A Constraint-Space Based CSP

Solving Method

Gheorghe Ghiculete and Stefan Trausan-Matu

Expert Systems Laboratory
Research Institute for Informatics
8-10 Awverescu Avenue,

71316 Bucharest

ROMANIA

Abstract: A new method for solving constraint satisfaction
problems over variables with finite domains is presented. This
method focuses on the problem’s constraints rather than on
its variables - as most of the ’classic’ approaches do. Some
advantages and disadvantages of the method are presented, as
well as some preliminary test results.

1. Introduction

After more than twelve years of studies, constraint
programming is today an important branch of
Artificial Intelligence. A constraint is a mathematical
relation over an (usually small) set of variables.
Constrainis may be connected (via variables) to
forming constraint networks. Constraint networks
may be classified using several criteria: the domain
of the variables (discrete, continuous, intervals,
multiple-values, a.s.0.), the type of the relations
involved (e.g. algebraic, rules), the techniques used
to solve the net (value propagation, symbolic
propagation, relaxation schemes, filtering), the way
constraints may be added/removed (static,
dynamic). With respect to the variable domain
type, an important category of constraint networks
is the CSP class. CSP stands for Constraint
Satisfaction Problem - problems over variables
with finite value domains. This paper focuses on
this kind of constraint nets by presenting the CSP
module embedded in the COPE general
constraint representation and processing
system. The CSP description is followed by an
overview of the existing solving methods. In the
next section a new approach to CSP solving is
presented, together with some tests and their
results, which are quite encouraging. A sample
problem is listed in the Appendix.

Studies in Informatics and Control,Vol.2,No.2, June 1993

2. Constraint Satisfaction Problems

A CSP may be described as 3-tuple (X,D,F) where
X={x,..x } is a set of variables, D = {d,...d_} the
associated domains, and F={f,..f } a set of
Boolean functions called ’constraints’. Domains
are characterized by their cardinality card,. Each
constraint fi may be regarded as a predicate over
asubset of X. We shall refer the constraint arity of
fi as k;. To keep things less complicated let us
suppose that card;=..=card =d and
k; =...=k_ =k. Finding a solution to a CSP means
searching for an assignation {x,=v,...x =v_},
where v, ind,,...,v, ind , so that all the constraints
should be satisfied (i.e. f;...f | all return TRUE for
that assignation).

For example, let X={x;x,x,}, D={d,,d,d,},
dlz{a)m’n} d2={b7p:q} d3: {C:X:Y} and
F={f,f,,f;}, the constraints being defined as
fl(xl,x2)=(x1=aandx2=b0rx1=mandx2=b)

B (%) = (,=band x;=c or x, =b and x, =x)
f3(x;%) = (x;=aand x;=corx, =n and X =x). It
is easy to realize that the only assignation that
satisfies this simple example is
(x;=ax,=bx;=c).

A brief description of the *classic’ method for
solving a CSP is the following: 1. (optional)
impose an instantiation order on the variables
set 2, (forward step) instantiate the variables one
at a time; check, after each instantiation, the
applicable constraints, that is, every f(xg5m%y)
with x,,...,x, all assigned. If at any point (partial
assignment) a constraint is violated then a
backward step is performed: one of the previous

109

variables in the ordering is once again
considered and another value from the
corresponding domain is resorted to. A solution
can be reached if no more variables are to be
instantiated. When the backward step has no
more variable to backtrack to it means that
there is no solution whatsoever to the CSP.
There are several techniques improving both
the forward and the backward step:

— computing and recording the way how the
current instantiated variable set restricts the
future assignments. This method (generally
known as ’filtering’) includes the Waltz
algorithm described in [Waltz77];

— choosing the next variable to assign in a most
profitable way (this applies only to methods
that do not fix the variable instantiation order).
A general rule is to search for the variable
which, once instantiated, at maximum restricts
the remaining search- space;

— choosing the value to assign (for the current
variable). A fairly good strategy is to choose it,
so that the number of options for future
assignments should be maximized.

The backtrack may be optimized by:

— using non-chronological backtracking (also
known as ’intelligent backtracking’ or
*dependency-directed backtracking’) by
jumping back to the variable that caused the
failure (the culprit). The culprit may be
computed cither dynamically (when a
backtrack occurs) or statically-before starting
the solving process. The two methods present
both advantages and tradeoffs. While the
former guarantees the optimal *back-jump’, it
is rather slow due to the extra calculation
needed at each backward step; the latter is
faster (the jump-to variable is pre-computed
for every variable) but the back-jump may be
’shorter’ than the optimal one;

— recording - as the solving process
advances- the facts that caused failures,
i.e. the subsets of variables-values pairs
that induced constraint violations.
TMS/ATMS mechanisms can be included
here [De Kleer86a], as well as the learning
techniques described in [Dechter90].
However, the (A)TMS’s are usually too

110

costly with respect to the time and space
consumed, even for medium-sized CSP’s;

— reducing, if possible, the constraint graph
(hyper-graph for constraint arity greater than
2) to a tree structure that can be efficiently
solved-solving time is linear in the number of
variables (see [Freuder, Quinn85]).

3. A New Approach to CSP Solving

What the above enumerated methods have in
common is that they all focus on variables rather
than on constraints. In the ’classic’ approach the
variables are nodes and the constraints are arcs.
Exploring the resulting hyper-graph - by variable
instantiation - yields two negative aspects: 1. the set
of applicable constraints has to be permanently
recorded and maintained 2. this set evolves in a
hard-to-control manner, often by leaps. For example,
two successive instantiations may bring no additional
constraint while a third variable assignment may
enrich the applicable constraint set by 2,3 or more
constraints. So, the granularity implied by this
representation of the CSP problem is not high
enough, Instead, if we consider the dual graph -
constraints as nodes and variables as arcs, always
representable as a graph - this problem never
arises. For every constraint (node) we define the
constraint-space as the k-dimensional discrete
volume given by d* (d = the variable domains
cardinality, k = the constraint’s arity). The
elements in the constraint-space are
Boolean values, TRUE if the constraint is
satisfied for the assignation corresponding
to that point and FALSE if not. These points
are called T points (this stands for TruePoints)
and Fpoints (this stands for False Points). Two
important aspects appear: 1. choosing a
Tpoint means simultaneous instantiation of
several variables, more precisely, of the entire
variable subset over which the constraint is
defined; 2. during the graph exploration the
next node to be considered is chosen at ease,
independently of how constraints are
interconnected via variables. Let us have a
simple example:

Studies in Informatics and Control,Vol.2,No.2, June 1993

x1 X2
f1

f2 3 4 5

The f; constraint defined over X1.%; £5,f; on x; and
f,fsonx,. After visiting the f; node we may explore
the descending nodes in any order; we may choose
for example the sequence £5,£4,£3,f5. This particular
order corresponds to the following variable
instantiation order: X1,%,,%X1,X, which makes no
sense in the variable-focused approach. To
capture the whole image of our CSP solving
method let us consider the node to descendant
switch in some other small example:

f1

x1

x2

f2 p— x3

Supposing that the f; node was successfully
reached, that is a Tpoint was found in f1’s space.
An implicit instantiation took for sure place for x1.
We say that x; was CHOSEN in f,. When moving
down to f,, with x; already assigned, we say that X
is IMPOSED on f,. The search for a Tpoint in f, is
going on in the (x,,x,) plan (or SUB-SPACE) yield
by performing a cut into the fy’s volume (x;,%,,x;).
The cut corresponds to the value assigned to x; in
f;. The following algorithm for solving CSP results:

Procedure Solve_CSP (ConstraintList)

/* Solution is found by the side effect of Tpoint
decoding */

L = ConstraintList

Forall xin L do

Studies in Informatics and Control,Vol.2,No.2, June 1993

fill space of x
F = first element in L
While (F is not null)
If (exists Tpoint in F’s space) then
F = next element in L
else
F = Backtrack (F,L)
end

The Backtrack function of arguments
current-node (constraint) and constraint-list
returns the jump-back-to node if a failure occurs.
The algorithm terminates in two cases: either no
constraint is therc to backtrack to, i.e. no (more)
solution, or L is exhausted - a (new) solution has
been generated (a Tpoint was found in each
constraint’s space). On evaluating the
performance of this CSP solving method two
phases are to be considered: 1. the
constraint-space filling step 2. the scarch for a
solution by exploring the constraint graph. For
phase one, an elementary operation would be
verifying a constraint against a certain assignation
(an assignation of that variable over which the
constraint is defined). The first step has a time and
space complexity of n*dX, where n is the total
number of constraints in the CSP. This is less time
consuming than if solving CSP by
variable-oriented methods, which may be
estimated to d; usually k < n, many CSP’s are
actually specified using only binary constraints,
k=2. With regard to the occupied space, laking
into account that the constraint space is made of
Boolean values, a bit per stored value will suffice.
To get a clearer picture, for a binary constraint
defined over variables with domain cardinality =
128 the constraint space size will be of
128*128/8 = 2 Kbytes. Let us compare these results
with the approach presented in [Guesgen91] - also
a’non-standard’ CSP solving method. The quoted
paper presents an algorithm for solving CSP that
implies keeping a data structure for every
Tpoint/Fpoint. Assuming only 100 bytes/structurc
(underestimate), for the example cited above there
will be a memory need of 2 Mbytes for only one
constraint space. In our opinion the method
(although very sophisticated) is still unsuitable for
today computing machines. Now, speaking about

111

the constraint space filling phase, another
worthwhile aspect is to be mentioned: while this
operation is under way, the number of Tpoints may
be recorded as well. This makes it possible to
define the constraint’s STRENGTH as the ratio:
Tpoints_no/TotalPoints_no, where Total
Points_no = Tpoints_no + Fpoints_no =d¥.

Similar concepts are met with in [Fox83] where a
sort of conditional probabilities are defined for
both constraints and variables. In our case the
constraint’s strength is used in estimating a node’s
cost in the search-space ordering phase. The node
cost is made by the Tpoints number in the current
searched constraint plan (sub- space). The
relation of the node cost is: node_strength*
product_of_chosen_variables_cardinality, where
a uniform distribution of Tpoints in the
constraint’s space was assumed. The above
formula is analogous to the one used in finding the
mass of a known volume given the material’s
density. Remember that the chosen variables are
those that are not imposed by previous
Tpoint-choosing, so that the node-cost should
reflect and be influenced by both the way the
already reached constraints are interconnected
and the way the newly considered constraint
(node) is connected to the reached nodes. The
computed cost is therefore an almost exact
measure of the dynamic complexity of the node.
The ’almost’ is introduced by the uniform
distribution hypothesis; anyhow this uncertainty
can be reduced by using techniques to be further
described . In case of equal-cost conflict, asecond
criterion is used: the constraint with the highest
connection degree is preferred. Another possible
criterion will be the distance to the already
reached nodes. The chosen node is that
maximizing this distance. This causes a longer
back-jump if a failure occurs during the search for
a solution. With regard to the way the search-
space is organized, a search tree is constructed in
depth-first manner, using the above optimal
criteria. Here are below other two features of our
CSP solving module, thereby an easier problem
declaration by the user and also an increase in
solving efficiency are possible. 1. Elimination of
included constraints. By ’included’ constraints we
understand those constraints applied to a subset
X of variables s.t. X’ in X” where X" is the subset
corresponding to another constraint. As an

112

example, the constraint f,(x,,x,) is included in
£(%;,%,,%;). Our system detects such situations and
removes the included constraints in the
space-filling phase. The gain is two-fold: 1. The
operation is equivalent to a higher-order local
consistency and causes a speed-up in finding the
solution (the number of available nodes and
Tpoints is reduced). On the other hand, a space
saving of m*dX is feasible, where m is the number
of constraints removed by inclusion 2. Automatic
generation of the non-equal constraints. It takes
place when two variables x; and x; share the same
domain (’same’ means here identity, not
isomorphism). In such a case, whenever a value of
the domain is assigned to x, that value is no longer
available to being assigned to x;. This is equivalent
to a binary non-equal constraint between x; and X;.
According to the value of the :TestSameDomains
option the system performs auto-detection and
generates constraints of the mentioned type.
Besides significantly simplifying the problem
declaration, the non-equal constraint space being
a diagonal matrix, the space may be filled in linear
time - and not in O(d?).

4. Test Problems

Before describing the tests the CSP solving module
goes through, let us point out some evaluation
criteria. We have to consider the two phases of
solving in our approach: the constraint-space
filling and the search for a solution. The
space-filling phase consists of performing n*d¥
consistency-checks. Consistency-check means the
evaluation of a particular constraint under a
certain assignation of its variable subset. In the
second phase (the search space exploration) the
elementary operation is the Tpoint-decoding- only
Tpoints are considered during the search.
Decoding a point from a constraint’s space means
finding out what is the variable assignation which
corresponds to that point. Our product was tested
against the following problems: the 'Zebra’
problem, a crypto-arithmetic example, a 9
card-puzzle and a scheduler.

1. The 'Zebra’ problem. It is too well-known to be
reproduced here once more. However, this
example may be found in the Appendix - we hope

Studies in Informatics and Control,Vol.2,No.2, June 1993

our CSP-declaration syntax is enough clear for
understanding the problem. In CSP terms the
problem may be translated as follows: five groups
of five variables each (nationalities, colours,
drinks, cigarettes and pets) - a total of 25 variables.
There are only five distinct domains and five
elements (the houses) in each. Each domain is in
correspondence with one of the variable clusters.
The problem’s constraints may be classified as 14
explicit constraints (stated in the problem) and 50
non-equal constraints generated by the system.
The latter constraints are motivated by the variable
domain-sharing. A number of 3 included
constraints are eliminated in the space filling
phase. The first phase may be ignored for this
example because of the small domain cardinality.
Theoretically, 1,600 consistency-checks should be
performed. Only 350 are eventually performed
because non-equal constraints are filled in lincar
time, without a real call on the constraint’s
function, The unique solution could be found after
279 decodings. The entire search-space was
exhausted after 1,781 decodings. For comparison,
data are available in [Dechter90]. If solved by
means of a dependency-directed backtrack
algorithm (the variables-as-nodes approach) the
best variable ordering produces 1,234
consistency-checks till finding the solution (but
before exhausting the entire search space). In the
other 4 variable orderings this number varics from
20,000 to 90,000. The solving time was about 2
seconds (Golden Common Lisp 2.1 on IBM/PC
386 running at 25Mhz). We must say that the Lisp
implementation used (an 1986 version) lacks some
features of the Common Lisp standard. No
bit-vectors, intensively used by the CSP solving
system, are here. Bit-vectors were implemented in
Lisp, making the solving time even more
inefficient.

2. The SEND + MORE =MONEY problem. This
rather simple crypto- arithmetic problem implies
8 digit-variables with 10 elements in their domains
and 4 carry variables with 2 elements (0 and 1) in
the domain. There are 4 explicitly stated
constraints of arity 5 and 28 generated non-equal
binary constraints. By eliminating the inclusions, a
number of 11 constraints are removed yielding a
total of 21 remaining constraints. About 12,000
consistency-checks are performed in the

Studies in Informatics and Control,Vol.2,No.2, June 1993

space-filling phase. The solution is reached after
141 decodings, the whole scarch space
explorations end after 219 decodings. The
problem was solved in less than 5 seconds.

3. The 9-card puzzle. Nine cards are given, the
edges of these cards having one of four distinct
colours. Each edge has an associated sign: the
head or the tail of an arrow. The requirecment is to
find an arrangement for the cards (in a 3x3 matrix)
so that all adjacent edges have the same colour and
allarrows are correctly drawn. In terms of CSP, the
problem may be stated as follows: 9 variables
(positions where cards may be placed) with 9
elements (the cards set) in the domain. Therc is a
single distinct - shared - domain. Duc to the
rotations with a 90° step, the cardinality of the
domain increases up to 36. Therc are 48
constraints: 6 horizontal + 6 vertical + 36
non-cqual constraints applied to each position
pair. A number of twelve included constraints is
removed. The constraint space filling consists of
47,000 consistency-checks. The search space is
exhausted after 35,000 decodings (the first solution
isreached after 18,000 decodings. The solving time
was about 23 seconds.

4. A scheduler, The scheduling problem s
defined via an interface function (define-schedule)
allowing specification of activitics, number of time
samples and constraints. An extensible predefined
constraint set was defined; for instance, the
following relations between activitics arc grasped:
Atbefore |alter Aj, Aistarts |ends-during Aj, Ai
duration-is <duration>, Ai before|alter-
start | end-of Aj, Ai overlap [not-overlap Aj a.s.o.
Tests involving a different number of activities and
time samples were performed proving satisfactory
execution times. The application and its results will
be discussed in a future paper.

The four mentioned problems cover (with respect
Lo the constraint net structure) all CSP problem
types: - the scheduling problems have irregular,
weak connected nets; - the zebra problem has a
medium connected and quite irregular one; the
other two problem types imply strongly connected,
highly uniform nets. The system’s responsc was
satisfying in all the cases.

113

5. Integrating the CSP Solving Module
into COPE

A first version of this module implemented the
internal problem constraints as a new type of
constraints in the general constraint representing
and processing system COPE (see the previous
paper on this issue). Experience invalidated this
approach: major problems arose at
value-propagation through the net, in that the CSP
sub-net should have been first identified and only
afterwards solved. A better solution was to
encapsulate the whole CSP into a new COPE type
of constraint, considering the variables of the CSP
as the new constraint’s cells. This approach is also
conceptually sound, given that a CSP may be
assimilated to a constraint with a case- described
propagation that computes the rest of the cells
according to the value propagated into ome of
them. For a CSP connected to other constraint
types into a ‘mixed’ net the propagation algorithm
is as follows: The propagated value is examined; if
itis the special "undefined’ value, the CSP is solved
considering the initial domains of the variables
(cells). This is in fact the general CSP solving case.
In other situations, a test is performed in order to
verify if the propagated value is in the domain of
the specified variable (cell); if not, an error is
anticipated. After this test, the CSP is solved with
the propagated cells’ domain forced to a single
value - the propagated one. After CSP solving, the
values of the calculated cells are propagated into
the net. A flexible mechanism will be implemented
so that the propagation order for the computed
cells should be easily controlled; dealing with
multiple CSP solutions is another aspect to be
taken into account. Note that for mixed nets
containing CSP’s the propagation has to be careful
customized: according to the values propagated
into the CSP meta- constraint and according to the
order of computed cells further propagation, the
CSP and the global net may have a solution or not.
For not abandoning the ideas of the COPE system
the Declare-CSP function (the analog of Declare-
Constraint for the other COPE constraint types)
creates and returns a prototype constraint. So,
generating several instances of a certain problem
and solving them under various environments
become possible. The: Eval option is useful in such

114

cases, making it possible the dynamic
modification of the context within which the CSP
is solved.

6.Conclusions

A new approach to CSP solving, based on pre-
computation of the constraint spaces was proposed.
The method is focused on the problem’s constraints
rather than on its variables. Promising results of
some usual test-problems can be reported. Further
exploration is necessary for identifying new
criteria in structuring the search-space; combining
the presented method with others (consistency
algorithms, for example) in order to obtain larger
flexibility and higher performance. At least two
objections are likely to be raised against our
approach 1. It is a ’brute-force’ method. This is
true, but it proved to be efficient enough, at least
for medium-sized CSPs. 2. It is very space
consuming. Also true, but taking into account the
memory available on nowadays computers (8 or 16
Mbytes being a quite common capacity), we
estimate that fairly large CSPs can be solved using
the presented technique. For example, a binary
constraint over variables with 1,000 elements in
their domain would require less than 128 Kbytes
to keep its space. Considering a memory of 16
Mbytes, it is possible to solve a CSP containing
more than 120 constraints of this size.

Appendix: The Zebra problem.
;3; Domain initialization;
(defconstant HouseList
"(House-1 House-2 House-3 House-4 House-5))

(mapc #’(lambda (house no) (setf (get house
’house-no) no))

HouselList
(12345))

3 Create domains shared by the five clusters of
variables:

(defconstant Domain1 HouseList)

(defconstant Domain2 (copy-list HouseList))
(defconstant Domain3 (copy-list HouseList))
(defconstant Domain4 (copy-list HouseList))

Studies in Informatics and Control,Vol.2.No.2, June 1993

(defconstant Domain5 (copy-list HouseList))
;3; Problem declaration:
(declare-CSP!

Zebra

:Vars&Domains

(((Red Blue Yellow Green Ivory) :On
Domainl

:Eval T)

((Norwegian Ukrainian Englishman
Spaniard Japanese) :On Domain2

:Eval T)

((Coffee Tea Water Milk Orange) :On Domain3
:Eval T)

((Zebra Dog Horse Fox Snails) :On Domain4
:Eval T)

((Old-Gold Parliament Kools Lucky
Chesterfield) :0On Domain5

:Eval T))
:Constraints
((Zconstr1 :on Englishman Red)

(Zconstr2 :on Spaniard Dog)
(Zconstr3 :on Coffee Green)
(Zconstr4 :on Ukrainian Tea)
(ZconstrS :on Ivory Green)
(Zconstr6 :on Old-Gold Snails)
(Zconstr7 :on Kools Yellow)
(Zconstr8 :on Milk)
(Zconstr9 :on Norwegian)
(Zconstr10 :on Chesterficld Fox)
(Zconstr11 :on Kools Horse)
(Zconstr12 :on Lucky Orange)
(Zconstr13 :on Japanese Parliament)
(Zconstr14 :on Norwegian Blue))

:Solutions :All

‘Trace T

:TestSameDomains T)

;3 Some mnemonics:

Studies in Informatics and Control,Vol.2,No.2, June 1993

(defmacro SameHouse (varl var2)
‘(eq ,varl ,var2))
(defun NextHouse (h1 h2)
(= (get h2 ’house-no)
(1+ (get hi ’house-no))))
(defun NearHouses (h1 h2)
(let ((o1 (get h1 ’house-no))
(02 (get h2 *house-no)))
(or (= o1 (1+ 02))
(= 02 (1+ oD)))
;53 Constraints:

(defun Zconstrl (Engl Red) (SameHouse Engl
Red))

(defun Zconstr2 (Spaniard Dog) (SameHousc
Spaniard Dog))

(defun Zconstr3 (Coffee Grecn) (SameHouse
Coffee Green))

(defun Zconstr4 (Ukrain Tea) (SameHouse
Ukrain Tea))

(defun Zconstr5 (Ivory Green) (NextHouse Ivory
Green))

(defun Zconstr6 (OldGold Snails) (SameHouse
OldGold Snails))

(defun Zconstr7 (Kools Yellow) (SameHouse
Kools Yellow))

(defun Zconstr8 (Milk) (Eq Milk *'House-3))

(defun Zconstr9 (Norwegian) (Eq Norwegian
"House-1))

(defun Zconstr10 (Chesterfld Fox) (NearHouses
Chesterfld Fox))

(defun Zconstrll (Kools Horse) (NearHouses
Kools Horse))

(defun Zconstr12 (Lucky Orange) (SameHouse
Lucky Orange))

(defun Zconstr13 (Jap Parliament) (SameHouse
Jap Parliament))

(defun Zconstr14 (Norwegian Blue) (NearHouses
Norwegian Blue))

115

REFERENCES

DECHTER, R., Enhancements Schemes for
Constraint Processing: Backjumping, Learning,
and Cutset Decomposition, ARTIFICIAL
INTELLIGENCE, 41, 1989/90, pp. 273-312.

DE KLEER, J., An Assumption-Based TMS,
ARTIFICIAL INTELLIGENCE, 28,1986, pp.
127-162.

DE KLEER, J., Problem Solving with the ATMS,
ARTIFICIAL INTELLIGENCE, 28,1986, pp.
197-224.

DECHTER, R. and PEARL, J., The Anatomy of
Easy Problems: A Constraint- Satisfaction
Formulation, Proceedings of ITCAI 85, 1985, pp.
1066-1072.

DOYLE, J., A Truth Maintenance System,
ARTIFICIAL INTELLIGENCE, 12, 1979.

FOX, M., ALLEN, B. and STROHM, G.,
Job-shop Scheduling: An Investigation in
Constraint-Directed Reasoning, Proceedings of the
sccond Confercnce of the AAAI Pittsburgh,
PA. 1982,

FOX, M., Constraint Directed Search: A Case
Study Of Job-shop Scheduling, Technical Report,
CMU-RI-TR-83-22, Univ. Carncgie-Mecllon,
1983,

FREUDER, E.C., Backtrack-free and
Backtrack-bounded Search, in L. Kanal and V.
Kumar (Eds.) Scarch in Artificial Intelligence,
SPRINGER-VERLAG, 1988, pp. 343-369.

FREUDER, E.C. and QUINN, M.J., Taking
Advantage Of Stable Sets Of Variables In
Constraint Satisfaction Problems, Proceedings of
LICAI 85, 1985, pp. 1076-1078.

FOX, M., SADEH, N. and BAYKAN, C,

Constrained Heuristic Search, Proceedings of
IICAIR9, Detroit, Ohio,1989.

MOTT, D. H., CUNNINGHAM, 1],
KELLEHER, G. and GADSDEN, J. A,
Constraint-based Reasoning For Generating
Naval Flying Programmes, EXPERT SYSTEMS,
Vol. 5, No. 3, August 1988,pp. 226- 246.

MACWORTH, A. K. and FREUDER, E. C,, The
Complexity Of Some Polynomial Network
Consistency Algorithms For Constraint

116

Satisfaction Problems, ARTIFICIAL
INTELLIGENCE, 25,1985, pp. 65-74.

NADEL, B.A., Tree Search And Arc Consistency
in Constraint Satisfaction Algorithms, in L. Kanal
and V. Kumar (Eds.) Search in Artificial
Intelligence, SPRINGER-VERLAG, 1988, pp.
287-342.

ROSIERS, W. and BMYNOOGHE, M.,
Empirical Study of Some Constraint Satisfaction
Algorithms, in Ph. Jorrand and V. Sgurev (Eds.)
Artificial Intelligence II: Methodology, Systems,
Applications, NORTH HOLLAND, 1987, pp.
173-180.

STEFIK, M., Planning with Constraints (Molgen:
Partl), ARTIFICIAL INTELLIGENCE,
16.1981, pp. 111-140.

SUSSMAN, G. J. and STEELE, G. L.,
CONSTRAINTS - A Language for Expressing
Almost-Hierarchical Descriptions, ARTIFICIAL
INTELLIGENCE, 14,1980, pp. 1-39.

BERLINER, H. and GOETSCH, G., A Study of
Search Methods: the Effect of Constraint

Satisfaction and Adventurousness, Proceedings
of ITCAI, 1985.

GUESGEN, H.W. and HERTZBERG, J,, Some
Fundamental Properties of Local Constraint
Propagation, Arbeitspapiere der GMD, April
1988.

GUESGEN, H.W., Connectionist Networks for
Constraints Satisfaction, Arbeitspapiere der
GMD, January 1991.

GUESGEN, H.W. and HERTZBERG, J., Local
Propagation in Networks of Filtering

Constraints, Arbeitspapiere der GMD, January
1988.

MONTANARI, U. and ROSS], F., Constraint
Relaxation May Be Perfect, ARTIFICIAL
INTELLIGENCE, 48,1991.

WALTZ, D.L., Generating Semantic
Descriptions from Drawings of Scenes with
Shadows, Technical Report, MIT, Cambridge,
MA., 1972.

MACWORTH, A K., Consistency in Networks of
Relations, ARTIFICIAL INTELLIGENCE,
8,1977.

Studies in Informatics and Control,Vol.2,No.2, June 1993

