Constraint-Based Programming for
Object-Oriented Knowledge Processing

Stefan Trausan-Matu and Gheorghe Ghiculete

Expert Systems Laboratory
Research Institute for Informatics
8-10 Averescu Avenue,

71316 Bucharest

ROMANIA

Abstract: This paper presents a constraint representation and
processing system for artificial intelligence applications which
can be used in connection with an object-oriented system.
Constraints offer powerful knowledge representation and
processing facilities. This is the reason why special attention has
been paid to providing various constructs such as generic,
parameterized and hierarchical constraints, a specialized language
for declaring the functionality of constraints, concise connections
declaration, aswell as flexible processing capabilities. Animportant
part of the paper is reserved to presenting the various possibilities
of coupling constraints and objects in the XRL, LISP-based
object-oriented programming environment.

1. Introduction

Constraint-based programming is a new
programming paradigm, useful for both artificial
intelligence (AI) and "traditional" applications
(e.g.[1]). Al takes much interest in constraints due
to the fact that they are a very suitable
representation for describing complex problems
involving search [2]. Constraint processing has
been used in many artificial intelligence classes of
problems: electronic circuits analysis [3],
qualitative reasoning in physics [4], job shop
scheduling [5], resource allocation [6], planning,
design [7, 8], diagnosis [9], and others.

Constraints are relations between variables named
the cells of the constraint. Each variable may have
values in a particular set, either finite or not.
Constraint networks are created by sharing the
cells of a set of constraints. Constraint processing
consists in the assignment and/or change of values
in cells so that all constraints be eventually
satisfied. Usually, algorithms for constraint
processing use a propagation technique. The main
idea would be that changes propagate locally from
one constraiat to another. These algorithms
usually record (in an adequate data structure, for

Studies in Informatics and Control,, Vol.2,No.2,1993

example, a queue) all the constraints to be
processed. After considering one constraint, all
the constraints affected by the computations are in
their turn recorded. Therefore, constraint
propagation may manifest as a cycle of selecting a
constraint, updating its cells in order to make sure
that it holds, and recording the constraints
affected (of which cells are common with the
modified cells of the current constraint).
Propagation terminates when no more constraints
are present in the data structure [10].

This paper describes the COPE constraint
representation and processing system developed
in COMMON LISP. COPE is dedicated to the
development of knowledge-based applications. It
can be easily connected with LISP-based
object-oriented programming (OOP) systems. In
the next chapter, some rationales about the design
of the COPE constraint representation and
processing system are discussed. The declaration
of generic, parameterized, and hierarchical
constraints as well as the language for connections
declaration are also presented in the sections of
the second chapter. The third chapter of the paper
describes the possibilities of connecting
constraints and objects. Finally, some conclusions
are drawn.

2. Constraint Representation in Cope

Several constraint systems have been developed in
LISP [11, 12, 13, 14, 7, 15]. Each of them has a
different manner of representing constraints. For
example, in KEE [11], constraints are represented
as rules. In other systems (for example, [12])
constraints are relations between object

99

components. The authors’ point of view is that that
constraints must have a more complex
representation. The rule representation is at a too
small granularity level, and the relation one at a oo
high level. We have come to considering a
constraint as an entity (somcthing like a black box)
with a number of terminals and specific behaviour
(similar to [15]). Behaviour can be described by a
set of cases (a kind of rules) in a special language,
or by a relation. Consequently, all the rules for a
constraint are grouped together and complex
behaviours can be described.

Based on our experience in implementing another
constraint processing system [19, 20, 25], special
attention has been paid to both space and speed
efficiency. Following these requirements, one
main point was not to implement constraints as
objects (which was the case of the former system).
This is also justified by some observations about
the applications written in the former system:

~ Inheritance has not been extensively used for
constraints.

— Constraints have a lower rate of change than
other objects. The structure of constraints is in
most of the cases fixed (for example, a
constraint’s main components are the cells
involved, and the description of behaviour). In
fact, in applications involving constraints, things
which usually change are not constraints, but
constrained cntities. Constraints might
cventually be relaxed, but relaxation does not
imply a change in the structure of the constraint.
It usually implics discarding or modifying the
behaviour of a constraint.

— The number of uniformity constraint instances
is, in gencral, much larger than the number of
the constrained objects. Taking into account
that mXRL is a classless OOP language
implemented in LISP, for big applications
clficiency problems might appear.

For the sake of uniformity, we have chosen to
describe more efficient structure. We consider
that the loss of flexibility is, for constraints, lesser
than the gain in efficiency. Nevertheless, we
provide a strong coupling facility between objects
and constraints, as will be discussed in the third
chapter.

100

COPE is an enhancement of the old system not
only in the above described aspects but also in
providing newer, stronger abstraction facilities.
The design of COPE took into account the
fulfilment of the following goals:

— Provision of facilities for declaring generic,
parameterized, and hierarchical constraints

— Provision of a specialized language for
declaring the functionality of constraints

— Reduction to a minimum of the declarations
of connections between constraints

— Possibility of developing different kinds of
constraint procecssing applications (e.g.
constraint satisfaction problems, modelling
and simulation, second generation expert
systems)

2.1 Generic Constraints

Generic constraints are descriptions of classes of
constraints which can be instantiated to particular
constraints. This dichotomy is similar to the class -
instance one in class-based object-oriented
languages. Not only does it serve as an abstraction
facility but also does it show performances
because of a much simpler internal representation
of aninstance than that of a generic constraint. Another
benefit from generic constraints is their reusability.

One of the main ideas on which COPE was built
was the provision of a powerful language for the
declaration of constraint functionality. We have
described the functionality of a constraint as a set
of rules which have in the condition and action
parts some specific atoms and functions (e.g.:
newvalue,: newcell atoms, and: known,: unknown,
:exists,: val,: set-cell functions). For example, in the
generic multiplier constraint with two terms below,
the functionality is described by the production
rules given in the slot: PropagationPrologue and
those indicated as: PropagationCases.

(DeclareConstraint! multiplier
:cells (p m1 m2)
wvars (x)
:PropagationPrologue ((when (:known :newcell)

(unless (eql (:val :newcell) :newvalue)

Studies in Informatics and Control,, Vol.2,No.2,1993

(error "Conflicting values !"))
(:set-cell :newcell :newvalue))

:PropagationCases (:zero_m1_or_m2 :all known
:unknown_p

:unknown_m?2 :unknown_m1)
:zero_ml_or_m?2 ((:exists x :in ’(m1 m2) :suchas
(and (:known x)(zerop (:val x))))
(:set-cell ’p 0))
:all_known ((:known ’(m1 m2 p))
(unless (= (:val’p)(* (:val 'm1) (:val ‘m2)))
(Break "Unsatisfied constraint relation"}))
:unknown_p ((:known '(m1 m2))
(:set-cell ’p (* (:val ’m1) (:val ‘'m2))))
‘unknown_m?2 ((:known '(p m1))
(:set-celi*m2 (/ (:val ’p) (:val ‘'m1))))
:unknow=_m1 ((:known ’(p m2))
(:set-cell ’'m1 (/ (:val ’p) (:val ‘'m2)))))

“in instance, named instance_mul, of the
multiplier is built in the first form and the value 8
for p is propagated using the second form below:

(MakeConstraint! multiplier :instance-name
instance_mui)

(constr-propagate ’p ’instance_mul 8)
2.2 Parameterized Constraints

Parameterized constraints are further steps towards
providing powerful abstraction constructs and for
reducing the amount of programs. A parameterized
constraint is a generic constraint containing at least one
parameter which refers to the declaration of cells in the
generic constraint. For example, there might be
multipliers with two, three and, in general, n terms.
Without a parameterization facility, for each number of
terms a generic constraint has to be defined. By declaring
n, the number of terms as a parameter, a generic
multiplier with n entries can be defined as follows:

(DeclareConstraint! pmul
:parameters (n)
:cells ((n :of m :at least 2)

p)
wvars (x)

Studies in Informatics and Control,, Vol.2,No.2,1993

:PropagationPrologue
:PropagationCases (:one_m_zero :all_known
:one_m_unknown :unknown_p)
:one_m_zero ((:exists x :in (:param-cells 'm)
:suchas (and (:known x)(zerop
(:val x))))
(:set-cell 'p 0))
:all_known ((and (:known ’p)
(:known (:param-cells 'm)))
(unless (= (:val ’p)
(apply #* (:param-cells-val'm)))
(Break "Unsatisfied constramt relation.")))

An instance of this constraint can be defined as:

(MakeConstraint! pmul :instance-name
n_instance_mul :n 6)

2.3 Hierarchical Constraints

The hierarchical definition of constraints has two
targets. The first one is to stick to the ideas of [15]
l.e.to give the possibility of defining new,
compound constraints from already defined
constraints. The second one is to meet the
requirement for grouping a set of constraints in a
network of interacting constraints.

Here is an example of a hierarchical definition of
a constraint describing a resistor, using two adders
and a multiplier:

(DeclareConstraint resistor
cells (ulu2ili2r)
:GroupsOfCells ((t1 (ulil))
(12 (u2i2)))
:InnerConstraints ((mul :isa multiplier)
(add :isa adder)
(0 :isa minus))
:Connections ((:map ’r :to 'm2 :of 'mul)

(:map il :to’tl:of '0)

101

(:map 12 :to ’t2 :of ’0)

(:map ’ul :to’s :of ’add)

(:map 'u2 :to ’t1 :of ’add)
(:connect ’t1 :of ’0 :to ’m1 :of *'mul)
(:connect ’p :of’'mul :to 't2:0f’add)))

The Resistor constraint can be further used for
defining a new constraint, the TwoSeriesResistors
constraint as follows:

(:Declare TwoSeriesResistors
:cells (ulu2ili2r)
:GroupsOfCells ((t1 (ul i1))
(2 (u22))
:InnerConstraints ((r1 r2 :isa resistor)
(node :isa node2)
(add :isa adder))
:Connections ((:group-map ’t1 :to’t1 :of ’r1)
(:group-connect't2:0fr1 :to’t1:0f node)
(:group-connect’t1:0f 12:t0’t2:0f'node)
(:group-map ’t2 :to ’t2 :of ’r2)
(:connect ’r :of ’r1 :to ’t1 :of add)
(:connect ’r :0f ’r2 :to ’t2 :of ’add)
(:map ’r :to’s :of ’add)))

2.4 The Connections Declaration
Language

For complex problems, with a great number of
constraints and with many connections, the
declaration of the connections between the
constraints can become cumbersome and
crror-prone. For this reason and giving the
possibility of using parameterized constraints in the
definition of other constraints, a connection
language has been devised and the grouping of a
number of cells has been enabled. The connections
language is used, of course, in a compound
constraint. It reduces considerably the number of the
declarations of connections. Two examples of the
usage of this language are the: connections
component of the Resistor and TwoSeriesResistors.

102

One further example, also involving a
parameterized sum constraint is the
NSeriesResistors:
(:DeclareConstraint NSeriesResistors
:cells (ulu2ili2r)
:GroupsOfCells ((t1 (ulil))
(12 (u2i2)))
:parameters (n)
:InnerConstraints ((sum :isa (n_adder :n n))
(res :isa (:set n :of resistor :atleast 2))
(node :isa (:set (1- n) :of node2)))
:connections ((:map ’r :to’s ;of sum)
(:group-map ’t1 :to ’t1 :of (res 1))
(:group-map ’t2 :to ’t2 :of (res n))
(do ((1(1- 2 (= in)
(sgroup-connect 12:0f (res 1y 2~'t] :of (node 1))
(:group-connect ’t2 :of (nede 1)
to’t1 :of (res (1+ i)))
(:comnect 't -of (resi) to(termi) :of sum})
(:connect ’r :of (res n) :
to (term n) :of ’sum)))
The GroupsOfCells facility offers the possibility of
the declaration of a number of related cells as a
whole. This is the case of the terminals (t1,t2) in
the above resistor examples. One such terminal can
be treated in a similar manner as a cell. This facility
makes that the number of connection declarations be
very much reduced and that another abstraction
mechanism be provided (for example, when connecting
two electrical components, we refer to the terminals
connecting, abstracting the fact that the voltage and
current cells of their corresponding constraints are

connected). The GroupsOfCells idea is similar to a
facility offered in the CONSTRAINTS language [15].

3. The Integration of Constraints and Objects

OOP is now largely viewed as a powerful
programming paradigm, able to cope with
software change and reuse. For Al applications,
there have been developed OOP languages under
LISP environments (for example, CLOS [21], KEE
[22], and those implemented by the authors of this

Studies in Informatics and Control,, Vol.2,No.2,1993

paper: XRL [16], mXRL [17], O3). In these
languages, objects are strongly related to the frame
knowledge representation paradigm [23]. As a
consequence, complex structuring of objects is
used with a great emphasis put on multiple
inheritance with method combination, and other
Al knowledge representation and control
mechanisms are integrated: rules, logic
programming, demons, constraints.

The integration of a constraint-oriented
framework into an OOP system enhances the
power of representation and processing. Relations
among objects or among components of an object,
transformations of the state of objects [24], can be
very elegantly described. If, in an Al QOP
environment, besides constraints, an
assumption-based truth maintenance (ATMS)
[18] and world mechanisms [11] are integrated,
complex search problems can be very naturally
described ar. solved.

We cousider that there are two main ways of
con.iecting constraints and objects:

A) The connection of constraints on an existing
object network. In this case we have implemented
the following possibilities:

— coupling of a constraint on an object

— coupling of constraint on a fixed number of
objects (statically determined)

— coupling of a (parameterized) constraint on a
dynamically determined number of
constraints

— coupling of constraints on tuple of objects of some
type (clones or descendants of some object)

B) The connection of implicit constraints the
moment an object is created. These constraints
refer to slots of the created object. There are the
following two possibilities:

- Implicit constraints (eventually
parameterized) coupled on a single object

- Implicit constraints coupled on all the
combinations of n objects

3.1 The Connection of a Constraint on An Existing
Network

This coupling method may be useful in various
problem solving regimes. For example, it may be

Studies in Informatics and Control,, Vol.2,No.2,1993

used in a refinement-based system to infer values
for some components or for checking the
consistency of the object network.

The next example (used throughout the paper) is
inspired by the DEXTY civil engineering expert
system for the design of industrial halls (which the
first author developed some years ago in XRL,
without constraints).

(unit hall
self (a unit)
openingl
(a opening
width 12
column1 (a column h 10 d 0.5 weight 3)
column2 (a column h 10 d 0.3 weight 2.5)
roof (a roof-struct
beam (a transvers-beam weight 5)
chesson (a chesson 16 weight 2)
chessons-no 4))
opening?2
(a opening
width 15
column1 (a column h 10 d 0.8 weight 3.5)
column?2 (a column h 10 d 0.5 weight 3)
roof (a roof-struct
beam (a transvers-beam weight 6)
chesson (a chesson 1 6 weight 2)
chessons-no 4)))

(unit roof-struct
weight-roof undf
weight-chessons undf)

(unit chesson 1 undf weight undf)
(unit transvers-beam 1 undf weight undf)

The coupling of an instance of the mul constraint
on the hall object is done by:

(obj-¢

103

3

mul
"(hall ((m1 (opening2 roof chesson weight))
(m2 (opening?2 roof chessons-no))

(p (opening2 roof
weight-chessons))))
t)
The effect of this constraint is the computing of the

total weight of the chessons in the second
opening,

3.2 The Coupling of a Parameterized Constraint
on an Object Network

There are many cases when the number of the
components of a relation cannot be known in
advance. Therefore, the coupling of a
parameterized constraint on a variable number of
objects may be very useful. Such a coupling of the
parameterized "psum" constraint (a sum with a
variable number of terms) on the widths of the
openings in a hall is described below:

(unit halll

self (a unit supers (hall))

total-width 53

opening3 (a opening width 8)

opening4 (a opening width undf))

(defparameter *halll-openings*

(let ((*%obj%* ’halll))

(allslots-clone-of *opening)))

(objn-c ’psum *halll-openings* *ad 'width *hall1’s
’total-width)

As the total-width (53) and the widths of the first,
sccond, and third openings (12, 15, and 8) are
known, the opening is to be computed (18).

3.3 Constrained Objects
Constrained objects, as opposed to the couplings
discussed above, belong to a conceptually different

kind of coupling. The difference between the two
classes consists in the latter being implicit and

104

contrasting with the explicit coupling discussed
until now. This implicit coupling appears as a side
effect of the creation of an object which has been
declared as a constrained object. The fulfilment of
the implicit coupling is possible via "after-create"
demons attached to the constrained objects.

We have considered two ways of implicit coupling,
depending on the number of objects which are
implicitly coupled. For the first case, the single
constrained objects must be meta-described as a
ConstrainedUnit:

(unit ConstrainedUnit

after-create (couple&activate-constraints))

The applicable constraints are listed in the
"constraints" slot. Each of them is further
described on its own in a slot as cicnes of one of
the following two objects:

(unit Constraint-declaration
precond t

ctype undf

pairs undf)

(unit Par-constraint-declaration precond t)

As an example we shall redefine the roof-struct
object from the previous examples as a constrained
object. After the definition of the new roof-struct,
all its clones and descendants of roof-struct will be
constrained objects.

(unit roof-struct
self (a ConstrainedUnit)
constraints (ches-w tot-w)
ches-w
(a constraint-declaration
ctype mul
pairs ((m1 (chesson weight))
(m2 chessons-no)

Studies in Informatics and Control,, Vol.2,No.2,1993

(p weight-chessons)))
tot-w
(a constraint-declaration
ctype sum
pairs ((t1 weight-chessons)
(t2 (beam weight))
(s weight-roof)))
weight-chessons undf
weight-roof undf
chessons-nr undf
chesson (a chesson)

beam (a transvers-beam))

As an usage example, consider:
(unit hall238
self (a unit)
openingl
(a opening
roof (a roof-struct
beam (a transvers-beam weight 5)
chesson (a chesson 16 weight 2)
chessons-no 4))
opening2
(a opening
roof (a roof-struct
weight-roof 15
beam (a transvers-beam weight undf)
chesson (a chesson 1 6 weight 2)
chessons-no 4))
opening3
(a opening
roof (a roof-struct
weight-roof 12
beam (a transvers-beam weight 6)
chesson (a chesson | 6 weight 2))))

In the next example, the tot-w-roof will maintain
the sum relation among all the weights of the roofs

Studics in Informatics and Control,, Vol.2,No.2,1993

of all the openings and the total weight. This is an
example of definition of a constrained object with
a parameterized constraint.

(unit hall-with-total-roof-weight
self (a ConstrainedUnit)
constraints (tot-w-roof)
tot-w-roof
(a par-constraint-declaration

ctype psum

par-obj-list (allslots-clone-of *opening)

par-cell ad

par-slot (roof weight-roof)

cell s

slot total-weight)
total-weight undf)

A second possible implicit coupling, already
implemented, is the connection of couples of
objects with a constraint. Each time a new object
is created and declared as being in a couple of
constrained objects, new instances of the specified
constraints are created and connected. For better
understanding this way of connecting objects and
constraints, we shall give an example: consider that
in a factory area there are two kinds of machines
(machine-typel and machine-type2). A
technological constraint states that these machines
have some successor-predecessor relations.
Another constraint states that the distance
between two machines must be lesser than 3
meters. The types of machines and their instances
are represented as:

(unit machine-typel
self (a unit)
x-location undf
y-location undf

next-machine-type (machine-type2
machine-type7 machine-typel1))

(unit machine-type2
self (a unit)
x-location undf

y-location undf

105

previous-machine-type
machine-type6))

(machine-typel

(unit machine-type3

self (a unit supers (machine-type1))
x-location 22

y-location 22

next-machine-type (machine-type9))

(unit machine-type4

self (a unit supers (machine-type2))
x-location 7

y-location 7

previous-machine-type (machine-typel))

(setq sl
(a machine-typel
x-location 10
y-location 10

next-machine-type (machine-type2)))

(setqs2
(a machine-type2
x-location 22
y-location 22
previous-machine-type (machine-type7)))
The distance limiting condition is introduced as a
constraint (dist3) telling if two machines are
farther than 3 (meters). The next LISP form will
have as effect that all the new clones or
descendants of the machine-typel and
machine-type2 (successive in the manufacturing
process) will be connected to dist3 constraints.
(obj2f-c ’dist3
’machine-typel
‘(member ’machine-type2 (fslot
"next-machine-type *%obj%*))
’((t1 x-location)(t2 y-location))

’machine-type2

106

’(member ’machine-typel (fslot
’previous-machine-type *%obj%*))

’((t3 x-location)(t4 y-location)))

For example, after getting the following new
machine:

(setq sl

(a machine-typel
x-location 20
y-location 20))

will signal a farther distance between s11 and
machine-type4:

e ok ok sk s ek sk ok sk sk ok ok ke sk sk sk sk ke tk ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok

There is a greater distance between points (7,7)
and (20,20)

that correspond to
((Y-LOCATION . MACHINE-TYPE4)
(X-LOCATION . MACHINE-TYPE4)
(Y-LOCATION . MACHINE-TYPE1-210)
(X-LOCATION . MACHINE-TYPE1-210))
S —
(setq s22 (a machine-type2
x-location 11

y-location 11))

After modifying the s11 machine position:

(pslot *x-location 511 9)
(pslot ’y-location s11 9)

all the constraints will be satisfied.

4. Conclusions

We have tried to define a powerful constraint
language for providing a new representation
dimension to developing knowledge- based

Studies in Informatics and Control,, Vol.2,No.2,1993

applications. Aiming at providing flexibility,
abstraction support, and concise description of
programs, we have defined constructs for the
declaration of generic, parameterized, and
hierarchical constraints. The functionality of
constraints and the connections between them are
declared by specialized languages.

Not to implement constraints as objects in the
context of LISP-based object-programming
languages has been our choice. The explanation is
that in such languages objects are usually used as
frames, involving a lot of processing not required
by constraints with more fixed character. Another
positive argument for our opinion is that the
number of constraints might be significantly larger
than the number of the objects involved. The
system presented in this paper has been used for
developing several applications: a simple second
generation expert system, a typical constraint
satisfaction problem, an explanation-based
learning problem, and some modelling and
simulation applications in electronics and ecology.
All these applications have demonstrated that
constraint-based representation is a powerful
abstraction facility, orthogonal with
object-oriented representation, which can
dramatically reduce the complexity of programs
from the above domains. One of the applications
put forward thousands of constraints and
satisfactory results with regard to both space and
speed were obtained.

REFERENCES

1. BORNING, A., DUISBERG, R.,
FREEMAN- BENSON, B.,, KRAMER, A_.and
WOOLF, M., Constraint Hierarchies,
OOPSLA ’87 Proceedings, 1987, pp. 48-60.

2. L Kanal and V. Kumar (Eds.) Search in
Artificial Intelligence, SPRINGER-
VERLAG, 1988, pp. 287-342.

3. DE KLEER, J., How Circuits Work,
ARTIFICIAL INTELLIGENCE, 24, 1984,
pp. 205-280.

4. DE KLEER, J. and BROWN, J. S., Theories
of Causal Ordering, ARTIFICIAL
INTELLIGENCE, 29, 1986, pp. 33-61.

Studies in Informatics and Control,, Vol.2,No.2,1993

10.

11

12.

13.

14.

15.

16.

. FOX, M., Constraint Directed Search: A Case

Study of Job-shop Scheduling, Research
Report CMU-RI-TR-83-22, Carnegie- Mellon
University, 1983,

- MOTT, D. H.,, CUNNINGHAM, J.,

KELLEHER, G. and GADSDEN, J. A,,
Constraint-Based Reasoning for Generating
Naval Flying Programs, EXPERT SYSTEMS,
Vol. 5, No. 3, August 1988, pp. 226- 246.

. STEFIK, M., Planning with Constraints

(Molgen: Partl), ARTIFICIAL
INTELLIGENCE, 16, 1981, pp. 111-140.

. MURTAGH, N. and SHIMURO, M.,

Parametric Engineering Design Using
Constraint-Based Reasoning, Proceedings of
AAAI90, 1990, pp. 505-510.

. DE KLEER, J. and WILLIAMS, B.C,,

Diagnosing Multiple Faults, ARTIFICIAL
INTELLIGENCE, 32, 1987, pp. 97-129.

DAVIS, E., Constraint Propagation with Interval
Labels, ARTIFICIAL INTELLIGENCE, 32,
1987, pp. 281-331.

FILMAN, R, Reasoning with Worlds and Truth
Maintenance in a Knowledge-Based Programming
Environment, COMMUNICATIONS OF THE
ACM, Vol. 31, No4, April 1983, pp. 382-401.

GIUSE, D, KR: Constraint-Based Knowledge
Representation, Rescarch Report
CMU-CS-89-142, Carnegie Mellon University, 1989.

GUESGEN, H. W,, JUNKER, U. and VOSS,
A., Constraints in a Hybrid Knowledge
Representation System, Proceedings of
1JCAI-87, pp. 30-33.

MOTTA, E., EISENSTADT, M., PITMAN,
K. and WEST, M., Support for Knowledge
Acquisition in the Knowledge Engineer’s
Assistant (KEATS), EXPERT SYSTEMS,
Vol. 5, No. 1, February 1988, pp. 6-27.

SUSSMAN, G. J. and STEELE, G. L.,
CONSTRAINTS - A Language for Expressing
Almost-Hierarchical Descriptions, ARTIFICIAL
INTELLIGENGE, 14, 1980, pp. 1-39.

BARBUCEANU, M. and TRAUSAN
-MATU, §., The XRL2 Manual, ITCI
Bucharest, 1988.

107

17.

18.

19.

20.

21.

108

TRAUSAN-MATU, S., Micro-XRL: An
Object-Oriented Programming Language for
Microcomputers, Research Report, Institute
for Technical Cybernetics, Slovak Academy of
Sciences, Bratislava, 1989.

DE KLEER], J., An Assumption-Based TMS,
ARTIFICIAL INTELLIGENCE, 28, 1986,
pp. 127-162.

TRAUSAN-MATU, §S., Constraint
Processing in the mXRL Object-Oriented
Language, Research Report, Institute for
Technical Cybernetics, Slovak Academy of
Sciences, Bratislava, 1989.

TRAUSAN-MATU, S., The Development of
Constraint Processing Applications in the
mXRL Object-Oriented Language, Research
Report, Institute for Technical Cybernetics,
Slovak Academy of Sciences, Bratislava, 1989.

KEENE, S., Object-Oriented Programming in
COMMON LISP: A Programmer’s Guide to

CLOS, ADDISON-WESLEY PUBLISHING
COMPANY, Reading, MA., 1989.

22. FIKES, R. and KEHLER, T., The Role of

23.

24.

Frame-Based Representation in Reasoning,
COMMUNICATIONS OF THE ACM,
Vol.28, No.9, September 1985, pp. 904-920.

MINSKY, M., A Framework for Representing
Knowledge, in P.Winston (Ed.) The Psychology of
Computer Vision, MCGRAW HILL, New York,
1975, pp. 211-277.

KNUDSEN, J.L., Object-Orientation as an
Integrating Perspective on Programming,
Proceedings of EastEurOOPe’91, Bratislava, 1991.

. TRAUSAN-MATU, S., BARBUCEANU,M.

and GHICULETE, GH., The Integration of
Powerful and Flexible Constraint
Representation and Processing into an
Object-Oriented Programming Environment,
Proceedings of "Representations Par Objets”,
La Grande Motte, France, June, 1992.

Studies in Informatics and Control,, Vol.2,No.2,1993

