Towards An Uniform Language for
Knowledge Representation Including
Procedural Knowledge Expressed

Declaratively

Liviu Badea

Expert Systems Laboratory
Research Institute for Informatics
8-10 Averescu Avenue,

71316 Bucharest

ROMANIA

Abstract: Recent studies in Knowledge Representation have
emphasized the importance of a formal theory in this domain.
Such a theory should be able to describe not only specific
domain objects, but also actions that modify them, meta-rules
that govern the application of actions, etc. Among the
numerous candidates to the universal language of Knowledge
Representation, the term subsumption languages (TSL) seem
to be the most appropriate ones because of their elegant
uniformly formalized semantics. They seem however to be
unable to describe actions, procedures or rules (even though
some of them claim to have integrated actions or rules, the
integration is only superficial).

This paper presents a term subsumption language able to
describe and reason about actions and procedures by treating
them exactly like any other language concept. In other words,
the procedures are built using the same formal constructors as
for any other concept and there is no formal distinction
between a procedure and a concept. The feature of uniformity
in representation is entirely new. Although some languages (as
LISP for instance, but at a lower level) claim that they treat data
and procedures uniformly, this is not actually so, because the
integration is only superficial (the interpreter of the language
treats data and procedures as totally different entities).

In our new Knowledge Representation language, data and
procedures are treated by the Assertion Language Interpreter
essentially the same way and the difference between a procedure
and some other concept is only in the programmer’s mind.
Another important feature of this language is its very natural
way of building higher order structures (higher order
procedures/meta-rules that reason about procedures/actions).
This is especially important in view of an observation made by
most of Al researchers that a system only behaves intelligently
when it is capable of reasoning about its own actions and
behaviour (i.e. using higherorder logic, which our language can
easily provide).

Our new Knowledge Representation language can also be
viewed as a mathematical theory of KR and/ or computation,
since it provides a well-defined semantics. This semantics has
two components: the usual model-based semantics, which we
call assertional semantics, and the terminological semantics.
As far as we know, the terminological semantics is an original
approach to the semantics of a language. Unlike the assertional
semantics that describes the various constructors of the
language by means of concept/role extensions in models, the
terminological semantics is some sort of a meta-semantics as
it describes the behaviour of the language constructors without

Studies in Informatics and Control,Vol.2,No.2, June 1993

any reference to extensions or models (by only reasoning in
the terminological component of the language).

The following TSL constructors are shown to be a minimal set
(in order to be able to describe procedures):

and, or (we adopt some kind of "positive logic"), all, C
(role-value-map), inv (inverse roles), comp (role composition
used to build role chains).

We introduce the mathematical concept of role conjugation
that turns out tobe the correspondent of a recursive procedure
call in ordinary languages.

We also show on a toy example how the Assertion Language
interprets a procedure exactly the same way as it interprets an
instance assertion.

We argue that such a uniform representation language can be
used as an "universal” Knowledge Representation language (a
standard in KR - namely a Knowledge Interchange Format has
been proposed, but we need more than a common format, we
need a common theory !).

Keywords: Knowledge Representation, Term Subsumption
Languages, procedural knowledge, models of computation,
terminological and assertional semantics.

Liviu Badea graduated from the Faculty of Automatic Control
and Computer Science, the Polytechnical Institute of
Bucharest in 1990.

From 1990 up to present he has been working in the Expert
Systems Laboratory of the Research Institute for Informatics.
He has also had teaching activities at the Faculty of Automatic
Control and Computer Science, where he is also completing
his Ph.D. thesis (in the Al field). His research interests include
the theoretical foundations of artificial intelligence, logic,
knowledge representation and problem-solving in Al and the
relationship between mathematics and computer science

(especially Al).

1. The Term Subsumption Language

This section is an overview of the term
subsumption language (TSL) constructors needed
in order to be able to represent actions and

153

procedures. Such a language consists of a
terminological language (the TBox) and of an
assertional language (the ABox). The assertional
language provides the means of describing the
instances of the TBox concepts (which car be
viewed as classes of objects). The relations
between TBox concepts are expressed by roles.
The assertional semantics of the concept and role
constructors are defined by their behaviour in
extensions (models):

E[(and C1C2)] = E[C1] N E[C2]
E[(orC1C2)] = E[C1]UE[C2]
E[(allrC)] = {x | E[r]®) CE[C]}
where E[r](9) = {y | (xy) €E[r]}

E[(atleastnr)] = {x | card(E[r](x)) = n

E[(atmostnr)] = {x | card(E[r](X)) =n

E[(Cr11r2)] = {x | E[r1]®x) CE[r2](x) }
E[(=1112)] = {x| E[r1](®) = E[2](3)

E[(andr1r2)] = E[r1] N E[12]
E[(orrlr2)] = E[r1]UE[r2]
E[(invr)] = { (vx) | (xy) €E[r]}

E[(comprl..m)] = { (x3,X) | 3%,%,,...X, 4
such that (x,x; , ;) € E[1;,],

i={0,..,n-1}
E[(domainC)] = { (xy) | x€E[C] }
E[(range C)] = { (xy) | y€E[C] }

where E denotes the extension, C, C1, C2 are
concepts, r, rl, r2 are roles and x, y are instances.

The concept forming operators are: and, or, all,
atleast, atmost, C (role value map), =, while and,
or, inv, comp, domain, range are role forming
operators.

For instance, a binary tree can be represented as
follows:

(concept Tree
(or Leaf Node))
(concept Leaf :primitive
Tree)

154

(concept Node :primitive
Tree)

(role left-son :primitive
(and (domain Node)

(range Tree)))

(role right-son :primitive
(and (domain Node)
(range Tree)))

(disjoint Leaf Node)

2. Representing Recursive Procedures in
the TSL

In this section we show how recursive procedures
can be represented in a TSL without introducing
new constructors. We note that in all systems and
languages created and implemented up to now, the
procedural knowledge (functions, actions, etc.)
was only partially integrated with the
data-description language since it provided some
special constructors with some additional
procedural semantics (which could not be fully
expressed in the semantics of the data-description
language). Our representation of procedural
knowledge relies only on the data descriptors of
the terminological language and their semantics.

A toy example will be given. Suppose we want to
write a procedure that determines the leftmost leaf
of a binary tree. In PROLOG, such a problem is
solved by the following program:

left_leaf(Leaf, Leaf) :-
Leaf = leaf(Leaf name).

left_leaf(node(Left_son, Right_son), Left leaf) :-
left_leaf(Left_son, Left_leaf).

In our TSL, we can define, for each procedure (or
PROLOG predicate), a concept whose instances
will represent the activations of the respective
procedure. For instance, we can define:

Studies in Informatics and Control,Vol.2,No.2, June 1993

left-son,
right-son*

Left-leaf-proc

Figure 1. The Concept Lattice

(concept Left-leaf-proc
(or Casel Case2))

where Casel and Case2 correspond to the two
PROLOG clauses. For each argument of the
procedure (or PROLOG predicate), the
corresponding TSL concept must have a role:

(role tree-arg :primitive
(and (domain Left-leaf-proc)
(range Tree)))

(role leaf-arg :primitive
(and (domain Left-leaf-proc)
(range Leaf)))

The first case, Casel, corresponds to the
PROLOG fixed-point clause:

(concept Casel
(and (all tree-arg Leaf)

(= leaf-arg tree-arg)))

Studies in Informatics and Control,Vol.2,No.2, June 1993

Note that (= leaf-arg tree-arg) expresses the
equality of the two (input and output) arguments
of the procedure.

The second case, Case2, contains a recursive call
to Left-leaf- proc:

(concept Case2
(and (all tree-arg Node)

(all (and (comp tree-arg left-son (inv
tree-arg))

(comp leaf-arg (inv leaf-arg)))
Left-leaf-proc)))

The construction above contains only standard
concept forming operators, but it behaves, at
assertion time, like a recursive procedure. Note
that the differences between data (ordinary
concepts) and procedures only exist in the
programmer’s mind.

Let x be an instance of Case2. Then x € Case2 iff
x € (all tree-arg Node) and x € (all (and (comp
tree-arg left-son (inv tree-arg)) (comp leaf-arg
(inv leaf-arg))) Left-leaf-proc) i.e. tree-arg (x) C
Node (the tree argument is a Node) and (tree-
arg’l o left-son o tree-arg N leaf-arg™! o leaf-arg)
(%) C Left-leaf-proc.

Note that tree-arg (x) is the tree argument of the
procedure, left-son o tree-arg (x) is its left son, and
tree-arg™! o left-son o tree-arg (x) is an instance y
of Left-leaf-proc that has the respective left-son as
atree argument (because tree-arg (y) = left-son o
tree-arg (x)).

The recursive call to Left-leaf-proc leads to a
construction containing the conjugation of the role
left-son through the role tree-arg: (all tree-arg™ o
left-son o tree-arg Left-leaf-proc). Such a role
conjugation appears whenever the corresponding
function is primitive recursive. Thus, the important
link between primitive recursion and role
conjugation has been revealed by a term
subsumption language.

Let us now turn to the functioning of the
mechanism at assertion time. Suppose the
assertion of an instance x of Left-leaf-proc (in the
ABox) having, for example, trec-arg equal to a

155

binary tree rooted at nodel12 and with two leaves
(leafl and leaf2), while leaf-arg remains
unspecified (we are practically calling the
respective procedure with the given argument):

(assert (Leaf leafl)
(Leaf leaf2)
(Node nodel2)
(left-son node12 leafl)
(right-son node12 leaf2)
(Left-leaf-proc x) ;procedure call
(tree-arg x node12)) ; input argument

The ABox instance-recognizer will assert for x the
constraints mentioned in the definition of the
concept Left-leaf-proc. Because Left-leaf-proc is
adisjunction: (or Casel Case2), the recognizer will
first try x against Casel. But it will fail when trying
x € (all tree-arg Leaf), because tree-arg (x) is a
Node and not a Leaf (since nodes and leaves have
been declared disjoint). The recognizer thus
backtracks to Case2, (all tree-arg Node) is true for
x, so the test should proceed

x € (all (and (comp tree-arg left-son (inv
tree-arg))

(comp leaf-arg (inv leaf-arg)))
Left-leaf-proc).

Because tree-arg (x) = nodel2, left-son o tree-arg
(x) = leafl and leaf-arg (x) is unbound (unknown),
the recognizer will have to check that every
instance y with tree-arg (y) = left-son o tree-arg
(x) and with leaf-arg (y) = leaf-arg (x) is an
instance of Left-leaf-proc. This is the equivalent of
a recursive procedure call on the left-son. The
instances xand y of Left- leaf-proc can be regarded
as activation records of the corresponding
procedure.

When checking y € Left-leaf-proc, the recognizer
will first tryy € Casel, i.e. y € (all tree- arg Leaf)
(which succeeds because tree-arg (y) = left-son o
tree- arg (x) = leaflis a Leaf) and y € (= leaf-arg
tree-arg) (which also succeeds because leaf-arg (y)
= leaf-arg (x) is unknown). As y is asserted to be
aninstance of (= leaf-arg tree-arg), leaf-arg (y) =

156

leaf-arg (x) will be bound to tree-arg (y) = leafl
i.e.leaf-arg (x) = leafl. Thus the procedure call x
terminates with the response leaf-arg (x) = leafl.

In order to support concept disjunction and
inverse roles, the assertional language must
provide backtracking and instance retraction (it
should be nonmonotonic).

The above example suggests that any recursive
procedure can be implemented in the TSL. For
instance, an indirect recursion like

procl(argl(Partl)) :- proc2(Part1).
proc2(arg2(Part2)) :- procl(Part2).

can be represented by
(concept Procl (concept Proc2
(or Casel ...)) (or Case2 ...))

(role argl :primitive
(domain Procl))

(role arg? :primitive
(domain Proc2))

(concept Casel (concept Case2

(all (comparg] partl (invarg2)) (all(comparg2 part2 (vargL)
Proc2)) Procl))

The next example shows the treatment of multiple
occurrences of a variable V:

p(a(V)) - q(b(V)), r(c(V)).

(concept P
(orP1P2..))
(role a :primitive (role part-a :primitive
(and (domain P) (domain Ra))
(range Ra)))
(concept P1
(and (all (comp a part-a (inv part-b) (inv b)) Q)

Studies in Informatics and Control,Vol.2,No.2, June 1993

(all (comp a part-a (inv part-c) (inv c)) R)))

(role b :primitive
(and (domain Q)
(range RD)))

(role part-b :primitive
(domain Rb))

(role ¢ :primitive
(and (domain R)
(range Rc)))

We may also use "local variables" in a procedure
(they are used to store intermediate
computations). In the previous example, the role
chain (comp a part-a) is used in two different
places and could be replaced by a local variable as
follows:

(role part-c :primitive
(domain Rc))

(role local-var :primitive
(domain P))

(concept P1
(and (= local-var (comp a part-a))
(all (comp local-var (inv part-b) (inv b)) Q)
(all (comp local-var (inv part-c) (inv c)) R)))

3. Terminological and Assertional Semantics

The tendency of uniformization of all structures of
a language (whether descriptive or procedural)
has its roots in the essay of conceiving a reflective
knowledge representation language (i.e. a
language that is able to reason about its own
constructions). The property of reflectivity can be
viewed as a form of informational feedback (that
is, the results of the reasoning process may be used
to guide further problem-solving) and is an
inherent feature required for an intelligent
behaviour.

Almost all computer languages let the data
structures be viewed more as static and empty
frames with a weak semantics (as opposed to the
term subsumption languages that provide
necessary and sufficient concept definitions and
have thus strong semantics). In classic languages,

Studies in Informatics and Control,Vol.2,No.2, June 1993

procedures are built using predefined control
structures which have predefined semantics
usually known by the programmer and not by the
system itself, therefore making true reflection
impossible. Qur approach integrates descriptive
and procedural knowledge while allowing
procedures to be built only by using the standard
concept forming operators with no any other
special control operators (which would be
primitive to the system itself, i.e. their semantics is
not intrinsic to the system and the system would
not be able to reason about them).

In order to clarify this distinction, we shall split the
semantics of a TSL into two components: the
terminological semantics and the assertional
semantics. The assertional semantics of the
language is the usual model-based semantics that
describes the concept and role forming operators
in terms of instances (belonging to the ABox).
Section 1 presented the assertional semantics of
our TSL. It describes how the language interpreter
treats instances in the ABox. However, one major
weakness is perceivable: the system cannot reason
about itself using the assertional semantics (unless
it has a set-theory based theorem prover).

Unlike the assertional semantics, the
terminological semantics is a sort of
meta-semantics as it describes the composition
rules of the various language constructors without
any reference to instances of the ABox. The
terminological semantics is an equivalence
relation in the space of all syntactic constructs (i.e.
it identifies semantically equivalent syntactic
constructs) and has to be consistent with the
assertional semantics. An example of a non-trivial
terminological semantics rule is the following:

(Crl(andr2 (range C))) = (and (C r1r2) (allr1 C))
where rl, 12 are roles and C is a concept.
Proof: x € (C rl (and r2 (range C))) iff

rl (x) C r2 (x) N Ciff

rl1 (x) C r2 (x) and r1 (x) C Ciff

X € (Crlr2)andx € (allr1 C) iff

X € (and (C r1r2) (allr1 C)) q.e.d.

In an ideal case we would like a complete
terminological semantics, but it seems to be a very
difficult problem in a reasonably expressive

157

language like ours(Romanian). If the
terminological language incompletely freats a
given constructor, whenever such a constructor is
encountered in a concept definition, that concept
should be declared primitive (i.e. incompletely
defined in the TBox). Whenever the
terminological semantics is weaker than the
assertional one, we could expect that some
inconsistencies only manifest at assertion time.

4. Concluding Remarks

Our approach to expressing procedural
knowledge by only using common concept forming
operators can be viewed as a mathematical theory
unifying the theory of computation and of
knowledge representation. It also proves, and this
is of no little importance, that a term subsumption
language (with the following constructors: and, or,
all, C, inv, comp) has the computational power of
a language of general recursive functions and is so
computationally equivalent to a Turing Machine.

BIBLIOGRAPHY

BAADER, F., Terminological Cycles in KL-ONE
Based Knowledge Representation Languages.

BRACHMAN, R.J., GILBERT, V.P.and
LEVESQUE, H.J.,, An Essential Hybrid
Reasoning System: Knowledge and Symbol Level
Accounts of KRYPTON, Proceedings of the Ninth
International Joint Conference on Artificial
Intelligence, Los Angeles, CA.,1985.

BRACHMAN, R.J. and SCHMOLZE, J.G. An
Overview of the KL-ONE Knowledge
Representation System, COGNITIVE
SCIENCE, 9(2), 1985.

BRACHMAN, R.J. and LEVESQUE, H.J., The
Tractability of Subsumption in Frame-Based

158

Description Languages, Proceedings of the
American Association for Artificial Intelligence,
Austin, Texas, 1984.

BRACHMAN, R.J. et al, Living with Classic, in
J.F. Sowa (Ed.) Principles of Semantic Networks,
pp. 401-456.

MCGREGOR, R., BURNSTEIN, M.H,,
BERANEK, B. and NEWMAN, Using a
Description Classifier to Enhance Knowledge
Representation, IEEE EXPERT, June 1991.

MCGREGOR, R., The Evolving Technology of
Classification- Based Knowledge Representation
Systems, in J.F.Sowa (Ed.) Principles of Semantic
Networks , pp. 385-400.

NEBEL, B., Computational Complexity of
Terminological Reasoning in BACK,
ARTIFICIAL INTELLIGENCE, 34, 1988.

PATEL-SCHNEIDER, P.F., A Four-valued
Semantics for Terminological Logics,
ARTIFICIAL INTELLIGENCE, 38, 1989, pp.
319- 351.

PATEL-SCHNEIDER, P.F. et al, Term
Subsumption in Knowledge Representation. Al
MAGAZINE, Summer 1990. p. 16.

PELTASON, C., SCHMIEDEL, A,
KINDERMANN, C. and QUANTZ, J., The
BACK System Revisited, KIT Report, Technische
Universitat Berlin, September 1989.

SCHILD, K., Undecidability of Subsumption in
U, KIT Report, Technische Universitit Berlin,
October 1988.

WOODS, W.A,, Understanding Subsumption
and Taxonomy, in J.F. Sowa (Ed.) Principles of
Semantic Networks, pp. 45-94.

YEN, J., JUANG, H. and MCGREGOR, R,,
Using Polymorphism to Improve Expert Systems
Maintainability, IEEE EXPERT, Spring 1991.

Studies in Informatics and Control,Vol.2,No.2, June 1993

