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ABSTRACT

This is a new part of our series dedicated to presenting the results obtained in applying the combinations of
numeric and knowledge based techniques to various layers of the control hierarchy such as regulation,
supervision and process co-ordination. This paper describes a diagnosis system (developed by dr.J.Zhang
and Professor P.D.Roberts, while working together at the Control Engineering Centre, City University,
London), which detects and diagnoses faults by the combined use of both shallow knowledge, in the form of
heuristic rules, and deep knowledge, in the form of qualitative models, and exhibits learning characteristics
in that the rules can be learnt from deep knowledge based diagnosis. Since heuristic rules can usually give
efficient diagnosis, they are used to propose a hypothesis when abnormalities occur in the measurements of
the monitored process. The proposed hypothesis is then tested on a deep qualitative model of the process
toenhance diagnostic reliability. The heuristic rules used are learnt from the deep knowledge based diagnosis
using the ideas of explanation based learning (EBL). After a successful diagnosis, which is not proposed by
2 heuristic rule, the qualitative deviations in on- line information are calculated to form a training example
which is generalised based on the deep model of the process. By such means, heuristic diagnostic rules can
be accumulated automatically and, therefore, ease the task of knowledge acquisition. The proposed learning
method has been tested on the fault diagnosis of a pilot scale mixing process.

KEYWORDS: Fault diagnosis, expert systems, qualitative reasoning, self-learning of diagnostic rules.

1. INTRODUCTION

The first part of the series was "A Survey of Reported Results" and was published
in a previous issue of the journal.It was a review of several world-wide results regarding
the use of KBS or numeric/knowledge based techniques in various off-line control
applications (design of control problems, process identification) and on-line
applications (heuristic control, expert control, fault detection and diagnosis). This
second part addresses the specific problem of on-line fanlt diagnosis and includes
original solutions advanced by the Control Engineering Centre, City University,
London.

Failures in anindustrial process can be understood as the deviations of some process
units from their normal functions. Failures may cause poor product quality, damage
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equipment, cause process shut down, or even result in hazardous conditions. Therefore,
it is necessary to continuously monitor process conditions in order to detect and
diagnose faults promptly. This task is traditionally carried out by process operators.

Recently developed expert systems techniques show considerable potential in the
application of process condition monitoring, fault detection and diagnosis. Expert
systems for industrial process fault diagnosis can generally be divided into two
categories: a shallow knowledge based approach and a deep knowledge based
approach. In the first category the knowledge base contains heuristic rules which encode
the experiences of process operators. This type of expert system can usually diagnose
faults very efficiently because heuristics can provide valuable short cuts [5,8]. Lapointe
et al [5] developed an expert system for waste water treatment process diagnosis -
BIOEXPERT, in which shallow knowledge is used for diagnosing the more common
faults. Since the knowledge base does not contain any knowledge about system structure
and component functions, it may have difficulties when dealing with novel faults and
infrequently occurred faults, In contrast, in the deep knowledge based approach, the
knowledge base contains information on system structures and unit functions as well as
physical laws governing the process. With such a knowledge base, fault diagnosis can
be carried out with greater reliability. However, the diagnostic efficiency is affected by
its detailed knowledge base, because the diagnosis system needs to explore the entire
causal path from a failed component to the observed abnormalities.

To enhance both efficiency and reliability, a combination of the two approaches
should be considered. There is a trend towards building fault diagnosis systems using
both shallow and deep knowledge [5,8,14]. Rich and Venkatasubramanian {14] discuss
a fault diagnosis system for a chemical process using both types of knowledge. They
propose a two-tier architecture for integrating compiled and deep level knowledge in
that the process specific compiled knowledge is stored at the top tier, while the lower
tier holds deep knowledge. During diagnosis, the compiled knowledge is invoked first.
If a diagnosis result cannot be obtained from the compiled knowledge, the diagnosis
will drop down to the deep level knowledge.

To reduce the effort of encoding and debugging diagnostic heuristics from
diagnostic experts, machine learning techniques can be used to automatically acquire
the required knowledge. Recently several rescarchers have attempted to incorporate a
learning mechanism into process fault diagnosis systems to make them more intelligent
[3,4,9,10,11,13). In Pazzani’s approach [9,10], a set of initially developed heuristic rules
are used to propose a hypothesis when an abnormal condition is encountered, and a
deep model is then used to confirm this hypothesis. If it cannot be confirmed, then the
heuristic rule which proposed this hypothesis is considered to have failed and it is revised
by adding additional terms to its condition part to fimit its applicability. This is called
failure-driven learning since learning is initiated when a hypothesis failure occurs.
Through this failure-driven learning, the existing heuristic rules can be refined but there
may exist situations where there are no heuristic rules corresponding to some failures,
especially failures which occur infrequently. In such situations, it would be desirable
that the system can still diagnose the fault and learn a new heuristic rule. This is not
addressed in Pazzani’s approach [9,10]. Rich and Venkatasubramanian [11] discuss a
causality-based failure-driven learning approach. In their approach, when a heuristic
rule fails to propose the right hypothesis, the rule is revised and the system will drop
down to deep knowledge based diagnosis, and it could learn a new heuristic rule. This
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method is developed for off-line diagnosis as can be seen from the context of [11,14].
The condition parts of some learnt heuristic rules include the negation of the failures
of some other components, and this information is obtained from the operator. The aim
of these failure-driven learning approaches is mainly to refine the existing heuristic
rules.

Self-learning of diagnostic rules through inductive learning [2,6] are discussed in
[3,4,13]. In this approach, a set of training data covering a large variety of potential faults
is generated from simulation or obtained from past operating experience. The raw
training data obtained are first transformed into symbolic form, such as shapes and
curvatures. The training data are divided into positive examples and negative examples.
Positive examples are the training data describing the behaviour of the process under a
particular fault for which a rule is being learnt, while the rest of the training data are
negative examples. Through inductive learning, it is required to find the characteristic
descriptors, which are present in all the positive examples and may also appear in some
of the negative examples, and discriminate descriptors, which occur in all the positive
examples and none of the negative examples. This approach does not use any deep
knowledge about the process and a large variety of training data are needed i order to
produce desired rules.

One of the recently developed approaches in machine learning, Explanation Based
Learning (EBL) [7), scems more suitable for integration with deep knowledge based
diagnosis systems. In EBL, a model of the concerned domain is required and only one
training example is needed to learn a concept. In deep knowledge based diagnosis, a
deep model of the diagnosed process is available and, through explanation based
learning, the requirement of a large variety of training data is avoided. EBL could also
avoid the long training process which occurs in some other approaches of machine
learning.

In this paper we describe an on-line fault diagnosis system which uses both deep
knowledge and heuristics. During diagnosis, the system will first invoke the heuristic
rules to propose a hypothesis. If a hypothesis can be proposed, then a deep model is
used to discriminate this hypothesis. Otherwise, the diagnosis is based entirely on the
deep model. The fault diagnosis system will test a set of candidate faults by inserting
each fault as a disturbance to the qualitative model. The candidate which can explain
the observed abnormalities is taken as the diagnosis result. If the successful diagnosis
is not proposed by a heuristic rule, then the learning system will learn a rule
corresponding to the diagnosed fault utilising the ideas of EBL. By such means, a
diagnostic rule base could be gradually assembled and the diagnostic efficiency could
be improved.

In the next section, diagnosis using both heuristics and deep knowledge is described.
Section 3 describes the procedure of learning heuristic rules from deep knowledge
based diagnosis. An illustrative application to the on-line fault diagnosis of a mixing
process is presented in Section 4. The last section contains some concluding remarks
and suggestions for further work.

2. FAULT DIAGNOSIS USING BOTH HEURISTICS AND DEEP KNOWLEDGE

The diagnosis system described here is based on a deep qualitative model of the
monitored process and also uses heuristic rules which are learnt from successful
diagnoses. The diagnosis system contains two parts: fault detection and fault diagnosis.
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Fault detection is performed by checking if any constraints imposed by the qualitative
model are violated and the fault diagnosis is initiated once the presence of a fault is
detected.

When abnormalities are present in on-line measurements, the fault diagnosis system
will predict the behaviour of the process, in the form of qualitative increments (increase,
steady, and decrease) of certain measured variables over a period, through qualitative
simulation and compare this with the observed behaviour and, if they are identical, then
the process is considered to be at a normal condition. Otherwise, the measurements of
several successive samples are taken to eliminate the effects of measurement noise, The
expected behaviour of the process at these successive samples is predicted and
compared with the observations. The presence of a fault is detected if, in the majority
of these samples, the predicted behaviour does not coincide with the observations.

During the fault diagnosis phase, the diagnosis system will first try to use heuristic
rules to propose a hypothesis which is to be confirmed by the deep model. The behaviour
of the process under this hypothesis is predicted through qualitative simulation, where
the qualitative model represents the process under the hypothesis, and is compared with
the observation and, if they match, the hypothesis is confirmed. By the combined use of
deep kncwledge and heuristic rules the diagnosis system will enhance both efficiency
and reliability.

The heuristic rules may be incomplete and, therefore, they may not propose a
hypothesis in some cases. When such a situation is encountered, the diagnosis will be
based entirely on the deep knowledge. A set of hypotheses will be formulated based on
the patterns of model violations in the fault detection phase and tested on the qualitative
models. The expected behaviour of the process under each hypothesis is predicted from
the corresponding qualitative model and is compared with the observations. The
hypothesis which can explain the observed abnormalities, in that the predicted
behaviour under it coincides with the observations, will be taken as the diagnosis result.
This diagnosis strategy is known as "hypothesis-test strategy” [8]. The qualitative models
representing the process under different hypotheses should have sufficient resolution
to distinguish among the hypotheses. After a successful diagnosis, which is not proposed
by a heuristic rule, the diagnosis system will learn a rule corresponding to the diagnosed
fault. This is described in the next section.

3. LEARNING DIAGNOSTIC HEURISTIC RULES

3.1 Explanation based learning

Explanation based learning is a recently developed approach to machine learning
[7]. In this type of learning, the solution to a sample problem is generalised into a form
that can later be used to solve conceptually similar problems. The generalisation process
is driven by the explanation of why the solution worked. Knowledge about the domain allows
the explanation to be developed and then generalised, thereby producing a general concept
from the solution to a specific problem. One advantage of EBL systems is that they only
require a small number of training examples to learn a concept. This is due to the fact that
EBL systems possess the ability to explain what is relevant in these examples. The strength
of EBL arises largely from its use of prior knowledge to quide its learning,
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3.2 Learning diagnostic rules

If a successful diagnosis is not proposed by a heuristic rule, the learning system will
learn a rule corresponding to this diagnosis. It will recognise the essential symptoms of
a fault and construct a rule for this fault. The rules used are in the form:

IS &S,&.&S,
THEN Fault;

which states that if symptoms S to Sy, are present then the ith fault occurs. The symptoms
S1 to Sp used here correspond to n different on-line information sources, which could
be on-line measurements and controller outputs, and each symptom is considered to
take one of the following values: increase, steady, decrease, and * which is a wild card
and means that the corresponding symptom is not important. When applying a rule, *
can match with any values. The main function of this wild card is to generalise a rule.

After a successful diagnosis, which is not proposed by a heuristic rule, the deviations
in all the on-line information sources are calculated and converted into qualitative
forms. These form a set of training data for the diagnosed fault. Since the fault may only
affect certain on-line information and, therefore, the training example should be

generalised to form a diagnostic rule. The generalisation process is performed by
utilising the ideas of EBL.,

As mentioned in the previous section, fault detection is performed by comparing the
observed behaviour of the process with its prediction and a fault is detected when there
exist discrepancies between observation and prediction. Fault diagnosis is performed
by predicting the behaviour of the process under various hypotheses and the hypothesis
which can eliminate the above discrepancies will be taken as a diagnosis result since it
could explain the observed abnormalities. This deep knowledge based diagnosis could
be used to explain which features in the training example are relevant to or important
for the fault and which are not, and, hence, could be used to generalise the training
example.

Suppose O is the set representing the observed behaviour of the process and P is
the set representing the predicted behaviour under a normal operating condition. Then
the discrepancies (O - O N P ) are caused by a fault and represent the essential features
of the fault, whereas the fcatm'es representedin O M P, are considered to be irrelevant
or not important in detecting this fault. In the explanatlon based generalisation, the
symptoms corresponding to the on-line information involved in (O - O N P, ) are
reserved and are termed "characteristic descriptors" of the fault, and thc other
symptoms, correspondmg to the on-line information involved in O N P, , are
eliminated by assigning the value *. By such a means, the training cxample can be
generalised to form a diagnostic rule.

The rules learnt above may be incorrect unless the characteristic descriptors for all
the faults are mutually exclusive. For example, if the characteristic descriptors for the
fault f; are S , S,, and S, and those for the fault f,are S, and S, , then the rules for f;
and f, are

IFS, &S, & S; THEN f,
and
IFS, & S, THEN,
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respectively. It can be seen that the second rule is more general than the first and, if
S1,S;, and S; are present both rules are applicable. However, if the rules are used in
a specific order and the more specific rule is put before the general rule, this problem
could then be avoided. Another way to solve this problem is to put an additional term,
which is the negation of the difference of the characteristic descriptors of the two faults,
in the condition part of the more general rule. For example, the second rule above can
be modified to

IF S & S,& not (S;) THEN f,
4, APPLICATION TO THE ON-LINE FAULT DIAGNOSIS OF A MIXING PROCESS

4.1 Fault diagnosis' of a mixing process based on its qualitative model

The on-line learning method described above has been incorporated into a
previously developed fault diagnosis system applied to a mixing process [15]. The pilot
scale mixing process is shown in Figure 1, where two tanks in cascade receive hot and
cold water supplies. Both streams enter tank 1 where mixing takes place, and the
contents of tank 1 passes to tank 2 and subsequently out to the pool tank. Diagnosis is
performed based on measurements of level and temperature in both tanks. The level
and temperature in tank 2 are controlled by a controller resident in a BBC-B
microcomputer which also communicates with and is supervised by a DEC Microvax II
host computer. The main supervision task is to find abnormal behaviour and diagnose
the associated fault.
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Figure 1. The Mixing Process
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An on-line fault diagnosis system [15], which detects and diagnoses faults based on a

qualitative model of the mixing process, has been developed. The model is constructed

mainly based on de Kleer and Brown’s confluence based qualitative reasoning method

El]land the model representing the process under normal operating conditions is listed
clow

-Ec%l{:z} = a]goc + 61,2Qh Y
#ifle e = di,ZQ(Jl @
“iid_Tt‘lltz} = 61,2011 - 61,2Qc ®G)
9;;2 EtZ:I = [Tsz]szQm 3 51,2T1 4)
6—1,2001 = 61,2 (H,-H) )

where H1, H2, T1 and T2 are the levels and temperatures in tanks 1 and 2 respectively,
Q¢ and Qp, are the controlled flow rates of cold and hot water input streams

respectively, Qq; is the output flow rate from tank 1 to tank2, [dX/dt ] denotes the
qualitative value of dX/dt at time (2, (51,2 X denotes the qualitative increment of X
between the current time {2 and a previous time t1when the process is at its steady state.
This model may be modified in different ways to represent the process under different
faults.

If abnormalities are present in on-line measurements, then the qualitative values of
dH,/dt, dH,/dt, dT,/dt, and dT,/dt are predicted from Eqs(1) to (5) and are compared
with the on-line measurements. If discrepancies occur then the measurements of
another three sets of successive samples are taken to reduce the effects of noise. If
discrepancies are detected in at least three out of the four sets of measurements, then
itis considered that a fault occurred in the process. Otherwise, the process is considered
to be at a normal condition.

Based on the patterns of model violations in the fault detection phase, a set of
hypotheses, each assuming that a different fault occurred, can be formulated and
discriminated through qualitative simulation. Given a hypothesis, the qualitative values
of dd,/dt, dH,/dt, dT,/dt, and dT,/dt at the five successive samples are predicted from
the corresponding qualitative model and are compared with on-line measurements. If
the above discrepancies can be eliminated in at least three out of the four samples, then
the hypothesis is considered to be able to explain the observed abnormalities and is
taken as the diagnosis result.

4.2 Learning heuristic rules from deep knowledge based diagnosis

After a successful diagnosis, which was not proposed by a heuristic rule, the learning
process is initiated. The deviations in the measurements of levels and temperatures and
controlier outputs to the cold and hot water control valves between the time when
abnormalities are detected and a previous time when the process was at a normal state
are calculated and converted into qualitative form (increase, steady, and decrease).
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These are considered as symptoms and form a training example for the corresponding
fault. This example will be generalised based on the deep model of the process to form
a diagnostic rule.

Since the qualitative increments of levels and temperatures are predicted from the
qualitative model and compared with the actual measurements in fault detection and
diagnosis, the symptoms corresponding to levels and temperatures can be generalised
by utilising the results in the fault detection phase. If a process variable’s predicted
qualitative increments are identical to those converted from the measurements in the
fault detection phase, then it is believed that this variable is not important in detecting
the fault and the symptom corresponding to this variable is generalised by assigning the
value *. Controller outputs to valves are affected by the controlled variables which may
be affected by the faults. In generalising the symptoms corresponding to controller
outputs, it is considered that a controller output could not be affected by a fault if the
symptom corresponding to this output has the value "steady’, and the symptom is
generalised by assigning it the value *.

4.3 Experiments

The learning system is developed and incorporated with the qualitative model based
diagnosis system. Initially there is no heuristic rules and the diagnosis is performed
based entirely on the deep model. The following failures, cold water control valve fails
low, cold water control valve fails high, hot water control valve fails low, hot water
control valve fails high, and partiai blockages of hand valve 1 and hand valve 2, were
initiated separately. After each diagnosis, a diagnostic rule was learnt for the
corresponding fauit.
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Figure 2. On-line Level Measurements
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The on-line measurements and controller outputs covering the event when the fault
"cold water control valve fails low" are provided in Figures 2 to 4. At 540 seconds, the
diagnosis system detected abnormal measurements in levels and it then swiftly collected
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Figure 3. On-line Temperature Measurements
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Figure 4. Controller Outputs to Control Valves
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another three sets of measurements to confirm the fault detection. The fault detection
was confirmed and the diagnosis system began to diagnose the fault. It first tried to
propose a hypothesis from heuristic rules but no hypotheses could be proposed since
there were no rules corresponding to this fault. It then diagnosed the fault by testing a
set of hypotheses. Based on the patterns of violations of the qualitative model, a set of
hypotheses were formulated and tested and the correct diagnosis result was obtained.

After the fault was diagnosed, the increments in levels, temperatures, and controller
outputs between the time, when abnormal behaviour was detected, and a previous time,
when the process was at its normal state, are calculated and converted into qualitative
form. In this case, the qualitative increments are: 0T;=-, 0T,=-, OH;=-, 0 H,=-,
0Qc= +, and th =-, where + stands for increase and - stands for decrease. These
form a training example for the fault. In the qualitative reasoning phase during diagnosis,
it is found that the predictions for H, under normal conditions are different from the
observations and these for Ty, T,, and H, are consistent with the observations, and,
hence, it is believed that T,, T,, and H, are not important in detecting the fault and the
symptoms corresponding to them are eliminated by assigning the value *. A rule is
therefore formulated and it is Rule No.1 in the list provided below.

After a rule has been learnt, it is compared with the previously learnt rules to see if
itis more specific than others. If it is, then the rules are re-ordered such that the specific
rule will be put before the general one.

After the above-mentioned six faults were all separately initiated, the learning system
learned a diagnostic rule for each fault. These rules are listed below:

RULE NO.1
IF
Levelin tank 1 Decrease
Cold water flow Increase
Hot water flow Decrease
THEN )
Cold water control valve fails low
RULE NO2
IF .
Level in tank 1 Increase
Cold water flow Decrease
Hot water flow Increase
THEN
Cold water control valve fails high
RULE NOJ3
IF
Temp. in tank 1 Decrease
- Cold water flow Increase
Hot water flow Increase
THEN
Hot water control valve fails low
RULE NO4
IF
Temp. in tank 1 Increase
Cold water flow Decrease
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Hot water flow Decrease

THEN
Hot water control valve fails high
RULE NO.5
IF
Levelin tank 1 Increase
Level in tank 2 Decreast
Cold water flow Increase
THEN
Hand valve 1 is blocked
RULE NO.6
IF
Level in tank 2 Increase
Cold water flow Decrease
Hot water flow Decrease
THEN
Hand valve 2 is blocked

It can be noticed that the rules are generalised in that their condition parts contain fewer
symptoms than the training examples. After the rules had been learnt, the failures were
initiated again with similar severities as their previous initiations and they were all proposed
by the corresponding diagnostic rules. A fault may not be proposed by the corresponding
heuristic rule if it is initiated with a quite different severity from that when the rule was learnt.
In such situations, the learning system could learn a different rule for this fauit.

5. CONCLUSIONS

Diagnosis using both deep knowledge and heuristic rules would be a desirable way to
enhance diagnostic efficiency and reliability. Valuable shortcuts for diagnosis may be
available in the form of heuristic rules. We have presented a method for learning heuristic
rules from deep knowledge based diagnosis using the ideas of explanation based learning,
Explanation based learning seems to be a suitable approach to be integrated with any deep
knowledge based systems where the deep knowledge can be used to guide the learning
process and this avoids the requirements of a large variety of training data. This may be
suitable for developing an on-line fault diagnosis system for a new process where heuristic
rules for diagnosis may not be available or for a complex process where the rules cannot
easily be obtained. For such applications, a desp knowledge based diagnosis system is first
developed and, after each diagnosis, the significant patterns in the on-line measurements
are recognised and are generalised to form a heuristic rule. By this means the heuristic rule
base can be automatically assembled.

To produce correct rules, the deep knowledge, upon which the learning system is
based, should be correct. Some further research could be conducted to combine EBL
with inductive learning or neural learning to address the problem that the deep
knowledge is not completely correct. An initial investigation in combining EBL and
neural learning is reported in [12]. The development of such an approach to the
self-learning of diagnostic rules could be a future research topic.

The third part of the series will take a step forward in the control hierarchy by
describing the application of combined numeric/knowledge based techniques in process
co-ordination, an overall optimization of the operation of several process units in
industrial complexes.
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