HDE - A Heterogeneous Object-oriented
Distributed Environment

Part I1

Adrian Mircea
Computer Sharing Romania
15-17, Calea Dorobanti,
71131 Bucharest
ROMANIA

Ion Stoica

Distributed Processing Systems Laboratory
Research Institute for Informatics

8-10 Averescu Avenue,

71316 Bucharest

ROMANIA

Abstract: The "object-oriented” and "distributed" paradigms have
now matured and are present in several areas of computing, from
operating systems, databases, programming languages, graphical
interfaces toapplication environments. These topics have profound
impact on heterogeneous computing environments requiring new
methods of organization, exploration and design. The paper
describes the architecture and some implementation strategies of
HDE (Heterogeneous Distributed Object-oriented
Environment), an integrated support environment for designing,
implementing and executing distributed applications built up from
object entities. The objects may be mobile, distributed, replicated,
fragmented and persistent. From the execution point of view, the
objects may be either passive or active with an implicit, and at once
explicit control of parallelism. The object model allows a language
independent implementation, although a C+ + extension is
considered for the application development. HDE may be thought
as (just another) distributed object-oriented system prototyped on
heterogeneous OS networks (basically UNIX/AIX, 0S/2 HDE
kernels are under development), allowing the building of
fault-tolerant distributed applications that efficiently exploit the
parallelism, replication and/or distribution, with a great degree of
flexibility and a reasonable transparency-performance trade-off.
The paper has been split into two parts and the introduction
has been maintained for bridging them. Chapters are therefore
numbered in their continuation from the first part (see Vol. 1,
No. 4/December 1992).

Keywords: Distributed object-oriented operating systems,
reliable broadcast protocols, fault-tolerance.

Adrian Mircea was born in Romania in 1954. He received his
M.Sc. degree in computer science from the Polytechnical
Institute of Bucharest in 1979. He worked at the Research
Institute for Informatics in Bucharest from 1979 to 1991 as
senior researcher and head of Distributed Processing Systems
Research Laboratory. Since 1991 he has been technical
manager at Computer Sharing Romania, there managing a
research project for a multiplatform development
environment (UNIX/AIX,08/2, Windows). His topics of
interest include distributed processing systems, CASE systems,

Studies in Informatics and Control,Vol.2,No.1, March 1993

object-oriented design and programming. He has been author
or co-author of more than 40 papers published in national and
international journals. He is a member of DECUS.

Ion Stoica was born in 1965. He graduated the Polytechnical
Institute of Bucharest-Computer Science Department in 1989.
Since graduation he has worked at the Research Institute for
Informatics in Bucharest. He works in the Distributed
Processing Systems Laboratory and his main research activity
covers distributed systems and neural networks. He is
preparing a doctoral thesis on neural networks at the
Polytechnical Institute of Bucharest.

Introduction

The "object-oriented" and "distributed” paradigms,
considered separately, have now matured and are
present in several areas of computing, from
operating systems, databases, programming
languages, graphical interfaces to application
environments. The combination of these two models
makes the challenge of the *90s, which will be the
cooperative, team working way of computing for
both the application development and the actual
application processing, by allowing sharing,
distribution and replication of objects (not only files,
memory or other classical resources). Besides, they
impose new methods of organization, exploration
and design for both the system and applications.

The paper is the result of years of experience in
developing both classical distributed system
support and object-oriented environments. It
describes the architecture and some implementation
strategies of HDE (Heterogeneous Distributed
Object-oriented Environment), an integrated
support environment for the design, implementation
and execution of distributed application built up
from object entities.

There are a lot of important DO-0 OS (distributed
object- oriented operating systems) prototypesin the
research community or industry, some of which
pioneered the field and some others that have
matured it (see Part I overview). One of the main
features associating or making them distinct is the

object model, which covers the aspects of
distribution and mobility, the granularity level or
the execution structure. Although there is a
general agreement on the terminology, as some
other system presentations do, we will however
attempt to explain our own acceptance of the
related terms. So, for the full understanding of
HDE, the meaning of HDE object attributes must
be accepted as stated in section III.

These attributes refer to: migration (solving the
problem of object mobility), fragmentation (as a
way of distributing processing inside an object
along the class hierarchy path), distribution (which
denotes only the existence of consistent multiple
copies of the object), replication (as a way of
solving the fault-tolerance problem) and
persistence. Generally, replication is used for
enhancing data availability under failure
conditions, and that is the semantics of HDE
replicated objects. The use of replication for
higher efficiency in sharing data by having a local
consistent copy of it reflects the semantics of HDE
distributed objects (in the previous case the copy
may not be on the user’s site).

HDE allows the structuring of applications as
collections of both passive and active objects, with
a different degree of granularity and parallelism.
The parallelism may be hidden to the object user,
but also may be explicitly available to the class
hierarchy implementer.

In order to support the features related with the
distribution (in a general acceptance) of the objects,
the HDE architecture has a custom protocol sct,
generally available to the user only via the HDE
object behaviour. An informal presentation of HDE
protocol architecture is made in Part I. These
protocols are oriented towards the group
communication paradigm (at both site and object
levels, with a variable degree of reliability).

A peculiar feature of HDE is its possibility to get
integrated into an application (normally built up only
fromHDE objects and contexts) programs written in
languages and with rules unrelated to HDE. These
external programs are encapsulated in the so-called
“foreign objects” of which many features are common
to those of the normal HDE objects.

Section IV presents the basic strategies
(irrespective of the underlying OS) of the HDE
class and object management implementation.It
details HDE object types and emphasizes the

6

mechanism for naming and handling classes and
objects. The presentation is made by direct
reference to the HDE kernel interface.

An HDE application may be written in C, C+ + or
DC+ + (or a combination of them) with the largest
transparency of the distribution aspects in DC+ +.
Section V informally presents the DC+ + syntactic
extensions and some semantic ones. It flexibly
encapsulates the active/passive trade-off of the
DO-O languages and allows new paradigms for
distributed application design (see the distributed
data structure [Tanenbaum 89], the replicated
workers [Kaashoek 89a), etc.). To sustain these ideas
aDC+ + implementation of LINDA [Carriero 89]
mechanisms is proposed in section VI

IV. Class and Object Management

This section presents the basic strategies of the HDE
class and object managment implementation. It
details the HDE objects types and puts an emphasis
on the mechanism for naming and handling the
classes and objects. The presentation makes direct
reference to the HDE kernel interface.

IV.1 Class and Method Registration

An HDE class represents a collection of functions
(methods) that manipulates acommon set of data. Two
of the methods have special meanings, constructor and
destructor. The constructor allocates the resources
and initializes on object creation, while the destructor
releases the allocated resources when the object is
destroyed. To be accessible to any potential client (in
the same domain) an HDE class must be registered.
When a class is registered, the following information
goes to the HDE kernel:

e class name. This is a string used as a class identifier;

e list of base classes which the current class is
derived from;

e reference to the class constructor. This
reference is used by the kernel to invoke the
constructor method when an object is created;

e reference to the class destructor;

e format of the parameters passed on to- the
constructor invocation. This information is
used by the kernel for parameter marshalling
and unmarshalling in heterogeneous systems,
and for dynamic parameter type checking.

Studies in Informatics and Control,Vol.2,No.1, March 1993

In order to register an HDE class in C language,
the following call must be used:

int RegisterClass(char *pchClassName, char
*pchSupperclassList,
“ void * (*pfConstructor)(),
int (*ptDestructor)(),

char *pchParameterFormat);

After a class is registered, all class methods that
are allowed to be invoked by a client must also be
registered. On method registration, the following
information must be specified:

e method type;
e method name;

e class name. This is a class which the method is
associated with ;

e reference to the method. This reference is used
by the kernel to execute the method when
invoked;

e format of the parameters passed on to the
method invocation.

A method type tells HDE kernel how to execute
the method. The following types of methods canbe
distinguished in HDE:

o READ-specifies that the method invocation
modifies none of the instance variables. This
parameter is very important for distributed objects
composed of more than one copy. In this case the
copy consistency is automatically maintained,
because a method of READ type does not modify
the copy which it is executed upon.

e WRITE - specifies that the method changes
some instance variables (changes the object
state). Here, for distribuied objects, special
mechanisms must be provided in order to
maintain copy consistency when changed.

e SAVE - specifies that the current method saves
the object state (instance variables) on a
permanent storage. This method can be
invoked explicitly by client or automatically by
HDE kernel (for some object types of which
semantics asks for this).

e RESTORE - specifies that the current method
restores the object state from the permanent
storage. As for the previous type, this method
can be invoked explicitly by the client or
automatically by the HDE kernel.

Studies in Informatics and Control,Vol.2,No.1, March 1993

In C, a method is registered using the following call:

int RegisterMethod(int iMethType, char
*pchMethodName, char *pchClassName,

i int (*ptMethod)(), char
*nchParameterFormat);

Note that an HDE class exports only a set of
methods and no variables. In this way, the HDE
system enforces a "perfect” encapsulation, so that
the client is able to modify or read a variable using
but methods.

When a class is registered, the HDE kernel creates
a descriptor called class descriptor (CD). This
descriptor keeps all the information needed for
invoking any class registered method. In a CD,
each registered method has associated an
identifier and a reference to its implementation
(this information is supplied on class registration).
The symbolic name is used by the client to logically
identify the desired method, while the method
reference is used by the HDE kernel for
performing the method invocation, Also, CDs are
hierarchically organized to allow class inheritance.
To illustrate this, suppose that an object O of class
C is instantiated and method M of this object is
invoked. First, HDE searches for the method M
through the registered methods of class C. If the
method can’t be found, then HDE keeps searching
through the ancestor classes (within the same context
and later, within other contexts on the same site or
on remote sites, if the object is fragmented) until the
method is found.

IV.2 Object Creation

An HDE object is an instance of some
pre-registered class and is created by calling on the
HDE kernel by means of the following parameters:

¢ object type. This parameter describes what type
of an object is to be created (i.e. distributed,
replicable, etc.);

e site name;

e object name. Thisis astring used as an object identifier;

e class name. This is a string that identifies the
class where the object is instantiated;

e format of the parameters passed on to the
constructor. This describes the parameters format
which must be provided to the constructor;

o list of parameters passed on to the constructor;

The "site name" parameter identifies the site

where the object will be instantiated. If this
parameter is missing, the kernel tries to instantiate
the object on a local site. If the desired class is not
available to the local site, the kernel tries to find a
site (for which the class is available) in the domain,
where the object can be created.

When an object is instantiated, the HDE kernel
creates a Remote Object Descriptor (ROD) on
the class resident site (where the object is actually
created) and a Local Object Descriptor (LOD) on
the client resident site (Figure 12.a). After an
objectis created, the kernel returns a LOD reference
(that actually identifies the object) to the caller.
Using this reference (which is called the "object
handle"), the client can transparently access the
object, irrespective of the object type and location
(which may be changed with a migration). If the

object class server and the client are resident on the
same site, only the LOD is created (Figure 12.b).

To create an HDE object in C language, the
following call must be used:

HOBJ CreateObj(int iObjType, char *pchSiteName,
char *pchObjName,
char

. char
*pchParameterFormat, ...);

*pchClassName,

IV.3 Object Naming

In order to take full advantage of the distributed
system environment, it is mandatory that more
than one client share the same object.

For this, HDE can associate a symbolic name with
an HDE object. This can be done on object
creation by supplying the "object name”

Site A Site B
(") - -
ROD / .
. ass server context
Client context LOD /' A
——""/—‘
_ J
_ J
a)
Site A
r~ N\
| |
! J
Client context 3
Class server context
LOD
_ _

b)

Figure 12. Object creation

Studies in Informatics and Control,Vol.2,No.1, March 1993

parameter, or later by using a call for registering
the name (RegisterName).

Once an object name registered, any client in the
same application (or domain) can access the
object. An object that can be invoked by any client
in the same application is called a shared object,
while an object that can be invoked by any client in
the same domain is called a global object. A global
object may or may not be shared.

The global object name is unique across all sites
within thé same domain, while the shared object
name is unique only inside the same application.
A global object can be referred from another
domain by appending the domain name to the
symbolic name.

For invoking an object method, one should specify
in some way the object, the method (see the next
section) and pass on some parameters. Now, we
will dwell upon identifying the object. As already
pointed out, an object can be referred to by using
the local handle or the symbolic name . HDE
provides a service (LinkObj) for associating alocal
handle with an existing global object. When this
function is used, a LOD is automatically created
on the client resident site.

Let’s take an example for realizing how the
mechanism works. Suppose a client Cl instantiates
a global object O, and a client C2 (in the same
domain) wants to get access to the object. If C2
uses the object symbolic name to access it the
following algorithm holds:
* if O is not resident on the same site as C2 client
or LOD is not already present on its site, HDE

broadcasts a message to all sites within the
domain, asking about object O;

* the site on which the object O is resident
responds to the caller site with a message
containing all the necessary information to
locate the object;

* finally, the kernel delivers the message to the
destination.

Using a symbolic name is a flexible way of
accessing an object, but it implies some overhead
to search through all LOD and ROD lists in order
to acquire the reference to that object. This
method can be used when message traffic between
client and object is not so heavy.

That is why, HDE offers a better alternative to
getting access to the desired object through alocal

Studies in Informatics and Control,Vol.2,No.1, March 1993

handle. In this case, the client, before invoking any
method of object O, must query the kernel for the
local handle of object O (making use of the system
function LinkObj).

This is a more efficient approach to invoking an
object method, because the object LOD is much
faster to obtain (actually, as mentioned above, the
local handle can be the address of the LOD
structure). We say that a client requiring the local
handle for a global object is linked to that object.

IV.4 Method Invocation

When a client invokes an object method it must
specify the following information:
e object identifier. This can be either the object
handle or the object name;

e method identifier. This can be either the
method handle or the method name;

e format of the parameters passed on to the
method. This information is used by the kernel
for marshalling and unmarshalling parameters
in heterogeneous systems and for dynamic
parameter type checking.

o list of parameters passed on to the method;

As already said, an object can be identified by its
local handle or by its symbolic name. In a similar
way, a method can be identified using a symbolic
name or a method selector. The method selector
can be obtained calling the QueryMethSel HDE
service. Using the method name, the kerncl is
summoned to search through the class hierarchy
for finding out the desired method. On the other
hand, using the method handle is rather complex,
but the operation is more efficiently.

As an example, in C language, a method is invoked
using the following call (here both object and
method are identified by their symbolic names):

int ExecMethod(char *pchObjName, char
*pchMethodName,
char *pchParameterFormat, ...);

IV. 5 Object Migration

A migrable object is an object that can be moved
from one site to another. An object can only
migrate between two sites in the same domain.
HDE requires that on the destination site a class
server context for migrable object is present. When
an object is migrated, the HDE kernel

automatically invokes object methods of SAVE
and RESTORE type.

The object migration is transparent from a client’s
point of view. So far, two ways of referring an object
have been identified: by handle or by its symbolic
name, so that the following situations should turn up.

First, let us take an object with no symbolic name
and only referred through the local handle and
suppose that the object migrates to another site.
This object is only known at the client’s that has
instantiated it. In this case, after migration, the
HDE kernel automatically updates the necessary
information in LOD on the client site. So, the
handle to LOD remains unmodified. Now, let us
consider an object that could be identified by using
both local handle and symbolic.name. This object
can be referred by more than one client at the same
time. In this case, there will be made a different
approach. In this situation, when the object
migrates, a broadcast message containing the new
resident site name and the new remote handle is
sent to all the sites in the same domain. As a result,
on each site that contains a virtual object
associated with the migrated object, the LOD
information is automatically updated. Also, HDE
provides a complementary solution to updating
the LOD contents upon object migration. If the
object is not found on the site specified in LOD, a
fault appears. The HDE kernel treats it by sending
a broadcast message to all the sites in the domain
for querying the new location of the object. LOD
is then updated with correct information.

IV.6 Object Types

— Distributed Objects

A distributed object consists of one or more copies
resident on different sites in the same domain. Since
this kind of object can be referred by more than one
client at the same time, this object must be a global
object (with a global name associated with it). When
a distributed object is referred (linked) by a new
client, HDE automatically creates a new object copy
on the client resident site (if no one exists). One main
problem to solve is how to keep all object copies
consistent when the state of one copy is changed.
Thus, if a client invokes a method which modifies
some instance variables of one copy, the change
must be with all the object copies. When
registering a method, and in order to get high
performances, the programmer must specify

10

whether that method modifies (WRITE type) or
not (READ type) the object state. HDE handles
each type of method differently.

So, if a method not changing the object state
(READ type) is invoked, then HDE simply
delivers the message to the local server that has
instantiated the copy. In this case, the client
communicates only with the local copy. On the
other hand, if a method changing the object state
(WRITE type) is invoked, then the HDE kernel
broadcasts the current method to all distributed
object copies, using a reliable atomic broadcast
protocol. As previously pointed out, this protocol
guarantees that all copies receive messages in the same
order. Thus, all distributed object copies execute the
WRITE type methods in the same sequence and so
the copy consistency is maintained.

When a new client refers an existing distributed
object (Figure 13.a), a copy is migrated (if not
there) on the local site. So, new problems arise as
to keeping the copy consistency during migration.
For this reason, the distributed object class must
implement the Save and Restore methods that are
automatically invoked by the kernel. The general
algorithm creating a new copy is described below:

* Create a new distributed object class instance
on the local site (Figure 13.b).

* Send a message to invalidate all the distributed
object copies by using the RABMP service.
After having been received this message, an
object copy will ignore all further messages
(Figure 13.b).

* Invoke Save method and transfer the state to the
client site (Figure 13.c).

* Invoke Restore method on the client site for the
newly created object copy (Figure 13.c).

* Send a broadcast message (RABMP) to validate
all the distributed object copies (Figure 13.d).

- Replicated Object

A replicated object is an efficient tool for
designing fault-tolerant systems. Akin to a
distributed object, a replicated object consists of
one copy or more copies from different contexts
(possibly resident on different nodes in the same
domain). One of them is called master copy, while
the others are called slave copies. Any client that
communicates with a replicated object sends the
messages only to the master copy.

Studies in Informatics and Control,Vol.2,No.1, March 1993

Site 1
rClient \

Link to the
distributed object

_ HDE KemeJl
Site 1
,)
Client

Inslantiate

a new copy

Site 2
4 N
O
HDE Kernel
_ J
a)
Site 2

Invalidate all
distributed object
copies

HDE Kernel

q J\

Distributed object

Distributed object

(? ?Copyl

/ _HDE Kernel)

Q—]DE Kernel
b)
Distributed object
Site 1 Site 2 Site 3
rClit:nt Copy; ()
@ ()
Restore state Transfer the
Save state
current state S———
HDE Kemne HDE Kernel
i J emne LHDE Kernel)
<)

Distributed object
Site 1 ,

Site 2 Site 3
(E!ient a) (- Copy 2)

Copy 1
I [
(—
alidate all distributed
object copies
9 HDE Kernel \ (HIDEKsms)) / | HDE Kemel)
d)

Figure 13. Linking to a distributed object

Studies in Informatics and Control,Vol.2,No.1, March 1993

Site 3
s N
Copy 2
QiDE Kernel y,
Site 3

11

The slave copies are used transparently by the
system to attain a high degree of reliability. We
have already detailed the protocols upon which
replicated object is built (ROBP). Here, we will
only present some implementation elements for
this kind of object.

When a replicated object is instantiated, the
resilience degree must be specified. Remember
that the resilience degree specifies the maximum
number of crashes (copy destructions) that can
occur at the same time and the object still works.
Figure 14 presents a replicated object with the
resilience degree 2 (it has 2 slave copies). As one
can notice the master copy ROD keeps the
references to all slave copies RODs, while the
slave copies RODs maintain the back-references
to the master copy ROD. These references are
used internally by the kernel for the
communication protocol and for the recovery
process implementation. From a client’s point of
view, the replicated object is represented only by
its master copy. Thus, in LOD, only the reference
to the master copy ROD is kept.

When a copy is destroyed, HDE automatically
reconfigures the replicated object. Thus, if the
master copy crashes (Figure 14.a), then one of the
slave copies becomes the new master (Figure 14.b)
and the reference to the object contained in LOD is
changed. Afterwards, HDE checks if the number of
slave copies is larger than or equal to the resilience
degree. If not, the HDE kernel will negotiate with
other sites in the same domain, and if possible, new
copies are being created until the number gets equal
totherequired resilience degree (Figure 14.c). When
anew copy is created, an algorithm'similar to the one
creating a new distributed object copy appears. So,
also for type of object, the Save and Restore
method must be implemented for being invoked by
the HDE kernel during the new copy creation
process. As one can see, the recovery mechanism
is transparent from the client’s point of view,
because only LOD contents is modified and not
the handle or the symbolic name that represent the
object reference inside the client’s program.

— Persistent Objects

A persistent object is an object that saves its
current state to the permanent storage, whenever
it is changed. This is done automatically by HDE
kernel invoking the Save method. Thus, when a
method that changed the internal object state

12

(WRITE type) is invoked, the kernel invokes the
Save method for recording the new object state on
the stable storage. When a context terminates, the
persistent objects survive. Therefore, a persistent
object must have a global name to be referred
independently of any specific context execution.
For persistent replicated objects, only the master
copy is actually a persistent object, so the other
copies do not use the save/restore methods (if not
explicitly used in the user code).

In addition to the replicated-object paradigm, the
persistent objects provide a natural extension for
designing fault-tolerant systems.

When a node crashes, the objects are destroyed
from the volatile storage, but the last persistent
object state remains recorded on the stable
storage. So, when the site is repaired and activated,
the persistent object state is automatically
recovered from a previously saved state by using
the Restore method invocation.

— Foreign Objects

HDE has been designed to be an open system, i.e.
it allows the integration of other non-HDE
programs into an HDE application. For that, HDE
let such non-HDE contexts be defined as special
kinds of objects named foreign objects. The idea
of associating such an external context with some
sort of objects is the following.

Any program consists of some files on the stable
storage, i.e. executable files, data files,
configuration files. When that program runs, one
or more processes are instantiated. At the limit, we
can view the files on the stable storage like a
program description, and the process like a
program instance. Moreover, processes can
communicate with one another by using a specific
IPC-like mechanism provided by the operating
system. On the other hand, some operating systems
provide a de-facto standard interface that can be
used by any application intending information
exchange. For example, in OS/2 any applications
(possibly from different vendors) which conform
with such a standard as DDE (Dynamic Data
Exchange) specification, can interchange data. So,
the problem will be to incorporate these facilitiesinto
HDE system.

The HDE solution is presented in Figure 15.
Suppose an application that offers a clear service
interface to another application.

Studies in Informatics and Control,Vol.2,No.1, March 1993

Site 1 Site 2 Site 4
Client) (" Master copy E
Slave copy 2
ROD ROD
LOD
-1 -—_____—--'-'
_ » Site 3 \ J
Slave copy 1
ROD
e
N
PR
a)
Site 1
Site 4
(" Client) —
Site 3 Slave copy
)
LOD ROD
Mast
—1 aster copy V4
s
/‘
S SR
Site 4
b) r A
Slave copy 1
Site 1
rClient ™\ Site 3 ROD
)
Master copy O
C J
LOD ROD
L / Site 5
_/)
- Slave copy 2
—
ROD
c) i
T
Figure 14. Replicated object recovery mechanism |

Studies in Informatics and Control,Vol.2,No.1, March 1993

Those services can be used by any application that
conforms with the interface specifications. This
application can be viewed as a server providing
some services, while the applications that use those
services can be viewed as clients. Our goal is to give
HDE clients transparent access to the foreign
server services. To achieve this goal, a special class
for the foreign server has to be implemented . This
class must implement an appropriate interface to
the HDE-client and a specific interface to call the
foreign application services. When an object is
instantiated, a new application copy must be
created. Therefore, this HDE-class must support
the following method implementation:

* the constructor method instantiates a new program
copy. The HDE-object must keep in an instance
variable the reference to the.new application
instance. For example, this can be the process id
returned by the system on the newinstance creation.

* the destructor method removes (terminates)

Site 1
()

Client

HDE kernel

the current program copy from the memory.

* the other methods translate the arguments into
the appropriate format and call the specified
service.

Thus, the HDE-client may transparently access
the foreign application services by invoking the
HDE-object appropriate method.

IV.7 HDE Kernel services

This section is an informal presentation of the
HDE functions provided by HDE kernel which
must be called in C + +/C programs or optionally
used in DC+ + for handling the HDE- objects.
They are also used by HDE when translating a
DC+ + program. The functions for handling the
parallelism of active objects in C+ + are tightly
related to the underlying OS support, so they are
not discussed here. In fact, HDE promotes the use of
active objectsinDC+ +.

’

. S

Site 2
~
Foreign object
HDE object
Specific Inter-application
Communication Protocol
HDE kernel
_J

N

Figure 15. Foreign-object integration in an HDE - application

14

Studies in Informatics and Control,Vol.2,No.1, March 1993

Table 5. Class and Object Functions
RegisterClass(ClassName, SuperClassList, Constructorld, Destructorld, format)

— this function registers the specified class "ClassName". The "SuperClassList" parameter contains the list of superclasses
from which the current class is derived. The "Constructorld" and "Destructorld® represent the reference to the clasq
constructor and destructor implementation, while "format" parameter describes the type of parameters that must be passed
on to the constructor when an object is created.

CreateObj(ObjType, SiteName, ObjName, ClassName, format, parameters...)

— this function instantiates an object of type "ObjType" from the class "ClassName" on the site specified by "SiteName!
parameter. The "parameters” and “format" represent the parameters passed to the class constructor and their format
. If the "SiteName" is NULL, then the object is created on the local site. The name specified by "ObjName" id
automatically associated with the created object. This function returns a local handle which identifies the object.

DestroyObj(ObjHandle)
— this function destroys the object referred by handle "ObjHandle",
RegisterName(ObjHandle, ObjName)

— this function associates a symbolic name with an object (identified by the handle "ObjHandle"). This name is known
by all objects in the same application (HDE_SHARED type) or domain (HDE_GLOBAL type).

DeregisterName (ObjName)
— this function deregisters the name "ObjName".
LinkObj(ObjName)

— this function returns a local handle to the global object "ObjName". Using this handle, any methods of the objec
"ObjName" may be invoked. All objects from the same site obtain the same local handie for the same object.

UnlinkObj(ObjHandle)

— this function is used in conjunction with the previous one. When LinkObj function is called, a reference counter
associated with object, is automatically incremented. When UnlinkObj is called, the reference counter ig
decremented. An object can be destroyed only if its reference counter is one.

MigrateObj (ObjHandle, siteName)

— this function is used to migrate an object from resident site to a remote site specified by "siteName",
CopyObj(ObjHandle,siteName)

— this function has the same meaning as MigrateObj function except that the source object is not destroyed.
SaveObj(ObjName)

— this function saves the object state to the permanent storage by invoking the save method.
RestoreObj(ObjName)

— this function restores a previously saved object state from the permanent storage by invoking the restore method.

LocateObj(ObjHandle)
LocateObj(ObjName)

— this function returns the site identifier to where the object is located.
GetObjName(ObjHandie)

— this function returns the symbolic name from the object handle.

Studies in Informatics and Control,Vol.2,No.1, March 1993 15

Table 6. Method Functions

HegisterMethod(MethodType,CIassName,MethodName,Methodid,formai)

— this function registers a method of type "MethodType" for the class "ClassName". The "MethodName" is a symbolig
name which identifies the method across network. The "Methodld" is the reference to the specified method, whil

“format" describes the type of passed parameters, and the type of returning result. When a class is registered, all methods
of that class must also be registered.

DeregisterMethod(ClassName,MethodName)

— this function deregisters the method "MethodName" of class "ClassName".
QueryMethSel(ClassName,MethodName, format)

— this function is used by the client to obtain a handle to the desired method.

ExecMethod (ObjName,MethName, format,parameters...)
ExecMethod(ObjName,MethHandle,parameters...)
ExecMethod(ObjHandle,MethName, format,parameters...)
ExecMethod (ObjHandle,MethHandle parameters...)

— this function invokes a method (specified by the handle "MethHandle" or by the name "ObjHandle"} of a remote object
(specified by handle "ObjHandle" or by name "ObjName"). The "parameters" contain the values needed invoke th
method and receive the results. In plain C these functions have different names.

Table 7. Group Functions

CreateGroup(GroupName)

— this function creates a group with name "GroupName".
DestroyGroup(GroupName)

— this function destroys the group called "GroupName".

AddObjToGroup(GroupName,ObjHandle)
AddObjToGroup{GroupName,ObjName)

— this function adds an object identified by its handle "ObjHandle", or by its name "ObjName" to the group
"GroupName".

RemoveObjFromGroup(GroupName, ObjHandle)
RemoveObjFromGroup(GroupName, ObjName)

— this function removes an object identified by its handle "ObjHandle", or by its name "ObjName" from the group
"GroupName".

16

Studies in Informatics and Control,Vol.2,No.1, March 1993

V.DC+ +

V.1. Language Extension

We propose here an extensionof C+ + (DC+ +)
that integrates the services provided by HDE. The
extensions are both syntactic (involving some type
modifiers for classes, objects and methods) and
semantic. It is out of the scope of the paper to
describe the full syntax and semantics of DC + +.

—virtual

This keyword is also present in C+ + standard
language. In DC+ + it can precede a class
declaration, denoting that the class is implemented
by another context. An object instantiated from a
virtual class is a virtual object. All virtual class
methods are simple invocations of the corresponding
methods from the server class. In fact, each virtual
class method implements a stub (like in RPC) which
makes the method invocation mechanism
transparent to the client. So, from the client’s point
of view the server class is represented by the virtual
class that gives total transparency to method
invocations. The semantics of a virtual object is
modified (the state of the object cannot be accessed
directly even if it is publicly defined).

The following five keywords (shared, distributed,
global, persistent and replicated) are applied to the
object declaration and can be viewed as type modifiers
in the standard C language (c.g. register, auto, static).

- shared

This modifier denotes a HDE-object that can be
accessed through method invocation by more than
one client at the same time, or by the same client
from different threads. A shared object must have
a global symbolic name unique over the
application. This is used like an object reference
by any client that wants to access it. By default, this
name is assumed to be the same as the object
identifier. For example, suppose we want to
instantiate a shared object from the Point class. For
that we must simply write:

shared Point pt(10, 10);

If the object exists (being created before) then the
HDE kernel creates, if necessary, a LOD on the local
site and returns the handle (in fact the mechanism is
similar to a LinkObj function invocation). From the
application point of view, a shared object is similar
toa global variable in a traditional language (but with

Studies in Informatics and Control,Vol.2,No.1, March 1993

concurrency control explicitly handled by the
structure of passive or active objects).

- distributed

This modifier denotes a distributed HDE-object.
In some respects, a distributed object is similar to
a shared object. Like a shared object, it can be
simultaneously accessed by more than one client.
But, while a shared object is represented internally
by a single copy, a distributed object has a copy on
each client resident site. For example, to
dynamically instantiate a distributed object , the
following code may be written:

distributed Point *ppt;

ppt = new Point(10, 10, RED);

- global

The global keyword precedes a class declaration,
by specifying that the class may be remotely used
to instantiate a virtual object. It also specifies that
the class must be registered. Once a class is
registered, it can be accessed from any other client
context (or from its own).

When this keyword precedes an object
declaration, it has almost the same meaning as
shared keyword. Unlike shared modifier that
defines an object with a unique symbolic name
inside the same application, the global modifier
defines an object with a unique symbolic name
over the entire domain. So, a global object may be
shared by multiple applications concurrently. The
global modifier applied to an object instantiation
is composable with other modifiers (distributed,
replicated, persistent).

- persistent

The persistent keyword is used to instantiate a
persistent HDE object. Remember that a persistent
object is an object that saves its state on the
permanent storage whenever a method changing the
object state is invoked. This is done automatically by
the HDE kernel through object Save method
invocation. In a similar way, a persistent object is
created using a statement such as:

persistent Point pt(10, 10, RED);

- replicated
The replicated keyword is used to instantiate HDE

17

replicated objects. This modifier is especially
important, because it gives the user the
opportunity to specify the replicated object
resilience degree. In this respect, the desired
resilience degree of the replicated keyword is put
in brackets. So, in order to create an object which
must survive at two simultaneous crashes, the
programmer must declare the object as follows:

replicated(2) Point pt(10, 10, RED);
By default, the replicated keyword without
brackets sets the resilience degree at the value 1.
For example, when a replicated object with

resilience degree equal to 1 must be instantiated,
the programmer must simply write:

replicated Point pt(10, 10, RED);
which is the same as:-- .

replicated(1) Point pt(10.q10, RED);
Like in C language, the HDE-modifiers can be
combined to form more complex modifiers. For

example, on instantiating a persistent and
replicated object, the programmer might write:

persistent replicated Point pt(10, 10, RED):

As an example, for this DC+ + declaration, the
following C+ + code is generated (the constants
used in the code are self-explanatory):

Point pt(HDE_REPLICATED | HDE_PERSISTENT,
NULL, "pt*, "Point', format, 10, 10, RED);

Obviously, not all combinations are admitted (e.g.
it has no meaning to combine shared and
distributed modifiers in the same declaration).

The next table gives the list of all valid
combinations of object instantiation modifiers.

shared|global [distributed jpersistentfeplicable
shared — — - X X
global — - X X X
distributed| — X —~ X -~
persistent | X X X - X
replicable | X X - X -
-at

This keyword is used on the instance creation for
specifying the desired site where the object must
be created. For example, to instantiate a shared
object on "site_1" we must write:

shared Point pt(10, 10, RED) at "site_1";

18

- read, write, save, restore

These keywords are used to define a public method
of type READ, WRITE, SAVE or RESTORE.
When the method is registered, the proper type is
specified. By default (if none of these keywords is
specified), the method type is assumed to be
WRITE, so that by default a distributed object
ensures the copies consistency.

- process

This keyword defines a special method
representing a basic process (thread of execution)
that is executed in background (relative to other
method execution). This method has no name or
parameters (and so, its operation cannot be
invoked as a normal method is) and starts after the
object constructor class ends. An HDE object can
have at most one process method.

- parallel

This keyword allows the execution of its method in
parallel with the other method invocations. Also,
there may be more than one invocation of the same
method in progress (running in parallel). The
methods without parallel or process attributes are
executed sequentially in the same thread. If a class
has at least one parallel or process type method,
any object instantiated from this class is said to be
active. On the contrary, a passive object is an
object instantiated from a class with only
sequential methods. The differences between
active and passive objects are from both the
execution structure (see Figure 19) and the
external behaviour points of view. A passive object
executes all its methods sequentially, in the same
thread of the context, which is allocated to all its
passive objects.

An active thread is allowed to have a collection of
methods sequentially executed (but not with respect
to other objects) and the rest of them executed in
parallel. So, the problems of synchronization and
concurrent access to the object state may be
efficiently and flexibly handled by the class
implementor if choosing some methods that critically
modify the state to be sequentially executed.

An active object has one thread allocated to its
process method (which is started after the
constructor execution), one thread for the group
of sequentially executed methods and a pool of
threads for the methods executed in parallel,

Studies in Informatics and Control,Vol.2,No.1, March 1993

So, an HDE context may have one or more active and
passive class instances (objects).A trade-off must be
reached to obtain a level of granularity for some
context complexity. Figure 16 shows the HDE
kernel/context interaction thread, which is the one
that schedules the methods calls (upcalls) in the
HDE kernel.

To summarize, an HDE context may eveniually
have the following threads executing in parallel:
— one thread for all the passive objects;
— one thread for each active object, each one
executing the sequential methods of that object;
— one or more threads for each parallel method;
one thread for each active object, each one
executing the process method,;
- one general scheduling thread.
The programmer can solve the synchronization
(including the critical section) problems by explicitly
using the synchronization mechanisms provided by
HDE. But, without them, an HDE context may
implicitly ensure its consistency if the following rules

are obeyed:

— all context global non-object variables (if
somebody insists on using them) must be
modified only via passive objects;

— all active object state variables must be modified
only by the sequential methods of the object;

— instead of the main C+ + function, a special
HDE main function is used (the context may start
its parallel threads only after HDE main returns);

The active object internal parallelism may be used
only if the object is a shared or global one. So, HDE
active objects allow an easy and flexible
implementation of a communication paradigm
called distributed data structure(DDS) [Kaashoek
89a). But an HDE active object is more than a
distributed data structure (in its original
acceptance) because beyond its internal
parallelism (hidden or not to the user), it allows
the fragmentation of some functions (HDE
acceptance of a fragmented object via its class
hierarchy installed on different computers) and
replication,

passive
LR Y -M methods

Code
LI B I I O andData
active methods
object b s diih and
[) \ pl‘DCCSS
‘sequential parallel
Ipassive objects thre / activelybject threads
il Executic
LI N) i
support

sequential methods threa(\ / parallel methods th/eads basic process thread

sequential methods thread

HDE kernel - context
interaction thread

Figure 16. HDE Context Structure

Studies in Informatics and Control,Vol.2,No.1, March 1993

19

V.2 A Simple Example

We give here a simple example illustratingDC + +
facilities for distributed programming. First, the
C+ + program is presented (Figure 17.a) and
then a distributed alternative written in DC + + is
proposed (Figure 17.b, c¢). The C+ + program
defines and implements two classes ("Pixel" and
"Point" classes), instantiates an object (called "pt")

// Pixel class definition
class Pixel {
int x; // horizontal position
inty; // vertical position
public:
Pixel(int xPos, int yPos) // class constructor
{x = xPos; y = yPos;};
int GetX(void) {return x;}; // get current horizontal position
int GetY (void) {return y;}; // get current vertical position
void SetPos(int xPos, int yPos) // set new point position
{x = xPos; y = yPos;};

h

/ Point class derived from Pixel
class Point : public Pixel {
int colour;
public:
Point(int, int, int); /f class constructor
int GetColour(void) {retum colour;}.// get current point colour
void SetColour(int col)
{colour = col;};

// set point new colour

h
Point::Point(int xPos, int yPos, int col) : Pixel (xPos, yPos)

{

colour = col;

}

main()

{
Point pt(10, 10, RED) ; // the "pt" object is created
pt.SetPos(10, 12);

Figure 17.a. C+ + Program code

20

and invokes an object method. In the DC+ +
distributed version of that program both classes
are implemented by one module (Figure 17.b),
while the object instantiation and method
invocation take place in another module (Figure
17.c). As the following section explains, this code
may be converted to the standard C+ + code,
using the DC + + translator.

/I Pixel class definition

global classPixel {
int x;
inty,

public:
Pixel(int, int);
read int GetX(void) {return x;};
read int GetY(void) {return y;};
void SetPos(int xPos, int yPos)

{x = xPos; y = yPos;};
h

/I Point class derived from Pixel
globalclass Point: public Pixel {
int colour;
public:
Point(int, int, int);
read int GetColour(void) {return colour;};
void SetColour(int col) {colour = col;};

I
Pixel::Pixel(int xPos, int yPos)
{
x = xPos, y = yPos;
}

Point::Point(int xPos, int yPos, int col) :
Pixel(xPos, yPos)
{

colour = col;

hde_main()
{

// initialization code

Figure 17.b. DC+ + Server code

Studies in Informatics and Control,Vol.2,No.1, March 1993

virtual class Pixel

{

public:
Pixel(int, int); // class constructor
int GetX(void); // get current horizontal position
int GetY (void); /1 get current vertical position

void SetPos(int, int); // set new point position

b

virtual classPoint: public Pixel

{
public:

Point(int, int, int); // class constructor
int GetColour(void); // get current point colour
void SetColour(int); // set point new colour

h

main()
{
Point pt(10, 10, RED); // the "pt" object is created
pt.SetPos(10, 12);
b
Figure17.c.DC + + Clientcode

In the server module code the "Pixel" and "Point"
class definitions are preceded by the global
keyword, that is, both classes should be registered
(to be accessible from other contexts). In the client
module (Figure 17.c), both classes are preceded by
the virtual keyword that is, the class is implemented
by another module and is called a virtual class (not
to be taken for C + + virtual modifier).

V.3 DC+ +/C+ + Code Mapping

In this section we present the mapping of
DC+ +language constructions to plain C+ +,
detailing the previous example.

Class Registration

A class declaration preceded by the global
keyword is automatically registered when the class
server moduleisrun. Here isthe C + + code which
performs this task.

First, the call functions of the constructor methods
of each class are defined:

J/ function to call the pixel class constructor
void *C_Pixel(int x, int y)
{

return (void *)new Pixel(x, y);

}

Studies in Informatics and Control,Vol.2,No.1, March 1993

// function to call the point class constructor
void *C_Point(int x, int y, int col)
{

return (void *)new Point(x, y, col);

}

This level of method encapsulation is needed
because some C+ + implementations [Stroustrup
87] have no chance to obtain the address of the
methods (for their registration).

Now, the "Pixel" class can be registered in the main
part of the server context:

/I register class Pixel
RegisterClass("Pixel", NULL, C_Pixel, format, NULL);

Here, "Pixel" is the symbolic class name, C_Pixel
represents the reference to the constructor and
"format" is a string describing the passed
parameters format on the constructor invocation.
In this case, the format must specify that two
integers are passed on as parameters and a pointer
to the instantiated object is obtained. The second
parameter is a string containing a list of all
superclass symbolic names. Here, this parameter
is NULL because there is no ancestor (base class)
for Pixel class. The last parameter is a reference to
the class destructor (in our case it is NULL
because it is not implemented). When the
registration is performed, the HDE kernel creates
the class descriptor (CD) automatically. The Point
class is registered in the same way:

// register class Point
RegisterClass("Point", "Pixel”, C_Point, format, NULL),

Here, the second parameter contains the symbolic
name of the "Point" ancestor class. If there are more
ancestors than one, their symbolic names are
delimited by blanks. After having executed this
function, CD is created and linked to the Pixel CD.

Usually, C + + has more than one constructor for the
same class, using the overload mechanism. This is
possible because C+ + takes care of calling the
correct method (i.e. constructor) for the given
argument. HDE also provides a similar mechanism.
For example, if you want to define another
constructor method for the Point class, you may use
the same class register function:

// register class Point
RegisterClass("Paint", "Pixel", C_Point1, format1, NULL);

One must therefore define another function
(C_Pointl) for calling the Point constructor

21

method with arguments specified by "format1"
parameter. When a Point object is instantiated,
HDE compares the arguments passed and calls
the appropriate constructor.

Method Registration

When a class is registered, all class methods that a
client is allowed to invoke (which are in the public
section of the class declaration) must also be
registered. To register a method, the same
approach as registering a class must be taken.
First, a function invoking the desired method is
defined (the explanation is the same as for
constructor/destructor methods). For example, to
register SetColour and GetColour methods (of
Point class), the following code may result:

/I function to SetColour method
void Point_SetColour(Point *ppt, int col)
{
ppt- > SetColour(col);
}
/{ function to GetColour method
int Point_GetColour (Point *ppt)
{
return ppt- > GetColour();

}

Second, the class method can be registered:

/f register SetColour method

RegisterMethod (WRITE, "Point", "SetColour",
Point_SetColour, format);

// register GetColour method

RegisterMethod (READ, “"Point", "“GetColour",
Paoint_GetColour, format);

Note that the "format" parameter has the same
meaning as in the class registration function.

Virtual Classes

A virtual class describes the appropriate global
class (possibly implemented by another context)
interface, accessible to the client. For each virtual
class, the preprocessor modifies the definition and
generates a specific implementation as follows:

/f Pixel class definition. This class is implemented under
another context

class Pixel : HDEClass // derived from HDEClass

{
public:

22

void Pixel(char fCreate, long objType, char *abjName,
char *siteName, int x, int y);

void ~ Pixel(void);

int GetX(void);

int GetY(void);

void SetPos(int, int);

/i Point class definition
virtual classPoint: Pixel

{
public:
void Point(char fCreate, long objType, char *objName,
char *siteName, int x, int y, int colour);
void "~ Point(void);
int GetColour(void);
void SetColour(int);

}

One can notice that the first class constructor
parameter is a flag called fCreate. This flag is true
for the first virtual class level in the class hierarchy
and false for the others. This is required for
overriding the C+ + standard constructor
method calling strategy. The base class
constructor method is always called before the
derived class constructor. For example, when an
object from class Point is instantiated, the class
Pixel constructor is called first and the constructor
of class Point is called afterwards.

On the other hand, the first idea that might come
up is that when a virtual class constructor is called,
then the corresponding real class constructor is to
be invoked. So, when the Point local constructor is
called, HDE automatically invokes the
corresponding constructor via C_Point function.
When C_Point invokes the real Point constructor,
the real Pixel constructor is also invoked. In this
way, a virtual Point object is created. As a
conclusion, when a local Point object is
instantiated, then the local Pixel and Point
constructors are invoked, and consequently,
virtual Pixel and Point objects are created via HDE
messages. But this situation is unacceptable
because two real objects are created for a local
Point object: a Point object and a Pixel object. The
solution adopted is to filter the remotely created
object invocation. Thus, when a local Point object
Is instantiated, only the constructor of the global
Point class must be invoked, while the global class
Pixel constructor invocation must -be ignored.
Practically, fCreate selects all virtual classes which

Studies in Informatics and Control,Vol.2,No.1, March 1993

the real class constructor must be invoked for. For
example, when a Point class instance is created
then the fCreate parameter is true for the "Point"
class constructor and false for the "Pixel" class
constructor. Each invoked class constructor
verifies the fCreate parameter and, if true, then the
virtual class constructor calls CreateObj function
that invokes the global class constructor. So, the
preprocessor generates the following C+ + code
for Point class constructor:

// local Point class constructor

Point::Point(char fCreate, long objType, char *objName,
char *siteName, int x, int y, int colour) :

Pixel (FALSE, OL, NULL, NULL, 0, 0)

{
if (fCreate)
//instantiate an object, and get the handle to local
object descriptor
iHlod = CreateObj(objType, siteName, objName,
"Point", format, x, y, colour);
}

A similar problem as for class constructor method
must be solved for destructor method. So, when a
virtual class destructor method is invoked (using
the C+ + delete operator), also the real object (at
the server) must be destroyed. Because C + + uses
a different approach to invoke the destructor
method (first the object’s base class destructor is
invoked and later, the ancestor class destructor),
the preprocessor generates the following code:

// local Point class destructor
Point:: ~ Point(void)

{
if (iHlod) {
// destroy the real object
DestroyObj(iHlod);
iHlod = NULL;
}
}

This code ensures that DestroyObj is called only
once when an HDE-object is destroyed.

All virtual classes must be derived from a base
class called HDEC]lass, which describes the
communication protocols and contains some
useful instance variables. One of them is iHlod,
which contains a handle to the local object
descriptor returned when the real object is
created. Also, the HDECIass contains another
instance variable named iErr, the last error code

Studies in Informatics and Control,Vol.2,No.1, March 1993

resulted from a method invocation. This is a public
(in the current context) variable, so the programmer
should test it by using the following code:

if (pt.iErr | = HDE_OK)
// an error occurred
... handle the error

Object Creation

When an object is instantiated a virtual object is
automatically created (from the virtual class) on
the local site. The virtual object is, somehow, like
a null proxy object (it has no actual state). From
the user’s point of view, there are no differences
between a virtual class and any other common
C+ + class. For example, in order to instantiate a
Point object, the programmer must simply write:

Point pt(10, 10, RED); // Instantiate an object from class Point

The preprocessor expands this statement by
adding the proper parameters needed for calling
the CreateObj functions as follows:

Point pt(0L, NULL, NULL, "Point", format, 10, 10, RED);

On the object creation we may have the following
situation:

— The client and server modules are on the same
site and the class hierarchy is implemented in the
same context. In this case, the local object handle
(iHlod) points to ROD as shown in Figure 18.a.

- The client and server modules are resident on
different sites and the class hierarchy is
implemented in the same context. That means
that there are no ancestor virtual classes (for the
Point class) inside server. In this situation iHlod
contains the reference to LOD (Figure 18.b).

— The client and server modules are resident on
different sites and the Point class hierarchy is
implemented by different servers (Figure 18.c).
In our example, that means that Pixel is a virtual
class implemented by another server. So, the
server which implements Point class becomes a
client for the server that implements Pixel class.
In this case, such an object has been called
fragmented object (this term differs from the
one used in SOS [Shapiro 89] project) because
the methods and instance variables are
implemented by different server modules.

23

Site

(Virtual Point object h
Point object
ROD
Server (implements Pixel and
Point classes)
_ J
Site A a) Site B
—) 4)
Virtual Point object
Point object .
LOD
ROD
e e—T Server (implements Pixel and
———
Point classes)
L J _ y,
b) Site B
Site A '4)
(" h . .
Virtual Point object Point object
(fragment 1)
ROD
LOD / Server (implements Point class)
— l
4 f J
Site C

\. J

°)

\

ROD

Point object
(fragment 2)

Server (implements Pixel class)

J

Figure 18.Point object possible implementations

24

Studies in Informatics and Control,Vol.2,No.1, March 1993

Method Invocation
Let’s consider the simple method invocation:

col = pt.GetColour();

In order to yield the desired behaviour, the
preprocessor expands the clients virtual class
methods so that the actual class methods should be
invoked. In this case the following code will be used:

// local class GetColour method implementation
int Point:: GetColour(void)
i
int colour;
ExecMethod (iHlod, “GetColour", format, &colour);
return colour,
}
// local class SetColour method implementation
void Point::SetColour(int colour)
{

ExecMethod (iHlod, "SetColour", format, colour);

}

We will further use a symbolic name for denoting
the desired method. Some other possibility would
be to query a method selector when the virtual
class is instantiated. Thus, the method selector
could be used for replacing the symbolic name of
the method. Following this approach, the code
generated by precompiler is rather complex, but
the operation is more efficient. We will exemplify

Site A Site B

with local Point class.

// Point local class after expandation
class Point : Pixel
{

METHSEL sGetColour, sSetColour;
public:

..... // method prototypes

In order to get the method selectors, the
constructor method will be modified.

/I new constructor implementation

Point::Point(char fCreate, long objType, char *objName,
char *siteName, int x, int y, int colour):

Pixel (FALSE, OL, NULL, NULL, 0, 0) {
if (f{Create)

iHlod = CreateQbj obJType siteName, objName,
"Point", format, x, y);

// query GetColour method selector
sGetColour = QueryMethSel("Point", "GetColour", format);

/I query SetColour method selector
sSetColour = QueryMethSel("Point", "SetColour", format);

}

Obviously, the implementation of the virtual class
methods will be correlated to the use of method
selector. For example, the SetColour method will
be generated as follows:

I) ~
Vitual object (proxy)

Pomt object

\ Server
ROD \ ¢
/ /
/ eference to the

LOD e GetColour method

CD (Point)

GetColor
e J
T CD (Pixel)
L Nil

Figure 19. HDE-object method invocation

Studies in Informatics and Control,Vol.2,No.1, March 1993

25

/I local class SetColour method implementation
void Point::SetColour(int colour)

{
ExecMethod (iHlod, sSetColour, colour);

}

Figure 19 presents a method invocation path from
client to server when all virtual classes are
implemented in the same server. Provided that
some classes in the server are virtual (they are
implemented by another server), the messages will
be delivered hierarchically to the server actually
implementing the required class.

VI. LINDA Mechanisms
Implementation in HDE

LINDA [Carriero 89] is a parallel programming
language that supports both the distributed data
structure paradigm and the replicated worker
programming style [Tanenbaum 89]. A distributed
data structure is a data structure that can be
concurrently handled by one or more processes.
From the process point of view, all the operations that
are allowed to be executed on a distributed data
structure are atomic (indivisible). The replicated
worker programming style assumes that a worker
which usually is a process that has to do some work
ona set of data is replicated. By sharing a distributed
data structure, multiple workers can do their jobs in
parallel, thus increasing the application execution
productivity. In LINDA, the distributed data
structure is implemented like a global content
addressable shared memory called Tuple Space
(TS). Elements contained in TS are called tuples. On
TS five atomic operations are defined:

- out - put a tuple in TS;

— read - read a tuple from TS. This is a synchronous
operation, and so, if the tuple is not in TS, it waits
until some worker inputs a tuple (using out
operation) that matches the required tuple;

- in - read and remove a tuple from TS. This is
also a synchronous operation.

~ rdp - read a tuple from TS without waiting
(asynchronous). If the required tuple is not in TS,
this operation returns false (otherwise true).

~ inp - read and remove a tuple from TS. As in the
previous operation, if the tuple is not in TS, this
operation returns a false value, without waiting.

This section briefly presents how LINDA
mechanisms can be implemented in HDE using

26

DC+ +. TS is implemented as an HDE active
distributed object that supports as methods all the
five operations (Figure 20.a). Both rdp and read
methods are preceded by the read modifier (in
HDE a method is assumed to implicitly have the
write modifier) because they do not modify the
object. So, these methods are performed
efficiently on the local object copy. Both
synchronous methods (in and read) are
implemented as parallel methods (in different
threads) in order to avoid other method
invocation. They call repeatedly the
corresponding asynchronous methods (inp and
rdp), until the required tuple is found. This is a
simple but inefficient implementation, because the
processor time is wasted in inp and rdp methods
invocation. The other solution, more performant,
but not so simple, is to use the HDE explicit
synchronization primitives.

In LINDA, a typical worker takes some work from
the TS, performs it and invests the results back in
the TS. This takes place repeatedly in a loop, until
all work is finished. Figure 20.b is an example of
such a worker that is encapsulated in an HDE
active object. In the constructor method, either a
distributed TS object named "ts" is created (if not
existing) or a reference to an existing object is
obtained (if already created). In the process
method, the worker asks for some work to do by
invoking TS in method, performs it and invests the
results back in the TS by invoking out method.
Also, in the main loop, it increments an internal
counter (by invoking IncTuples() method) that
keeps the total number of jobs done.

The work to be performed enters TS by a process
called master (Figure 20.c). After that, the master
waits until the work is completed and gets the
results one by one. Also, the master instantiates all
workers in the domain.

In this example the workers do not generate some
further work or create other workers, although
HDE supports all the needed mechanisms for this.

The application structure, built up from objects in
the master context, worker contexts and TS context,
is presented in Figure 21. One may notice that in the
master context and in each worker context, there are
virtual objects for the distributed TS unique object.
Also, on each worker and master site, a copy of TS
context is migrated. Although on one site there are
more than one worker, only one TS copy will exist.

Studies in Informatics and Control,Vol.2,No.1, March 1993

/{ Tuple class definition
global class TupleSpace {
... instance variables ...
public:
BOOL inp(...);
read BOOL rdp(...);
void out(...);
parallel voidin(...);
parallel read voidread(...);
b
BOOL TupleSpace::inp(...)
{

// asynchronously read & remove a tuple from TS

}

BOOL TupleSpace::rdp(...)
{

/Il asynchronously read a tuple from TS

}

void TupleSpace::out(...)

{
/f put a tuple in TS

}
void TupleSpace::in()
{
while (linp(...));
// read & remove a tuple from TS

}

void TupleSpace::read ()

{
while (!rdp(...));
// read a tuple from TS

}

hde_main()
{

; // no module initialization code here
}

Figure 20.a. Tuple Space Implementation

Studies in Informatics and Control,Vol.2,No.1, March 1993

/f Tuple class definition
virtual class TupleSpace {
public:
TupleSpace(...);

~TupleSpace(...);
void rdp(...);

void inp(...);

void in(...);

void out(...);

void read(...);

}f Worker class definition

global class Worker {
int processTuples;
distributed TupleSpace &ts;

public:
Worker(void) {processTuples = 0;};
void IncTuples {processTuples + +;};
read int GetStatus(void) {return processTuples;};
process MainWork(void);

h

// Worker class constructor method

Worker::Worker(void)

{
ts = new TupleSpace(...);
processTuples = O,

}

{/ Worker class destructor method

Worker:: ~ Worker (void)

{

delete(ts);

}

/] Worker class process code
Worker::MainWork(void)

{
while (TRUE) {
ts.in("to_do", ...);
... process touple
ts.out("done’,);
IncTuples();
}
}
hde_main()
{
: // no module initialization code here
}

Figure 20.b. Worker Class Implementation

/l Tuple class definition
virtual classTupleSpace {
public:

TupleSpace(...);

~TupleSpace(...);

void rdp(...);

void inp(...);

void in{...);

void out(...);

void read(...);

b
// Worker class definition
virtual class Worker {
public:
Worker (void);
~Worker(void);
int GetStatus(void);
b
main()

{

distributed TupleSpace ts; // Creates the tuple space object using the same name "“ts" as in worker objects.

Worker wk1 at "Site_1";
Worker wk2 at "Site_2";

Worker wkn at "Site_N";
for (each work to be done)
ts.out(‘to_do", ...);

// get result loop

while (exist touples in TS) {
ts.in("done", ...);

}

// This provides the same distributed object from TupleSpace class to be used
/f in the whole application.
/f creates some workers on different sites

// all workers created by this context are automatically destroyed by the kernel when the program ends

28

Figure 20.c. Master Module Code

Studies in Informatics and Control,Vol.2,No.1, March 1993

Site 1

Site k

~

worker context

P

TS virtual

TS distributed object

Figure 21, HDE structure of a Linda like application

master context A
é wkl virtual)
object O
TS virtual .
object wkn virtual
object
% R

object

Qv]rj object

TS virtual

TS object\.\

TS context

|

Site m
r)
/ TScontext
/TS object
copy
TS virtual
object
an object
L worker context)

Studies in Informatics and Control,Vol.2,No.1, March 1993

VII. Concluding Remarks

The paper has described the architecture and some
basic (operating system independent) strategies and
mechanisms of the HDE (a Heterogeneous
Distributed Object-Oriented Environment), a system
which tries to merge uniformly the " object-oriented"
and "distributed" paradigms and which strives to be an
environment for designing, implementing and
executing O-O distributed applications.

The system has language independent mechanisms
for supporting distribution like attributes of objects:
mobility, fragmentation, replication (both for fault-
tolerance data availability and user residence copy
existence) and persistence. However, HDE
demonstrates a high degree of simplicity and
transparency by allowing the use of all these features
ina C+ + extension (DC+ +).

One of the aspects which differentiates various DO-O
OS and which makes them apart from the classical
object model is the exploitation of and the access to
parallelism. A derived problem s that of active objects.
HDE allows the handling of parallelism at variable
degree of granularity (from the object methods up).
The parallelism of a class hierarchy implementation is
explicit (but with high level language constructs, ie.
DC+ +), while at the user level is transparent.

For supporting these features, HDE relies on a
private protocol architecture oriented towards the
group communication. The protocols present
different degrees of reliability. Its services are
implicitly used by HDE application via the HDE
object handling (fragmented, distributed and
replicated objects), but may also be explicitly used.

The future work of the HDE group will be the
completion of HDE implementation on a
heterogeneous platform (now limited to UNIX/AIX
and 0S/2). Also, the CASE-HDE application for
designing, implementing and testing DC+ + user
applications will be one major goal.

REFERENCES

ALMES, G., BLACK AP. and LAZOWSKA E.D,,
The Eden System: A Technical Review, IEEE TRANS.
ON SOFTWARE ENGINEERING, January 1985.

BAL, H.E.,, KAASHOEK, M.F, and
TANENBAUM, A.S., A Distributed
Implementation of the Shared Data-Object
Model, Proceedings of the Workshop on

30

Distributed and Multiprocessor Systems, Fort
Lauderdale, FL, October 1989.

BALTER, P, BERNADT, J., DECONCHANT,
D. and KRAKOWAK S., Modele d’Execution du
Systeme Guide, Rapport Technique no. R-3,
IMAG, decembre 1987.

BLACK, A, HUTCHINSON, N., MCCORD, B.
and RAJ, R, EPL Ptogrammer’s Guide, Eden
Project, Dept. of Computing Science, Univ. of
Washington, Seattle, Washington, January 1984.

BLACK A.,, HUTCHINSON, N., JUL, E,
LEVY, H. and CARTER, L., Distribution and
Abstract Types in Emerald, IEEE TRANS, ON
SOFTWARE ENGINEERING, January 1987.

CARRIERO, N. and GELENTER, D., Linda in
Context, COMMUNICATIONS OF THE ACM,
April 1989.

HUTCHINSON, N., Emerald: An Object-Based
Language for Distributed Programming, PhD
Thesis, 1987,

A.K Jones and E.F. Gehringers (Eds.) The Cm*
Multiprocessor Project: A Research Review,
Dept. of Computer Science, Carnegie-Mellon
University, July 1980.

KAASHOEK, M.F, TANENBAUM, A.S,,
HUMMEL, S. and BAL, H., An Efficient Reliable
Broadcast Protocol, ACM OPERATING
SYSTEM REVIEW, October 1989.

KAASHOEK, M.E, BAL, H. and TANENBAUM,
A.S., Experience with the Distributed Data
Structure Paradigm in Linda, Proceedings of the
Workshop on Distributed and Multiprocessor
Systems, Fort Lauderdale, FL, October 1989.

LEBLANC, R.J. and APPELBE, W.E., The
Clouds Distributed Operating System,
Proceedings of the 8th Int. Conf. on Distributed
Computing Systems, San Jose, CA., June 1988.

LISKOV, B.H.,, ATKINSON, R, BLOOM, T,
MOSS, E., SHAFFERT, C., SCHEIFLER ,B. and
SNYDER, A., CLU Reference Manual, Technical
Report LCS/TR-225, MIT, October 1979.

LISKOV, B.H., On Linguistic Support for
Distributed Programs, IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, May 1982,

LISKOV, B.H., The Argus Language and System,
in Distributed Systems: Methods and Tools for
Specifications, LNCS 190, SPRINGER-VERLAG 1985.

Studies in Informatics and Control,Vol.2,No.1, March 1993

SHAPIRO, M., Prototyping a Distributed Object-
Oriented OS on UNIX, SOR-60, Project SOR, INRIA,
Rocquencourt, France, May 1989.

SHAPIRO,M. and GOURHANT, Y.,FOG/C + +:
A Fragmented-Object Generator, Usenix C+ +
Conference, San Francisco, CA., April 1990.

STROUSTRUP, B.,, The C+ + Programming
Language, ADDISON-WESLEY PUBLISHING

Studies in Informatics and Control,Vol.2,No.1, March 1993

COMPANY, July 1987.

TANENBAUM, AS, Computer Networks, Prentice
Hall, Englewood Cliffs, NJ., 1988.

WULF, W. A, LEVIN, R. and PIERSON, C,
Overview of Hydra Operating System Development,
Proceedings of the 5 th ACM Symposium on
Operating System Principles ACM/SIGOPS, Austin,
TEXAS, November 1975.

31

