any
language entity or service ensuring peaccful
co-existence in spite of the differences. The
standard O3 version provides default kernel services
which can be overridden/modified in particular
configurations. Default services for inheritance,
method invocation and demon specification are
provided in a very general form which opens up many
opportunities for customization.

We have illustrated the use of the O3 language
construction capabilities for implementing two
significant knowledge representation languages
with stringent demands on the implementation
environment. O3 is now the carrier language for
the knowledge system tools currently being built in
our laboratory.
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