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Abstract: Discrete Event Dynamic Systems can be useful to
model and analyse the performances of manufacturing
processes. The manufacturing system considered in this paper
consists in the repetitive production of different classes of
products by means of a set of machines. Such a system is
modelled via Timed Event Graphs, a special class of Petri Nets,
with the aim at exploiting the relevant results to analyse and
optimize its performances. In particular, the optimization
problem of maximizing the throughput of a system with
constrained production mix while minimizing the
work-in-progress is stated and discussed.
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1. Introduction

Petri Nets are usually regarded as a suitable,
effective tool to design and analyse automated
manufacturing systems. Major results achieved are
related to structural properties of Petri Nets
representing these systems, such as boundedness
and liveness, which can be easily interpreted from
a practical point of view (see for instance [1], [2]
for examples of works related with this research
stream). On the other hand, Petri Nets have
seldom been used for performance analysis as
such, apart from Generalized Stochastic Petri Nets
(GSPN) [3], [4], [5], although their use presents
some difficulties. In this framework, it is
remarkable the case of a class of timed Petri Nets,
named Timed Event Graphs (TEG’s), for which a
series of results have been obtained [6], giving the
possibility of determining analytically the
time-series of the cutput transitions firings, given
the time-series of the input transitions firings.

Modelling manufacturing systems by TEG’s may
follow two different approaches. In the first one,
operating rules and policies are embedded in the Petri
net representation of the manufacturing system. In the
second one, only the manufacturing process is
explicitly modelled, and the control policies are
implemented through a set of controlling places [7].

In this paper, the first of the above approaches
is followed and TEG’s are used to model a cyclic
multiproduction system, in which a certain number
of different classes of products are manufactured
by means of a certain set of machines, and each
product follows a specified routing through the
machines.

The analytical tools related with TEG’s allow
to write and optimize some performance indices
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with respect to some decision variables. The
decisional aspects to be optimized are the lot-sizes
of the products and the initial state of the system.
The considered performance index is the system
throughput under a specified product mix. It will
be shown that the optimization objective can be
achieved by solving in sequence two mathematical
programming problems, namely a linear fractional
programming problem and an integer
programming one.

2Fvent Graph Modd of the Manufacturing System

Consider the following model of a
manufacturing system in which p different classes
of items, P,,..,P_, are produced by a given set of m
machines, MP,..,Mm. Starting from basic
components, each product of class P;, i=1,..,p, is
obtained through a given set of operations o;, ...
0;,i» Structured in an oriented precedence-relation
graph. No restriction is made upon the structure
of such graphs, apart from the absence of cycles.
Operations can be simple, i.e., requiring one part
in input and giving one part as an output, or
assembly ones. As soon as a product of class P, is
completed, the components necessary for
manufacturing another product of class P; enter
the system. It makes the functioning of the
manufacturing process cyclic. For the sake of
simplicity, it is supposed that there are no
intersections among the sets of the basic
components of the various classes of products. In
any case, this could be achieved by considering
those basic components related to more than one
product to be formally different ones.

Each operation o;;,i=1,...n,j=1,.,,n, can be
executed by any machine M, € M(ij), where M
(i,j) is the set of machines "compatible" with 0-
Execution times are deterministic and known and
no preemption is allowed. Each machine M,,
h=1,.., m, is generally made up of several servers,
and can require a fixed set-up time between the
execution of two subsequent operations.
Moreover, for each pair of operations related by a
precedence constraint, namely o;; and o, there is
alower bound on the waiting time between the end
of operation 0} and the beginning of operation o,
Finally, for some pairs of operations there can be
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an incompatibility constraint which prevents the
simultaneous execution of the two operations (for
instance, due to the necessity of the physical
presence of the same basic component or
intermediate product).

In this framework, the following decisional
problems have to be solved: i) the sequencing of
operations linked by incompatibility constraints;
ii) the assignment of operations to machines; iii)
the sequencing of operations on the single
machines.

The presence of set-up times for machine
utilization, as well as the fact that the elementary
operations needed to manufacture products could
be not so relevant to be considered individually,
makes it convenient to group the single operations
in macro- operations. In the following, it will be
assumed that there is a fixed number of
pre-selected "production routes” r; for the
realization of products of class P;. Note that a
production route including at least an assembly
operation is usually not simply a list of machines,
but an in-tree. The size of the lots of product P,

following the s-th route is Nis, s=1,.,r.If t:j. is the

T
time required to perform the jth elementary
operation relevant to the realization of product P;
on machine M, which has been assigned to,

TFS = tX x NS will be the time required to perform
ij ij i
the corresponding macro-operation O;"j on alot of

dimension Nf. It is supposed that all the specified

routes are actually active, i.e. we impose
NiS > 0, ¥i,¥%¥s. The dimensions of the lots are

otherwise free and their determination will be
treated in the following. Finally, it is supposed that
the local sequencing rule at each machine is a fixed
cycle of macro-operations, with the possibility that a
single macro-operation is repeated in the same cycle.

The functioning of the manufacturing system
complies with a specified production mix, This is
guaranteed by the application of sequencing
policies to the machines establishing fixed
production ratios among the different products,
which results in eliminating the necessity for
imposing a predefined input sequence on the
system. Of course, the system is supposed not to
be decomposable into two or more disjoint
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subsystems.

The assumptions made so far individuate a
model that is representable via Timed Event
Graphs. From a structural point of view, a TEG is
a timed Petri net in which every place has a unique
input transition and a unique output transition,
which makes it impossible to model any or
operation among two or more events (transitions).
Besides, an important characteristic of TEG’s is
that the number of tokens keeps constant in every
loop during the life of the system.

To clarify the presentation, now an example of
a TEG is given, modelling a manufacturing system
with two classes of products, P, and P,. There are
six machines M,,.., M¢ involved in this production.
Products of class P, are obtained through a
processing sequence of three operations, where
the second one is an assembly operation, whereas
products of class P, are obtained through a
sequence of three simple operations. In this
particular case, the production routes for products
are simply lists of machines. Namely, it is assumed
that the following two routes are active for P;

1
Rl = (M]_s M2s M3)

2

R,

= (M, M, My)

whereas for P; only one route is active:
Rz = (M2; M4, Ms)

This individuates the macro-operation
sequences for the two classes of products, which

are, respectively, (O}l, Oiz, 013) and (Ofl, 0%2,

Of3) for P, and (0;1’ Oéz, 0;3) for P,. The

sequencings on the machines which have to
perform more than a single macro-operation are:

1

S(Ml) = (011’

2
O
T Lt |
S(Mz) = (012: 0117 021)
The structure of the TEG representing this
production is shown overleaf.

As arule, in TEG’s transitions are immediate
and fire as soon as possible. Token holding times
are associated with places, and represented by
bars. The notation x/x, is used to denote the place
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which has x_as input transition and x; as output
transition. In the TEG above, places represented
by thick black circles stand for macro-operation

executions. For instance, place xiz/xilstands for

}1, with duration TE, which is

executed by machine M, on lots of product P,
following route Ri. Only the holding times of such

macro-operation O

places are affected by the choice of the lot-sizes. A
second class of places, the grey circles, represents
minimum waiting times and set-up times for

machines. For instance, place x;:,,/ x%z stands for a

waiting time constraint (independent of the
i 1 1

lot-sizes), as well as places xfa/ xiz and x23/x22.

Place x%l/ xi 4 Stands for the set-up time needed by

M, to switch from macro-operation Oi on to

1
21

analogous meaning. The remaining places model
conditions representing the availability of
machines and components. For instance, place

macro-operation O, and place xia/’éz has an

xi3/ x}o represents the availability of at least a lot

of components to be assembled by means of
1

12
represents the availability of machine M, to

macro-operation O, whereas place x}ss/x;4

perform a new macro-operation 0;2.

3. Performance Analysis Tools

The decisional aspects involved in the
definition of a system representable by means of
the model described in the previous section can be
classified into two classes. The first one includes
the decisions regarding the number and types of
the system machines, the production processes,
the definition of the routes for all the classes of
products, and of the sequencing rules on the
machines. Such decisions affect the structure of
the event graph modelling the system. Here, the
focus will not be on such decisional aspects, and
we will take into account the other class of
decisions, which does not result in "structural
changesin the event graph. In particular, we consider
the decisions regarding the dimensions of the
production lots, and the initial conditions of the
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production system. Such decisions are reflected by
possible changes in the holding times in the places
representing operation executions (but not in those
representing set-up times of machines or minimum
waiting times), and by the initial distribution of tokens
in the event graph. The rest of the paper will focus on
such a dependence of some performance indices of
interest on the lot-sizes of the products, and on the
initial marking in the graph.

The performance analysis methods that can be
applied when dealing with event graphs are
essentially of two types. The first one is based on
an algebraic approach developed to analytically
determine the event sequences in the network,
given some event sequences as an input. Cohen et
al. [6] have shown that, using a peculiar algebraic
structure,a TEG canbe described by state equations
in (max, + ) algebra (see also [8]) of the type

x=A® x ® B ®u (1)

y=C®x 2

where u, y, xare vectors referring to transitions and
A, B, C are matrices derived from the TEG
structure. The fundamental operations in the
algebraic structure mentioned are minimum,
maximum, and sum. Two shift operators ¥ and 0,
acting respectively in event domain and in time
domain are used. Equations (1)< (2) are written
in the 2D time-event domain. As in standard
system theory, it is possible [6] to determine the
transfer matrix of system (1) <+ (2), which describes
the input/output relationship, and is given by

H = CA*B (3)
where A* = EB:SAi, with A® = E, identity matrix

in the considered algebra. Using the algebraic
approach mentioned, it is possible to derive the
firing sequence of any transitionin the graph, given
its initial state.

The second method is based on a simple result
reported in [9]. Let the cycle time of a circuit ¥ in
the graph
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C(y) = u(y)M(y) 4)

where 4 ()) is the sum of the holding times in the
places in ¥, and M(y) is the number of tokens
circulating in y. Of course, one must only consider
elementary circuits, i.e. those cycles in which no
node is repeated. Provided that the holding times
are commensurable (and this is supposed to be the
case), and that the net N is fully connected, it has
been shown [9] that the system settles in a periodic
regime after a finite amount of time, and then all
the transitjons fire with rate 4, being

1

A= e C) ©®
yEN

As regards the use of the above methods in the
analysis of the performance measures of interest,
it is apparent that the latter approach allows to
evaluate functionals that can be computed only on
the basis of the average behaviour of the system (e.g.
the throughputs relevant to the different products).
On the other hand, functionals whose evaluation
requires the detailed determination of the periodic
transition firing sequences (e.g. those indices related
to product completion times) require the application
of the first approach. In the next section, the analysis
and the optimization of performance indices of the
first class will be under study.

4. Optimization Problems

The most sensible optimization objective that
can be pursued with respect to the lot-sizes of the
different products and the choice of the initial
marking is the maximization of the system
throughput with a fixed mix, while minimizing the
work-in-progress. To state formally such an
objective, it is necessary to introduce the concept
of cycle time of a machine. The cycle time C(M,)
of machine M; is defined as the sum of the
processing times of the macro-operations in its
cycle plus the sum of the relevant set-up times. For
instance, in the example shown in section 2 the
cycle time of machine M, is C(M,)=
T% + Tﬁ + Tﬂ + 5. Note that in general the

cycle time C(M;) can be expressed as an affine
function of the vector of the lot-sizes, namely
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CM)=h'N+q, (6)

where N = col [Nl, N%, ,Nl, NZ, ....] is the
vector of the lot-sizes, h! is a vector of suitable

coefficients and g; is a constant. Ni, N%,..., are the

dimensions of the various production lots relevant
to product type P1. In general, it is not necessarily
true that the lot-sizes relevant to the same product
type are equal. It is apparent that the mix
specification, or more properly, the sequencing
rules on the machines performing operations
relevant to different product types, impose linear
constraints on the components of vector N. For
instance, still referring to the previously detailed

example, it must be (N{ + N%)/Nz = X1/X;, being
X1/X; the mix, i.e. the ratio between the
throughput of the two products.

Following the same reasoning line as in [10],
once fixed the lot-sizes, the system works at its
maximum productivity whenever there is at least
one machine working at its cycle time, i.e. acting as
a bottleneck machine. That means that there is a
machine M, such that C(M,) = C(y) for any
circuit ¥ in the network. Then, the system can be
optimized by choosing the initial marking
M, = col[M(p;), ¥ place p; in the graph] in such
a way that the work-in-progress is minimized and
the bottleneck machine is saturated, i.¢. it is always
either working or in a set-up time. This could be
accomplished the same way as in [10], if two major
complications did not arise in the model described
in this paper. The first complication results from
the constraints imposed on the initial marking of
the modelling graph by the presence of assembly
operations. For instance, in the example proposed
in section 2, it must be Mo(xil/x%o) =M, (xh/xio)
to avoid an initial unbalance of the number of
components that should be assembled during
operation 0}2‘ Such an unbalance would remain
unchanged during the net evolution, since the
system is closed, so it would yield just an
inconvenient increase in the work-in-progress. In
general, such balance conditions result in a linear
vectorial constraint of the type AM, = 0. The

second, more important difference lies in the fact
that the lot-sizes of the products are themselves
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decision variables, so that it is not immediate to
determine the bottleneck machine.

Then, the overall optimization procedure may
be decomposed into two steps: i) determine the
lot-sizes so that the allowable system productivity,
i.e. the maximum system throughput allowed, is
maximized; ii) having fixed the lot-sizes as above,
determine the initial marking so that the allowable
system productivity is actually achieved and the
work-in-progress in the system (number of
workpieces) is minimized.

The maximization of the throughput requires that
at least a machine acts as a bottleneck. In such
conditions, all the machines have the same cycle time,
i.e. that of the bottleneck machine. Let C denote such
a cycle time, and suppose that no macro-operation
appears more than once in the cycle of any machine.
Now, the overall throughput relevant to the k-th
product class can be computed as

X, = Ek (N/T) @)
=1

where N{(is the size of the lots of preduct Py
following the j-th route.

Due to the mix constraints, the maximization of
the throughput for a product type automatically
yields the maximization of the throughputs of all
the other products. Thus, the problem of
determining the lot-sizes so as to achieve the
maximum throughput can be stated as follows.

Problem 1. Maximize the throughput of product
X, for an arbitrary choice of k in {1, .., p}

I

max X = max {Ek (NL/C )} (8)
NT NT j=1

subject to

'k

k =1 s=1,.,p, s=k (9a)

=1t k=l (Ob)

C = max C(M) =

i=1,..,m

max {h/ N+ q;} °°)

i=1,.,m
where

— constraints (9a) guarantee the fulfilment of
the production mix;

- N'Lmin and Njkmax are respectively the a-priori
lower and upper bounds of the lot-sizes of
product Pk following the j-th route;

- in (9¢) the equality constraint can be sub-
stituted by the inequalities

C=zhN+q i=1..m (9d)

since the optimization objective ensures
that at least one of the (9d) is fulfilled with
an inequality sign. A

The optimization problem above is a linear
fractional programming one, which can be solved
by means of well-known mathematical
programming techniques [11].

The second optimization step consists in solving
a problem which is fairly similar to that considered
in [10], but for the constraints on the initial marking,
which are now different for the reasons already
explained. Then, the optimization problem relevant
to such a step can be stated as follows.

Problem 2. Find, with respect to the initial
marking of the np places p,.., Pap in the network,

min Lﬁi a(s)M, (p) ] (10)
subject to
M (Y)ZM_(y) ¥circuit ¥ in the network (11a)

AM, =0 (11b)

KW/ C=M () <u@py)/T+1 (11c)
M circuit ¥ in the network
where

a(s) is a weighting coefficient whose value
indicates if tokens in place p, represent- basic
components or intermediate products;

M, =col[M(p)), ¥ place p,i=1,., npj;

constraint (11b) represents the balance conditions
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imposed by the assembly operations present in the graph;

M_(y) is the minimum number of tokens such
that C = C (¥);

A is a matrix whose elements are 0, 1, or — 1,
according to the possible constraints to impose on
the initial markings of the places involved in
assembly operations;

M(Y) is the sum of the holding times in the
placesiny. A

The problem is an integer linear optimization
one, which can be solved by means of standard
techniques [11]. A major difficulty in doing so is
that the statement of such a problem requires the
determination of all the elementary circuits in the
network. Efficient algorithms can be found in the
literature for this purpose [12]. In [13] a heuristic
procedure to find a "good" solution to Problem 2
is presented.

A simple numerical example

Consider again the example of the manufacturing
process reported in the paper on page 3 and the
following. Suppose that the production mix imposes
on the throughputs of the two classes of products the
constraint X; =2X,. Let the execution times of the
elementary operations on the machines which they
have been assigned to be the following:

= — —1.12 — —
=2 8,=1;0,=28, =3, =1;¢) =3,5,=2
and the a-priori lower and upper bounds of the
lot-sizes of products be
NI . =1,Nl  =150;NZ . =1,N2 _ =200;
max 1min Imax

Imin

N} . =1,Nl =100
max

2min

In that case, the cycle time of the bottleneck
machine results to be

C=maxCM,) =

i=1,.,m
_ 1 2 1 n2a N1 1 an2
= max {2NJ+2N3+2, N+ NS +NG +5, 2N, 3N2
Then, to maximize the throughput X, (which is

equivalent to maximizing X, ) one has to solve the
following problem.

Find
max X, = max NI/C
N, T N, C
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subject to

1< N] =150

1= N2 <200

1= N <100

T 2 2NJ+2N242
Tz NJ+N2+N1+s
C 22N,

T=23N

An optimal solution to this problem is
N1 N2 N1 = 100, which yields C = 402. Then,

the maximum throughputs achievable in the
system are X; = 0.5 and X, = 0.25.

5. Conclusions

In this paper it has been shown that a class of
performance analysis problems related to
manufacturing processes can be studied through
Timed Event Graphs. Referring to the model of a
repetitive production system, an optimization
procedure has been formally stated, whose
objective was the maximization of the system
throughput with a fixed production mix, while
minimizing the work-in-progress. It has been
shown that the maximization of the maximum
allowable throughput of the system with respect to
the lot-sizes of the components consists in solving
a linear fractional programming problem.

Thus, the proposed approach generalizes that
presented in [10], because it allows to consider
assembly operations and multiple alternative
routes for the single classes of products. It is worth
observing that such an approach could also apply,
though in an indirect way, to optimizing the system
performance with respect to the production
routes. In fact, whenever the optimum value of a
lot-size for a route equals its lower bound, this
suggests to "rebuild" the Petri net of the system
eliminating that route, and then find the optimal
lot-sizes for the new system.
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