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Abstract:Knowledge-based problem-solving comprises two
processes, modelling and programming. Current Al languages
and environments support only the programming process.
Next generation languages and environments will have to
support the intellectually challenging modelling component in
the first place. On the road toward knowledge level modeling
environments able to assist the full range of modelling
activities involved in problem-solving, the first goal to be
achieved is the design of a language for representing problem
solving models at the knowledge level. This paper describes
MODEL, an enhanced term classification language in the
KLONE family which extends classification technology to
allow the description of the domain, inference, task and
strategic levels knowledge based problem-solving models are
composed of. The paper gives a detailed account of the
language and illustrates it with an encompassing analysis of the
problem-solving and knowledge acquisition components of
SALT, a well-known generic problem-solving model for
constructive tasks.

Keywords: knowledge acquisition, knowledge modelling, term
classification languages, generic problem-solving models,
knowledge processing mechanisms, ontological analysis,
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1. Introduction

Most people would probably agree that computer
based problem-solving has two major components.
The first is a modelling stage in which the goals,
the required knowledge and the mechanisms
which bring it to bear are identified and articulated
in a model of the problem-solving process. The
second is the programming process which
encodes these elements as programs and data
structures to be fed to a computer. In the realm of
expert systems these stages have been termed
knowledge level analysis and symbol level
encoding [Newell 81].
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According to this view, modelling is the
"intellectual", creative side while programming is a
tiresome and routine activity. In consequence,
most people would also agree that automating
programming as much as possible while
supporting modelling through effective methods
and tools is a worthwhile research goal for both
software and knowledge engineering.

The current picture is different from such an ideal.
Existing methods and tools have been developed
almost exclusively for the programming side. We
can count here many representation and inference
methods supported by programming languages,
shells or environments. Methods for knowledge
acquisition and expert system construction at the
knowledge level however, have just begun to be
studied. Relevant examples include KADS
[Breuker and Wielinga 87], role-limiting methods
[McDermott 88], generic task [Chandrasekaran
87), inference structures [Clancey 85]. Very few
tools supporting them exist but more are under
research and development [Klinker et al 90].

Given this state of affairs, we have embarked on a
research project aimed at constructing a new
brand of knowledge engineering environment
called "knowledge level modelling environment"
(KLME). Unlike existing programming
environments like KEE [Fickes and Kehler 85] or
KnowledgeCraft [Wright and Fox 84] which
provide exclusively symbol level languages and
tools, KLME-s are devoted to supporting the
whole range of knowledge level modelling
activities. The programming activity is only one of
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the problems addressed in a KLME. The most
important component of a KLME is a knowledge
modelling language able to describe knowledge
level problem solving models. We have designed
and implemented such a language as a major
extension of terminological languages in the
KLONE family. Its presentation is the focus of this
paper.

Specifically, Section 2 of the paper describes the
context of our research by reviewing a number of
important issues in KL modelling, describing the
structure of a KL model and presenting the
functional architecture of the KLME we are
building. Section 3 presents the MODEL language
in detail. It discusses the terminological,
assertional and refinement services of the
language as well as the extensions we brought to
make the language a substrate, or carrier, for the
tools of a KLME. Section 4 attempts to prove that
the language can be used for formalizing KL
problem-solving models by providing a detailed
analysis of the SALT [Marcus and McDermott 89]
problem-solving and knowledge acquisition
mechanisms. The analysis is carried out according
to the KADS layered approach, showing how
inference, task and strategic knowledge can be
described in the proposed formalism.

2. Issues in KL Modelling

To place the MODEL language in a proper
perspective we first discuss three important issues
for knowledge level modelling: what are KL
problem-solving models and how are they
structured, why is it important to formalize these
models and what services should a KLME provide.

2.1 What’s in a Model?

A problem-solving model embodies a specific
problem-solving method suitable to a specific
problem type. This method defines the different
knowledge types playing relevant rolesin problem-
solving. The method identifies generic and
instantiated concepts and behaviours. The method
should be enough abstract to warrant its
applicability to problems of a given type and
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enough specific to rely on well-delimited
knowledge types and roles.

Recently, several modelling styles have been
proposed making specific distinctions along the
above lines. KADS proposes a layered framework
distinguishing among domain, inference, task and
strategy layers. Role limiting methods
[McDermott 88] build models using a few carefully
selected knowledge roles identified in a problem
class. Generic tasks [Chandrasekaran 87] build
models from functional units packaging specific
representation and control mechanisms. Program
components [Klinker et al 90] implement the
role-limiting approach by constructing and
assembling "usable and reusable' knowledge
processing mechanisms according to a perceived
decomposition of the application. Finally,
components of expertise [Steels 90] suggest a
modular framework for system construction
stressing pragmatic constraints on the task. All
these approaches provide a notion of separately
described components which are assembled in a
problem solving-system.

2.2 Formalized Models

The formalization of problem-solving models has
drawn only limited attention up to date.
Nevertheless, it is a very important issue, some of
reasons being the following,

1. Formalization makes models clear and
understandable due to the declarative semantics it
imposes. We believe that procedural semantics of
the "look in the interpreter’s code" type is
unacceptable for describing KL models. On the
other hand, efficient heuristic implementations of
models must be accommodated.

2. Formalization makes it possible to consistently
create new models by modifying, extending and
combining existing ones.

3. Formalization makes it possible to develop
life-cycle support tools applicable to all models
expressible in the formal modelling language. Such
tools provide essential support for model-driven
knowledge acquisition, model maintenance,
model integration and combination, model
validation and verification, model explanation, etc.
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4. Formalization helps automate the shell
generation process, that is the production of an
efficient programming shell supporting knowledge
acquisition and problem solving according to a
given model.

5. Formalizations which are also operational
(simulable) make knowledge level debugging
possible and in general help ensuring correctness
in the initial phases of modelling.

If formalization is desirable, what formalisms are
appropriate for KL modelling? Some of the
solutions proposed up to now are:

(a) Procedural encoding of components and some
network formalism for describing assemblies, as in
the program components approach of [Klinker et
al 90], object-oriented encodings as made for the
KADS method by languages like MODEL-K
[Karbach et al 91], OMOS [Linster 92] or more
recently MOMO [Walther et al 92].

(b) Logic oriented languages such as algebraic
specifications in ontological analysis [ Alexander et
al 86], order sorted logic and dynamic logic as in
(ML)?[Akkermans et al 90, vanHarmelen et al 92],
combinations of logic and algebraic specifications
as in VITAL-CML [Jonker and Spee 92, first
order logic with procedural mechanisms [Wetter
90] or Horn logic as in KARL [Fensel, Angele and
Landes 90].

New Model

(c) Well-defined representation languages like
terminological languages used by [Gaines 90,
[Abrett and Burstein 88] and [Barbuceanu 91] or
more hybrid frame languages like in [Skuce,
Shenkang and Beauville 89].

Our choice - an enhanced terminological
language-will be explained and motivated in Section 3.

2.3 Toward a Solution: Knowledge Level
Modelling Environments

Given the broad research programme related to
knowledge level modelling, we note that to date
progress has been made especially in defining and
structuring the content of KL models. Our belief
is that in order to get to a practical KL modelling
environment we must also solve the formalization
problem as well.

We call knowledge level modelling environments
knowledge engineering environments able to
formally describe problem-solving models and to
support the major activities related to the acquisition,
use and evolution of these models. We consider that
KLME-s should not be biased towards any of the
existing modelling styles. On the contrary, by
providing a general modelling language KLME-s
should accommodate any existing modelling style
and also encourage their experimentation,
evaluation, integration and evolution.

Retrieve,

Combine, Rause//\

Model Base

Maintenance,
Customization

Construction

Knowledge Level Description
Problem H of Problem - Solving Model
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Figure 1. Components and activities in KLME-s
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Figure 1 shows our current view of the components
and activities of a KLME. Given a specific
problem or problem type, model construction
tools will help produce a model appropriate to the
specific problem/context/domain requirements.
This can be done in several ways such as retrieving a
model from the model base, modifying an existing
model, combining existing models or building up
a brand new model. Each of these possibilities
can be supported by specific tools. Case based
reasoning could be used for retrieving models
based on features of the problem, direct
knowledge editing or tools based on
psychological theories (e.g. repertory grids or
concept maps) could be used to build new
models. A very important service is shell
generation. This transforms a conceptual model
into an efficient programming shell having
components for knowledge acquisition,
inference, explanation, etc. The shell should be
compiled into existing languages (e¢.g. KEE,
CLOS, OPS5, C+ +) to ensure efficiency and
portability. Another facility of the KLME is
model base management. Issues of indexing and
feature-based retrieval must be solved here. For
better retrieval, models could be related to more
general ontologies describing domains and
problem types. Other activities supported include
model interpretation (or simulation) useful for
designing, debugging and validating models, model
verification and validation, model maintenance and
model explanation.

3. The Model Language

A programming language used in a programming
environment is essentially a means for a human to
communicate commands to a computer. A
modelling language used in a KLME must be a
means of communicating knowledge among
humans. This places specific demands on the
modelling language to be described next.

3.1 Requirements for the Modelling Language
Given the above distinction and the nature of

problem-solving models we can state the following
requirements for the modelling language.
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1. Well-defined, declarative semantics. This stems
from the need of clarity and uniformity in
describing models.

2. Ability to describe both static - e.g. concepts and
relations - and dynamic - actions or behaviours -
components, Actions and behaviours are required
not only for describing domain knowledge but also
for expressing control in problem-solving models.

3. Capabilities for representing both generic and
non-generic components.

4, Strong organizational capabilities for
representing domain and problem-solving
ontologies. This is part of the veryidea of a general
modelling environment.

5. Operational character allowing models to be
mechanically interpreted. This allows models to be
run without being compiled, allowing knowledge
level design, debugging, enhancement and
validation.

Terminological languages in the KLONE
[Brachman and Schmolze 85] family, such as
LOOM [McGregor and Bates 87] BACK [Luck et
al 87] KL-TWO [Vilain 85] or recently CLASSIC
[Brachman et al], are a tempting choice for the
modelling language. Their semantics is formally
defined and implementing algorithms has been
analysed for complexity([Brachman and Levesque
84][Nebel 88],etc). They provide general
representational services (completion,
classification, recognition) and presently
accommodate rules, dependency management
and query services. With extensions to be
discussed later on, classification technology can
represent and simulate control and behaviour in
various ways, including KADS- like layered
models which may at first sight seem awkward to
model.

3.2 . Overview of the Language

The MODEL language integrates standard
features of terminological languages - completion,
classification, recognition - with recent additions -
rules and patterns - and with its own enhancements
- methods, constraints and refinement. MODEL is
the only terminological language which supports a
second interpretation of descriptions, besides the
usual meaning as intensional specifications
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representing classes of objects. This second
meaning is that of plans which specify how one can
construct objects with a given structure. In
MODEL this interpretation is supported by the
refinement service useful, among others, for
knowledge elicitation.

3.2.1 Concepts, Roles and Instances

MODEL is object centred in that it concentrates
on describing, organizing and manipulating classes
of objects in the domain of discourse. There are
three kinds of formal entities in MODEL:

Concepts, which are complex aggregates
composed of a limited set of description-forming
operators. Concepts correspond to one- place
predicates being applied to one individual object
at a time.

Roles, which describe properties of or relations
among objects. Roles correspond to two-place
predicates and thus relate two individual objects
at a time, one of them belonging to the domain of
the role and the other to its range.

Instances, which directly represent objects in the
domain of interest. Instances satisfy concepts (e.g.
John is a Person) and have roles filled with
instances of other concepts (e.g. John is
married-to Mary).

<concept definition > (concept < concept
name > [:primitive]

(:and <concept> *)

[ <annotations >

[ <methods >

< concept >— < concept name >

(-and <concept> *)

(:all <role name> < concept > )

(:the <role name> < concept> )

(:some <role name > < concept >)

(:atleast < positive integer> < role name .
(:atmost < non negative integer > <role name >)
(:same (<role name > *)(<role name > )

(-oneof < constant> *)
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< annotations >—» < annotation> +

<annotation>->(:has<role
name > ( < annotation name > < constant > *) +)

(iself (< annotation name > < constant > *) )
< annotation name >—» < symbol >
<methods >— <method > +

<method>->(:method<role
name > (< message > < method expr > *)+)

(:method self (<message> <method
expr>)*)*)
< message > < symbol >

< method expr > < symbol > | < Common LISP
expr >
< constant >-» < Common LISP constant >

Note: (:the R C) = 4 . (:and (:all R C)(:atleast 1
R)(:atmost 1 R))

(:some R C) =4 ; (:and(:all R C)(:atleast 1
R))

a - syntax of concepls

<role definition > —(role <role name >
(:and <role name > *)

(:domain < concept >)

(:range < concept>)

(sinverse <role name > ))

b - syntax of roles

<instance >->(instance <instance name >
< concept >)

(fills <role name> <instance name >
<constant > )

<instance name >—> < symbol >

¢ - syntax of asserting instances

Legend:
* = atleast one occurence
[..] = optional element

Figure 2. Syntax of MODEL Entities

The syntax of concepts, roles and instances is
shown in Figure 2. Concept definition (Figure 2-a)
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has four main sections. The first is the structured
definition of the concept, that is a conjunction of
terms formed with a vocabulary of descriptors
shared by several terminological languages.
Among these descriptors we mention the
following. The :all descriptor restricts the concept
type of role fillers, :atleast and :atmost restrict the
cardinality of the filler set, :same imposes equality
of fillers found by the following two role chains,
and :oneof specifies a concept as a choice from an
enumerated set of individuals.

The last two sections contain enhancements
specific to MODEL. The methods section extends
MODEL with method attachment and message
passing mechanism in a manner common to
object-oriented languages. Methods can be
attached to each role in part or to the concept
(self) as a whole. Assume that I is an instance of
concept C, C has an Rrole and both R and c have a
simulate method. MODEL allows simulate
messages to be sent to I or to its R role according
to the following patterns:

(i) (simulate I argument,..argument :control
Control-fn)

- Message sent to 1

ii) (simulate I R argument,...argument  :control
g 1--argu n
Control-fn)

- Message sent to the Rrole of I

Here, the :control argument holds a function
which will combine the methods found under the
simulate message type. Because a concept is a
conjunction of terms possibly inherited from other
concepts, methods placed on roles and on the
concept are also inherited according to a simple
scheme: all methods from super concepts are
accumulated in a set associated with the message
type. The :control argument is used to combine
these methods in user specified ways. This scheme
also provides demon methods by means of special
message names composed of a prefix - before, after
and when - giving the moment of activation and a
suffix - e.g assertion, retraction - giving the
situation of activation.

The annotations section holds meta-information
about the concept. Meta-information may be
specified for each role in part (the :has operator)
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or for the concept as a whole (the :self operator).
The meta-information is structured in an
annotation-values format as shown in the syntax.
Values of each annotation are also inherited. As in
CLASSIC, it is possible to specify a predicate
which will check whether a host language object
belongs to a concept. This is done using a special
test method.

Finally, MODEL concepts can be primitive or
defined. Defined concepts contain necessary and
sufficient conditions for an individual to be
recognized as belonging to the concept. Primitive
concepts contain only necessary conditions and
thus are not fully specified. Several primitive
concepts can be explicitly declared as being
disjoint. This ensures that there will be no
individuals "shared" by such concepts.

3.2.2 Patterns and Rules

Terminological languages generally do not allow
arbitrary computations to be carried out. Patterns
and rules are assertion-time extensions which
permit this.

Patterns are conjunctions formed by instance
asserting expressions (Figure 2-c) where instance
names and role fillers can also be variables. Figure
3-a shows the syntax of patterns, Figure 3-b the
syntax of rules and Figure 3-c a rule example.
Patterns appearing in the left hand side of rules are
instantiated by existing instances retrieved by the
rule system. Patterns in the right hand side of arule
represent instances to be asserted once the
variables are bound. Thus, the rule in Figure 3-¢
asserts an instance of the Working-family concept
for each male ?h and female ?w who are employed
and married to each other. Rules conditions may
involve besides a conjunctive pattern an arbitrary
predicate. Rules belong to rule sets which can be
manipulated (loaded, executed, etc) individually.
Rules and patterns are implemented through a
RETE network. Like in CLASP [Yen, Juang and
McGregor 91] they allow arbitrary forward driven
computations to be performed.

< pattern>—(;and <element>*)

<element>->(instance < pattern
object > < concept name >)
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(fills <role name> < pattern object> < pattern
object >)

< pattern object >—»> <variable > | < constant >

a - pattern syntax

<rule definition>->(rule <rule name> :in
<rule set name >

< pattern>

(:if < predicate>)

(:do <action>))

b - nule syntax

(rule Assert-working-family :in Rule-set-007
(:and (instance ?h (:and Employee Male

Married))

(fills salary 7h ?h-s)

(fills married-to ?h ?w)

(instance ?w (:and Employee Female Marricd))

(fills salary ?w ?w-s)

(fills married-to 7h))

(:do (instance wf-0077 Working-family)

(fills husband wf-0077 ?h)

(fills wife wf-0077 ?w)

(fills family-income wf-0077 (+ ?h-s ?w-s))))

c-rule example

Figure 3. Syntax of Patterns and Rules

3.2.3 Constraints

Constraints represent a programming paradigm
useful for solving search problems [Stecle and
Sussman 80], [Kanal and Kumar 88). MODEL is
currently the only language integrating term
classification with constraint propagation. As the
constraint mechanism employed is rather
sophisticated [Trausan, Barbuceanu and
Ghiculete 92], only its major lines will be reviewed
here.

In principle, a constraint is a predicate among
given variables. The domains of variables can be
discrete or continuous sets. Solving a constraint
satisfaction problem means finding an assignment
of values to the variables such that all constraints
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are satisfied. Many algorithms for solving such
problems have been reported [Davis 87].
Constraints have important applications in
planning [Stefik 81], scheduling [Fox 83], [Mott et
al 88], model based design [Murtagh and Shimura
90], etc.

Due to their declarative character and
well-defined semantics, constraints deserve a
place in a knowledge level modelling environment
and can bring new problem-solving capabilities to
a terminological language. As a simple example of
what can be done with constraints and cannot be
done otherwise, consider the concepts in
Figure 4-a. It would be nice if we were able to
state that in any instance of working-family the
family-income is equal to the sum of the salaries of
the husband and wife and if we could make sure
that whenever two of these values are known the
third gets automatically computed and asserted as
well. There is however no way to declaratively state
and enforce this in current terminological
languages. With an explicit constraint language of
the kind provided in MODEL this becomes easy.
One simply loads the library constraint shown in
(concept working-family

(:and (:the husband employee)

(:the wife employee)

(:the family-income real-number)))

(concept employee

(:and (:the employer company)

(:the salary real-number)))

a - concepts

(constraint sum

(:parameters (N))

(:variables ((input 1 n) sum))

(:cases ((sum-unknown (and (unknown sum)
(all-known (input 1 N))))
(one-input-unknown (and (known sum)
(one-unknown (input 1 N))))
(all-known-ok (and (known sum)
(all-known (input 1 N))

(= sum (compute-sum (input 1 N)))))
(all-known-err (and (known sum)
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(all-known (input 1 n))

(not (= sum (compute-sum (input 1 N))))))))
(zactions ((all-known-ok do-nothing)
(all-known-err (error "inconsistent sum"))
(sum-unknown (assign sum (compute-sum (input
1N)))

(one-input-unknown (assign (the-unknown (input
1N))

(- sum (compute-sum (the-known (input 1
N

b - constraint definition

(constraints S-2

(:constraint (sum (N 2)}))

(:and (instance ?f working-family)
(fills husband ?f 7h)

(fills wife ?f 7w)

(fills family-income ?f ?income)
(fills salary ?h ?h-salary)

(fills salary ?w ?w-salary))
(:mapping (?income sum)
(7h-salary (input 1))

(?w-salary (input 2)))

(:actions ((all-known-err (error "inconsistent
income for family ~ §" ?f)))))

¢ - constraint instantiation and installation

Figure 4. Constraint Definition and Usage

Figure 4-b, instantiates it with two inputs (Sum
works with any number of inputs) and installs the
instance to watch over instances of the working-
family concept. Figure 4-b shows the MODEL
representation of the general Sum constraint and
Figure 4-c the MODEL construct which
simultaneously instantiates Sum for two inputs and
connects it through a conjunctive pattern to the
individuals it controls.

The MODEL scheme of specifying constraints has
some specific features illustrated in Figure 4-b.
Constraints can be parameterized allowing a
variable number of variables and components. The
constraint itself is represented as a bundle of rules
or "cases", each case having a name, a predicate
and an action. Cases allow clear specification of
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local propagations and, as shown in a next section,
of computations outside constraints as well. Not
shown in the example is another feature allowing
constraints to be defined by connecting lower level
constraints. These features make constraint
specification more understandable and facilitate
maintenance.

The instantiation and installation of constraints
consist in creating an instance (S-2 in Figure 4-c)
associating a pattern which detects the individuals
to whom the constraint applies and specifying the
correspondence between constraint variables and
these individuals. As shown in Figure 4-c, it is also
possible to add actions overriding those provided
in the constraint definition.

3.3 Terminological and Assertional Services

MODEL terminological services are related to the
construction of conceptual taxonomies.
Assertional services handle the creation,
modification and retraction of individuals - objects
described by concepts but which cannot be further
instantiated.

As MODEL also supports the meaning of
concepts as plans, MODEL provides an additional
refinement service which builds an individual by
instantiating the "plan" contained in its concept.
This service is usable at assertion time, hence can
be considered an assertional service. We will treat
it separately however, due to its novelty in the
context of terminological langnage mechanisms.

MODEL terminological services include:

(i) Completion - a process which puts a concept in
its "complete" form. This form contains all
inherited features, unifies descriptions of multiply
inherited roles, checks consistency of unified
descriptions and of the concept as a whole.

(ii) Subsumption checking. A concept a subsumes
a concept b iff all individuals described by b are
also described by a. The set of individuals
described by a concept is called the extension of
the concept. Terminological languages admit
axiomatic specifications of their semantics, which
helps prove properties of the language such as the
relation between expressive power and complexity
of the subsumption algorithm [Brachman and
Levesque 84]. Considering results such as [Nebel
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88], subsumption in MODEL is CO-NP hard due
to the existence of subroles and cardinality
restrictions. Our implementation is however
complete, covering the expensive cases as well.

(iii) Classification. This is the process of
determining the most specific subsumers and the
most general subsumees of a concept. Classification
is implemented essentially as a network traversal
process doing subsumption checking among
relevant pairs of concepts. MODEL concept
bases are built in two phases. In the first,
concepts are acquired and/or edited with
minimal checks from the system. In the second,
concepts are put in the complete form and
classified. We also note that terminological

ition wn § T
precondition
/ operator \
name

labla-name name

Data lookup
cqumn-We

name

services do not take into consideration rules,
implications and constraints.

Concerning assertional services, MODEL
provides an assertion language for creating
instances and filling their roles, a query language
for retrieval and a retraction language for
removing fillers and instances. Boolean constraint
propagation [McAllester 90] is used for keeping
dependencies and handling retractions.

Implications, rules and constraints are considered
by the assertional services. Whenever an individual
is recognized as belonging to a concept, the
implication rule is applied and its consequent
concept is asserted of the individual,

Patterns are held in a RETE network which keeps
track of the tuples matching each pattern. When
such tuples come into existence rules and installed
constraints (Figure 4-c) whose patterns are
satisfied by the tuples are executed.
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3.4 The Refinement Service

Descriptions can also be seen as plans for constructing
structured objects. As this view is useful in the
modelling framework for supporting knowledge
acquisition and compilation services, MODEL offers
a special refinement machinery to be described next.

3.4.1 Descriptions as Plaus

Letus consider a piece of domain knowledge taken
from the SALT [Marcus and McDermott 89]
system. In certain case SALT uses
database-lookup procedures to determine values
for design variables. A database-lookup
procedure specifies a table to look into, a column

operand

name

where the needed value can be found, a number of tests
performed on entries belonging to other columns to
determine viable candidate values and an ordering
scheme consisting of an ordering column and an
ordering criterion for ranking candidates. The general
scheme of such a procedure can be described as a
MODEL concept as shown in Figure 5-a.

(concept Database-lookup

(:and Procedure

(:the precondition Condition)

(:the table-name Name)

(:the column-with-needed-value Name)

(-all parameter-test Condition)

(:the ordering-column Name)

(:the optional (:oneof minimum maximum))))

a - The concept
b - Fragment of the equivalent goal tree

Figure 5. Database-lookup
Concept and its Goal Tree
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A plan interpretation of this description should
be read like this: "to construct a Database-lookup
procedure one has to define a precondition,
specify the name of a data table and the column
where the value can be found, define a set of tests
and specify the ordering column together with the
ordering criterion". In other words, the description
supplies the equivalent of a goal tree where the
concept is the top goal and the roles represent
subgoals, as in Figure 5-b.

The component descriptions supply additional
information about the corresponding subgoal.
Cardinality restrictions specify limits to the number
of times a goal must be achieved - e.g. only one
precondition but possibly more than one parameter
tests. Role chains specify that one goal’s instantiation
should also be used as other goal’s instantiation.

In order to carry out the plans represented by
descriptions a collection of planning operators
must also be specified. These operators will carry
out actions to instantiate goals. Possible operators
in the above example include prompting the user
for values, recursive goal expansion into subgoals,
knowledge based selection from alternatives or
search for instances or subsumee concepts.

To summarize, descriptions formed with
concept-forming constructs can be viewed as goal trees
which a planning process can use to build instances of
concepts. The process of building instances of a
concept is called refinement and the MODEL service
for this is the refinement service or R-box.

3.4.2 The MODEL R-box

The R-box is a general-purpose agenda problem
solver. Each concept to be refined is placed as a
goal on the agenda and each of its refinable roles
is placed as subgoal.

Figure 6-a describes the basic loop of the
refinement system mentioning some of the options
it has at each step. Users can program the R-box
in two ways. The first is by defining refinement
rules - with the MODEL rule language - as
illustrated in Figure 6-b. The second is to use
annotations on the concepts. Annotations contain
mecta-information used by the refinement process,
as shown in Figure 6-c.

Basic Loop of the Refinement Process
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1. Determine number of instances of concept to be
refined. Can be done by

-~ prompting the user
— applying a rule

— applying a knowledge based method attached
to concept.

2. Determine basic refinement mode: interactive
prompting, search or recursive expansion. Can be
done by

— prompting the user
- applying a rule
- reading an annotation

3. Carry out concept refinement according to the
determined refinement mode (step 2) as many
times as determined at step 1.

3.1 If refinement mode is interactive prompting, then
— determine a screen configuration
— carry out prompting for each role

3.2 If refinement mode is search, then use

— either ageneral search procedure to retrieve
an instance or subsumed concept

— or a specially tuned search method attached
to concept or role

3.3 If refinement mode is recursive expansion then

- create subgoals for refinable roles

— use a special annotation to specify the order of
handling subgoals

a - basic control loop of the refinement process

(rule Refinement-Rule-007 :in Procedure
AcquisitionRuleSet

(:and (instance ?g RBox-goal)

(instance ?7g Database-lookup)

(fills Table-name ?g Machine))

(:if (unknown $Refinement-mode))

(:do

(assign 7g $Refinement-mode ‘interactive-prompting)
(assign ?g $Screen-format

(get-annotation ?g ’screen-format))))

b - Refinement rule example

(concept Database-lookup
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(:and ...)
(:self (refinement-mode ‘interactive-prompting)
(screen-format ’role-prompting-box)))

¢ - Use of refinement annotation

Figure 6. The Refinement Process and its
Programming

The rule in Figure 6-b states that any
Database-lookup procedure which searches the
Machine table must be acquired through
interactive prompting. An annotation placed on
the concept tells the R-box what screen
configuration to use for this prompting, and
information s transferred to the R-box by the rule.
In Figure 6-c the same refinement mechanism is
used, but without any rule. Relevant information is
placed on the concept as annotations directly used
by the R-box.

The refinement process works in a forward driven
manner. A goal has attributes for the control
information needed to carry it out - e.g. the
refinement mode or subgoal ordering. This
information is supplied by rules, methods or
annotations. A goal is ready for processing when
all requested information becomes available. At
each cycle, the refinement processor executes the
first ready goal from the agenda.

3.4.3. Using the Refinement Service

We presently see three major directions in which
refinement is useful for knowledge level
modelling.

The first is as a mechanism for prototyping
knowledge acquisition scenarios. In the MODEL
framework domain knowledge bases consist of
instances of MODEL concepts. For example, in a
SALT system represented in MODEL,
Database-lookup procedures will appear as
instances of the concept shown in Figure 5. With
the refinement service one can program various
model driven knowledge elicitation strategies of
the kind illustrated by PROTEGE [Musen 89).
The example in Figure 6 is illustrative for
programming a knowledge elicitation session as
well. Constraints can also be employed at
knowledge acquisition time to validate entered
knowledge and to infer consequences of it.
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Acquisition strategies can be encoded in rule sets
and used or reused for rapid prototyping of
models. More on these issues will be presented in
the next Section.

The second use of refinement is in the process of
compiling target shells from KL models.
Refinement is useful here for compiling
procedures described in the terminological
language into another language. This is based on
the fact that refinement traverses recursively a tree
of concepts and can assemble code during this
traversal.

Finally, refinement is also useful as a general
problem-solving method. We have implemented
and reported several versions of the incremental
refinement idea embodied in the refinement
service. One version was in the context of object-
oriented representations [Barbuceanu, Trausan
and Molnar 90] and another was defined for a
more general description language [Barbuceanu,
Trausan and Molnar 87,89]. We have shown that
these refinement mechanisms are usable as
generic problem-solving models especially for
synthesis tasks like design [Barbuceanu 85]. In
[Barbuceanu 86] we show the use of refinement in
describing and compiling program components.

3.5 Modelling Control and Behaviour

While it is clear that terminological languages are
suitable for representing "static domain
knowledge”, one may wonder whether control and
behaviour can be represented equally well. In this
Section we show that this is entirely possible.
Representing such knowledge is a prerequisite to
using a terminological language for KL modelling.

First, a lot of domain knowledge is about "how to
do" something, as is the case with the piece of
knowledge in Figure 5 which is about how to look
for a value in a relational table. Second, all
modelling styles use abstract control schemes in
their problem-solving methods. The fact that some
approaches view control schemes as strongly
related to the domain representation - e.g. generic
task - while others think of them as independent -
like - KADS - only places demands on the
flexibility of the needed mechanisms, if one wants
to accommodate all these modelling styles.
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Another requirement comes from the layered
control architecture of KADS which separates
domain, inference, task and strategy levels.

Control schemes and behaviours - generally called
actions - must be represented in the terminological
language in a way that meets four basic
requirements:

1. Actions must be represented as concepts with
their relevant features represented as roles.

2. There must exist a way to interpret actions.

3. There must exist a way to compile actions into
usual "procedural” languages.

4, The interpretation and compilation mechanisms
must directly use the represented features of
actions. Modification of action roles should
directly reflect in their compiled and interpreted
behaviour.

These conditions ensure that actions can be
classified as any other concept, that models built
with them can be made operational and that
terminological maintenance and modification of
their feature will reflect in their actual behaviour.

3.5.1 The Basic Action Representation

Actions are represented as concepts with roles
describing their relevant features. A good example
is the Database-lookup procedure in Figure 5. We
have called elsewhere [Barbuceanu, Trausan and
Molnar 87] such representations semantic as they
exhibit the meaning of the action through semantic
relations. Another example is shown in Figure 7-a
which presents another SALT inspired piece of
procedural knowledge for determining constraints
on a design variable (the term constraint in this
example is different from the MODEL constraints
previously discussed). Figure 7-b shows part of a
possible terminology involving SALT constraints.

(Concept FormulaCalculationConstraint
(:and Conpstraint
(:the constrained-value Variable)

(:the constraint-type (:oneof Minimum
Maximum))

(:the precondition Condition)
(:the procedure Calculation)

(:the formula Formula)))

a - Procedure concept for determining a constraint

Procedure

Constraint

FormulaCalculationConstraint

Maximum FCC ; (:the constraint-type maximum)
Minimum FCC ; (:the constraint-type minimum)

SideDoorFCC ; (:the precondition (=
door-opening side))

CentralDoorFCC ; (the precondition
(=door-opening center))

DataBaseLookupConstraint
b - Partial terminology for SALT like constraints
Figure 7. Actions

To simulate such procedures during problem
solving, MODEL provides the method attachment
mechanism. Specialized interpreters can be
attached as methods to the concepts describing
actions and used to execute them.

A useful organization of concepts describing
actions is to consider them parameterized by their
roles. If an instance is created with all roles closed,
then the corresponding procedure will have no
formal parameters. If unfilled roles exist, then
these can be considered formal parameters and
actual values will have to be supplied at activation
time. Figure 8 shows examples of this where
simulate is the method used to execute an action.

(concept MaximumFCC

(:and FormulaCalculationConstraint
(:the Constraint-type maximumy)))
(instance MaxFCC-1 MaximumFCC)

(simulate MaxFCC-1 :constrained-value
CarJambReturn

:precondition T
:formula’(* panel-width stringer-quantity))

(concept SideDoorFCC

(:and FormulaCalculationConstraint
(:the precondition ’(= door-opening side))))
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(instance SideDoorFCC-1 SideDoorFCC)

(simulate SideDoorFCC-1 :constrained-value
‘CarJambReturn

:constraint-type ‘maximum
-formula ’(*panel-width stringer-quantity))

(instance MaxCarJambReturn (:and
MaximumFCC SideDoorFCC))

(fills constrained-value MaxCarJambReturn
CarJambReturn)

(fills formula MaxCarJambReturn (* panel-width
stringer-quantity))

(simulate MaxCarJambReturn)

Figure 8. Procedures and Their Arguments

Actions are compiled by supplying specialized
compilation methods attached to them. To
support the above variability in the number of
arguments, these methods must be able to make
partial evaluation.

Finally, we note that the use of a terminological
language to represent procedures improves their
reusability and maintainability. Classificatory
services permit that these program components
be organized in taxonomies and be retrieved
according to the powerful subsumption-based and
content-directed mechanisms available. This also
makes procedure descriptions be rightfully
considered knowledge-level.

3.52 Composition and Layering

Besides proper parameters or features, roles can
also contain other actions which are components
of the given action. This creates a hierarchical
representation in which actions are explicitly
assembled to result in higher order actions.

It is useful to distinguish between two kinds of
component actions: actions representing "normal’
components or sub-actions and actions
representing control components which apply the
non- control actions and assemble their results. In
the simplest case there should be one control
action and as many non-control actions as needed.

If this discipline is obeyed, a single interpretation
method is sufficient for all actions. This method
contains a few lines of code which apply the control
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action to the sub-actions and to some global data
base. For the same reasons a single compilation
method will suffice. The scheme can specify any
kind of control structure starting from a general
one (e.g. if-then-else) to customized, domain
specific ones. The scheme naturally extends to the
situation where the control and/or non-control
actions are composed actions themselves, thus
being able to create meta-level architectures
important e.g. for the KADS approach. In this
situation, if the control action is composed then it
will return a simple action which will be applied to
the non-control actions as arguments. If a
non-control action is composed, its application
will determine procedure on an clementary action
which will then be applied to the database.

As an example of a model specific action, we
consider the selection of fixes in the SALT system.
SALT uses pieces of knowledge named fixes to
suggest possible repairs to violated constraints. In
general, there are several possible fixes per a given
constraint violation. Each fix has an associated
desirability rating. Selection of the preferred fix is
made according to this rating. This is an example
of knowledge which would be considered task level
according to KADS. Figure 9 shows the action for
this task level selection, while Figure 10 shows how
roles for control and non-control components
must become sub-roles of the general
control-component and non-control-component
roles in order to be treated properly by the
interpretation/compilation methods.

(concept Fix

(:and Procedure

(:the violated-constraint Constraint)

(:the value-to-change Node)

(:the change-type (:oneof increase decrease))
(:the step-type StepType)

(:the step-size Number)

(:the preference-rating (:oneof 1234567 8))))
(concept PreferenceBasedFixSelection

(:and ControlledAction

(:all possible-fixes Fix)

(:theprefer-lowest-rated PreferLowestRatedFn)))

Figure 9. A Task Level Action
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(concept ControlledAction

(:and Action

(:the control-component Action)

(:all non-control-component Action))

(:method :self (simulate Simulate Controlled
ActionFn)))

(role possible-fixes (:and non-control-component)
(:range Fix))

(role prefer-lowest-rated (:and
control-component))

Figure 10. The General ControlledAction and
Action Subroles

3.5.3 Constraint Based Control Schemes

We remember that MODEL constraints are
specified as a logical order of cases. The cases in
which an installed constraint can find itself at any
time constitute the state the constraint finds itself
in. This creates the possibility for constructing
some useful control structures in which control
flow is related to the state of constraints. For
example, consider the Sum constraint with cases as
shown in Figure 4 and an installed instance of it.
Then, one can specify actions taking place
when/while/until/etc. the constraint instance is in
one or several states. For illustration, Figure 11
shows an action which repeats the Find-a- value
action until the Sum-007 constraint instance enters
the all-known-ok state.

We have shown elsewhere [Barbuceanu, Trausan
and Molnar 89] that constraint driven control
eases maintenance because constraint
modifications, done through creating, removing,
merging or splitting cases, are easier to propagate
over procedures whose control explicitly uses
constraints and cases.

(instance MakeSumHold ConstraintDrivenUntil)

(fills constraint-instance MakeSumHold
Sum-007)

(fills  until-condition
all-known-ok)

(fills action MakeSumHold Find-a-value)

Figure 11. Constraint Driven Action

MakeSumHold
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4. Ontologies for Knowledge Level
Modelling

In this Section we show how MODEL can be used
to build a conceptual model for the well-known
problem-solving system SALT [Marcus and
McDermott 89]. Our analysis will be made
according to the KADS approach thus showing
how KADS modelling can be accommodated in
our framework. Because the SALT architecture
integrates problem-solving with knowledge
acquisition, our discussion will tackle both aspects
in part. For each aspect we provide the KADS
description and the MODEL formalization.

4.1 The SALT System

4.1.1 The SALT Problem Solving Process

SALT is a generic problem-solving system based
on a constraint satisfaction process, being suitable
toaclass of (synthesis) problems where knowledge
exists for proposing values, specifying constraints
values must satisfy and specifying remedies when
constraints are violated.

Being a shell, SALT does not come with any
specific domain knowledge for the static domain
knowledge level of KADS.

At the inference level, SALT assumes the
existence of variables (a KADS metaclass)
which are assigned values through several
inferential processes (KADS knowledge
sources). The most important are procedures
which propose values, constraints which enforce
restrictions on values and fixes which provide
ways to determine new values in case constraints
are violated.

At the task level, SALT recognizes three
important goals, extending a design by proposing
avalue for a variable, checking that constraints are
satisfied and fixing violated constraints. These
goals are accomplished by associated tasks which
propose a design extension, identify a constraint
and propose a fix.

At the strategy level, the SALT problem solver
simply cycles through the three above tasks. When
a value is proposed, SALT checks constraint
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violations and if any is discovered it applies fixes
according to existing preference ratings.

4.1.2 The SALT Knowledge Acquisition Process

One major lesson from the role limiting method is
that knowledge roles identified during
conceptualizing problem-solving also structure
the knowledge acquisition process. Taking
knowledge acquisition as a problem-solving
activity one can come with a layered KADS
analysis of it. Given the above observation, the
structure of the knowledge acquisition process
would mirror the structure of the problem-solving
process as they both rely on the same knowledge
roles. This is apparent from the following analysis
of the SALT knowledge acquisition process.

At the inference level, the acquisition process
manipulates variables, procedures, constraints
and fixes as data, or metaclasses. The knowledge
sources which act on these data are e.g. the
individual mechanisms for eliciting procedures,
constraints and fixes. Note that for the SALT
problem solver procedures, constraints and fixes
are canonical inference steps.

At the task level, the main goals are those of
acquiring a procedure, constraint or fix. For each
goal there is an associated acquisition task which
uses the individual elicitation mechanisms.

At the strategylevel, the SALT acquisition process
similarly cycles through the three major tasks
selecting one according to what is probably
SALT’s most important source of power, a
thorough analysis of the completeness,
uniqueness, correctness and convergence of the
collection of procedures, constraints and fixes.

4.2 Modelling the SALT Problem Solving Process

As static domain knowledge - such as cables,
machines or cars in an elevator design domain - is
the least problematic to represent in a language
like MODEL, we will concentrate on the other
layers.

4.2.1 The Inference Level: SALT Knowledge Bases
SALT metaclasses and knowledge sources define

a SALT specific representation language in terms
of which SALT knowledge bases are acquired.
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Figure 12 shows a possible organization of this
layer. Figure 12- a illustrates the MODEL concept
for SALT knowledge bases and the concept of
control database holding control data
manipulated by inference and other processes
together with some of its components. Figure 12-b
shows how a particular SALT knowledge base is
created as an instance. Figure 12-c shows a
possible taxonomic organization of some SALT
components. Examples of Procedure-s,
Constraint-s and Fix-es have been provided in the
previous section. In the shown organization we
have separated control concepts (nodes and their
components) from the knowledge base as they play
a special role as private data for the problem-
solving mechanisms at various levels.

(concept KnowledgeBase :primitive)
(concept SALTKnowledgeBase
(:and KnowledgeBase

(:some procedures Procedure)
(:some constraints Constraint)
(:some fixes Fix)))

(concept ControlDataBase :primitive)
(concept SALTControlDB

(:and ControlDataBase

(:some nodes Node)))

(concept Node

(:and MainSALTKBComponent
(:the name Symbol)

(:all contributes-to Contribution) (:the
contributed Node)))

(:all constraints Constrainer)

(:all suggests-revision-of SuggestedRevision)
(:the type (:oneof input parameter constraint))))
(concept Contribution

(:and AuxSALTKBComponent

(:the procedure Procedure)

(:the contributed Node)))

a- Scheme of SALT knowledge bases

(instance VT-SALT SaltKnowledgeBase)

b - creating a SALT knowledge base
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control
data
base

data link

KnowledgeBaseComponent
SALTKBComponent
MainSALTKBComponent
Procedure

Calculation
DataBaseLookup

Constraint

Fix
AuxSALTKBComponent
Test

Table

Formula
ControlDataBaseComponent
SALTControlDBComponent
Node

Contribution

Constrainer
SuggestedRevision

¢ - Possible organization of KB components.

Figure 12. MODEL-ing the
Inference Layer of SALT

4.2.2. Task and Strategic Levels: Knowledge
Processing Mechanisms

To represent the task and strategic layers, we first
introduce the notion of knowledge processing
mechanism (KPM). A KPM is aMODEL hierarchically
recursive action which can act on a knowledge base and
on a control database. Figure 13-a shows the KPM
concept, Figure 13-ba graphic depiction of it and Figure
13-c a fragment of a KPM ontology.

(concept KnowledgeProcessingMechanism
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knowledge
base

control link

(:and ControlledAction

(:the knowledge-base KnowledgeBase)

(:the control-data-base ControlDataBase)

(zall actions KnowledgeProcessingMechanism)
(:the control KnowledgeProcessingMechanism)))
a - The KnowledgeProcessingMechanism concept
b - Control and data links in a KPM
KnowledgeProcessingMechanism

Simple KPM

SimpleAction

SequencedActions
SortedSetSelection
KnowledgeDrivewKBSearch
SelectedActions
KnowledgeDrivewSelectedActions
CycleActions

OrderedCycle
KnowledgeDrivewSelectionCycle
KnowledgeTool
KnowledgeAcquisitionTool
InferenceTool

ExplanationTool

¢ - Fragment from a possible KPM ontology

Figure 13. Knowledge Processing
Mechanisms

With these preparations we can describe some
task and strategy level mechanisms.

Figure 14 illustrates two task level mechanisms,
Propose-a- design-extension and Propose-a-fix.
Figure 14-a shows the KPM-s by means of which
these tasks are modelled. The Knowledge
DrivewKBSearch mechanism searches for a
knowledge base component which satisfies a search
criterion. Once found, the when-found-action is
applied and its result is left in a specified component
(role) of the control database.
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The Propose-a-design-extension task is an instance
of this. It looks for nodes which have all contributors
known and applies an applicable procedure for
determining the value of the node’s variable.
(concept KnowledgeDrivenKBSearch

(:and SimpleKPM

(:the kb-component KnowledgeBaseComponent)
(cthe result-cdb-component ControlDataBase Companent)
(:the search-criterion Condition)

(:the when-found-action SimpleKPM)))
(Concept SortedSetSelection

(:and SimpleKPM

(cthe sorted-kb-component KnowledgeBase Component)
(:the select-components SimpleKPM)

(:the sorting-criterion Symbol)

(:the selection-criterion (:oneof minimum maximum))
(:the process-selected SimpleKPM)))

a - Used KPM-s

(instance Propose-a-design-extension Knowledge
DrivewKBSearch)

(fills kb~component Propose-a-design-extension Node)
(fills result-cdb-component Propose-a-design-
extension proposed-extension)

(fills search-criterion Propose-a-design-extension
HasAllContributorsKnown)

(fills when-found-action Propose-a-design-
extension ApplyAProcedure)

(instance Propose-a-fix SortedSetSelection)

(fills sorted-kb-component Propose-a-fix Fix)
(fills select-sorted-components Propose-a-fix
SelectFixesForViolatedConstraint)

(fills sorting-criterion Propose-a-fix preference- rate)
(fills selection-criterion Propose-a-fix minimum)
(fills process-selected Propose-a-fix ApplyAFix)

b - SALT tasks

Figure 14. Task Level Mechanisms for
the SALT Problem-Solver

The ScrtedSetSelection Mechanism is a bit more
complex. First, it selects a set of knowledge base
components of the sorted-kb- component type by
applying the select-sorted-components action. Second,
it sorts these components according to the sorting-
criterion. Third, it selects from among the sorted set a
subset using the selection-criterion and finally it applies
the process- selected action upon each component from
this subset. The SALT task for proposing a fix when a
constraint violation occurs is implemented by
instantiating this mechanism as shown in Figure 14- b.
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The task searches for the Fix components which
apply to the violated constraint and sorts them
according to their preference rating. The Fix-es
with the smallest value for the preference rate are
then selected and applied.

Finally, Figure 15 shows the strategic problem-solving
mechanism of SALT. Figure 15-a shows the
KnowledgeDrivenSelectionCycle mechanism which
cycles through a set of actions selecting one at each
step on the basis of specific knowledge. The SALT
problem-solving strategy s an instance of this. It selects
one of the three basic SALT tasks according to a fairly
simple scheme: first a design extension is proposed,
then constraint violations are checked and last fixes are
applied if necessary.

(concept KnowledgeDrivewSelectionCycle

(:and SimpleKPM

(:some cycled-actions SimpleKPM)

(:the selection-action SimpleKPM)))

a - The KnowledgeDrivewSelectionCycle
mechanism

(instance SALT InferenceTool (:and
InferenceTool KnowledgeDrivewSelection Cycle))
(ills cycled-actions SALT InferenceTool
Propose-a-design-extension Identify-a-constraint
Propose-a-fix)

(fills selection-action SALT InferenceTool
SALTProblemSolvingStrategy)

b - The SALT inference tool

Figure 15. Strategic Mechanism for the SALT
Problem-Solver

43 Modelling the SALT Knowledge Acquisition Process

At the inference level, the SALT knowledge
acquisition system is concerned with eliciting the
major pieces of knowledge, namely procedures,
constraints and fixes. One way to carry this out in
MODEL is to use the refinement service. Figure
16 shows how the refinement process can be
declaratively programmed to elicit a piece of Fix
knowledge. The refinement process will build an
instance of the Fix concept. The instance will be
built by recursive expansion, that is every role will
be considered as asubgoal and refined in a specific
manner given by its annotation. The order of
refining subgoals is given by a special annotation.
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(concept Fix

(:and SALTKBComponent

(:the violated-constraint Constraint)

(:the value-to-change Node)

(:the change-type (:oneof increase decrease))
(:the step-type StepType)

(:the step-size Number)

(:the preference-rating (:oneof 1234567 8))))
(:self (refinement-mode recursive-expansion)
(refinement-order

(violated-constraint value-to-change
change-type step-type step-size
preference-rating)))

(:has violated-constraint

(refinement-mode interactive-prompting)
(dialogue-box Selection-box)

(box-info-fn Find-unfixed-constraints))

(:has value-to-change

(refinement-mode interactive-prompting)
(dialogue-box Indented-selection-box)
(box-info-fn Find-contributors-to-value))
(:has change-type

(refinement-mode interactive-prompting)
(dialogue-box Selection-box)

(box-info-fn Read-role-value)) ...))

Figure 16. Refinement Annotations Directing
the Fix Elicitation Process

As shown in Figure 16, some roles are instantiated
by interactive prompting. A specification of the
dialogue box in which this takes place is given
together with a function supplying the information
presented to the user when prompted. For
example, to determine the violated-constraint the
user is presented alist of constraints for which fixes
have not been provided yet. For determining the
value-to-change in response to a constraint
violation, the user is presented an indented list
showing the contributors to the constraint
violation determined following contributes-to

148

links in the control database (see [Marcus and
McDermott 89] for details).

MODEL constraints (no relation to SALT
constraints) can be used to make certain
inferences at elicitation time. In this example, the
constraint-type, change-type and value-to-change
are constrained by certain relations such as that if
a maximum constraint is violated it can be fixed
only by increasing the maximum or by decreasing
the value. Figure 17-a shows a constraint enforcing
that the change-type is correctly asserted
whenever the constraint-type and the
value-to-change are known. If the constraint is
installed as shown in Figure 17-b, the change-type
will not be prompted for anymore. Similar
constraints or MODEL roles could be used to
check consistency of the elicited knowledge.

At the task and strategy levels, knowledge
mechanisms can be defined in a similar manner to
what has been presented for the problem-solving
system, The task of acquiring a Fix for example,
can be described as a

(constraint Fix-change-type

(:variables constraint-type change-type
value-to-change)

(:cases

(decrease-1 (and (unknown change-type)
(eq constraint-type *maximum)

(is-value value-to-change)))

(increase-1 (and (unknown change-type)
(eq constraint-type ’maximum)
(is-constraint value-to-change))) ...)
(cactions

(decrease-1 (assign change-type "decrease))
(increase-1 (assign change-type ’increase))...)
a - Constraining the change-type

(constrains Fix-change-type-i
(:constraint Fix-change-type)
(:and (instance ?f Fix)

(fills violated-constraint ?f ?7v)
(fills constraint-type ?v ?co-type)
(fills change-type ?f ?7ch-type)
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(fills value-to-change ?f ?val-ch))
(:mapping (?co-type constraint-type)
(?ch-type changr-type)

(?val-ch value-t-change)))

b - Installing the constraint

Figure 17. Constraint for Automated
Inferencing of the Change Type

sequence of three steps. The first prepares the
information used in the elicitation process (such as
the list of contributors to a value). The second is
the elicitation process described in Figure 16 and
the third constructs and updates pieces of the
semantic network (composed of Node-s) in the
control database. The acquisition strategy is
similar to the problem-solving strategy - a
KnowledgeDrivewSelectionCycle (Figure 15) -
but the control action is different as it tries to delay
the acquisition of fixes as much as possible.

4.4 Supporting Compilation and Other Services

Problem-solving and knowledge acquisition are
the most important activities supported in a
KLME. As shown in Figure 1, KLME-s should
support other activities as well, and the modelling
language must lay the foundation on which to build
tools supporting all activities.

An almost equally important activity is model
compilation, that is the generation of shells from
models. Our view is that models should be
compiled into shells written in state-of-the-art Al
languages like CLOS [Keene 89] or KEE [Fickes
and Kehler 85]. This ensures efficiency and
portability of the generated expert system.
Assuming that the target language has standard
features like objects, methods, demons and rules,
the compilation into shells can be done in two
steps. The first step is the specification of what has
to be compiled and how. The second step is actual
compilation.

Concepts from the knowledge base - e.g.
procedures or fixes - can be compiled into objects.
Those in the control database - e.g. nodes - can be
compiled into more specific data structures.
KPM-s can be compiled into methods, rules or
demons. As all these are MODEL concepts, the
complete form of concepts will be used as the
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compilation source. This form is constructed by
completion service of the modelling language and
is characterized by the fact that all inheritable
features are inherited, all descriptions are unified
and all detected inconsistencies are eliminated. In
afirst version of compilation, the specification step
can be taken by means of a special editor/browser
which would help annotate concepts with
specifications of how they should be compiled. The
Fix concept, for instance, can be annotated with
specifications determining its compilation into e.g.
a CLOS object inheriting from a more general
Action object. KPM-s can be compiled as generic
methods attached to the ControlDataBase and
KnowledgeBase objects or to some of their
components,.

Given such specifications, the compilation stage
can be implemented as a program whose input is
a collection of annotated concepts and whose
outputis a collection of target language constructs.
The MODEL language provides features useful in
supporting other activities in knowledge level
modelling. Model validation can be supported by
building rule and/or constraint systems able to
analyse the model. Watching over the problem-
solving process by means of rules and/or
constraints is also useful for generating
explanations and for knowledge level
instrumentation (debugging and others) of any
on-going process.

5. Conclusions

Computer based problem-solving comprises two
processes, modelling and programming. For
knowledge based problem solvers these are known
as knowledge level modelling and symbol level
encoding. The existing AI programming
environments currently support only the
programming side of the process. The next
generation of tools will have to address the
modelling side, as this is the place where the
intellectually challenging problems arise and the
greatest potential for improving the knowledge
and software engineering practice stems from.

As a solution to this, we have presented the notion
of aknowledge level modelling environment which
would support the full range of knowledge level
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modelling activities involved in problem-solving.
Programming is just one of these activities.

On the road toward building a knowledge level
modelling environment the first problem we
encounter is designing a knowledge modelling
language able to describe at the knowledge level
the problem-solving methods people invent and
improve. Unlike programming languages which
are means of communicating commands to a
machine, modelling languages should be means of
communicating knowledge among people. This
raises specific requirements for these languages,
among which most important are clearly defined
semantics and powerful general-purpose
representational services.

Our choice was to build such a language on the
basis of term classification technology as this
already provided much of the needed
functionality. Our language extends this
technology with features from object-oriented
systems - methods and annotations - constraints,
rules, a new refinement service and a way of
hierarchically constructing knowledge processing
mechanisms.

These extensions help the modelling language
scale up from describing static domain knowledge
to describing the inference, task and strategy level
mechanisms problem-solving models are
composed of.

To substantiate these claims, we have presented a
detailed analysis of the problem-solving and
acquisition components of SALT [Marcus and
McDermott 89], a well-known generic problem-
solving model for constructive problems.

As the implementation of the language is
practically finished, our work will continue with
implementing the other components of the
knowledge level modelling environment.
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