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ABSTRACT

An efficient algorithmmn — GRICSR — for solving continuous-time algebraic matrix Riccati equa-
tions (CAREs) is presented and numerical results obtained by using its implementation are dis-
cussed. The algorithm employs condition-controlled Gaussian symplectic transformations, a sym-
metric updating scheme for computing the stabilizing solution of CARE, and accurate approx-
imations of the eigenvalues of the Hamiltonian matrix involved in the optimal control problem;
these eigenvalues are used as shifts in an QR-like process. The Hamiltonian structure is preserved
throughout the algorithm. The main computational steps are sketched, and details of the Fortran
implementation are mentioned. Numerical results show that the algorithm can be used safely,
even when large values of condition numbers of the transformation matrices are allowed.
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1. INTRODUCTION

Many control/estimation analysis and design problems include, as a basic procedural
step, the solution of an algebraic matrix Riccati equation (ARE). The AREs are a
fundamental tool for modern control engineering and other domains. For instance,
the application of the new H, theory is largely dependent on the numerical solution
of AREs. Therefore, it is of primary importance to have efficient techniques and
algorithms for solving AREs.

This paper discusses a recently developed technique for solving the continuous-
~ time algebraic matrix Riccati equation (CARE) of the form

ATX+ XA- XBR'BTX+Q=0, (1)

where A € R"*" and B € R™™™ are the system state and control (input) matrices,
respectively, @ € R**" and R € R™*™ are the performance index state and control
weighting matrices, respectively, and the superscript “T” denotes the transposition.
Usually, @ = QT > 0 and R = RT > 0. In some applications, Q is chosen as CTQC,
where C € R™" is the system output matrix and @ is the output weighting matrix.
Frequently, a set of “error integrators” are incorporated in the control system, to
improve the stationary properties of the controlled process, by using an integral
action in the controller; the error can be the difference between the desired and
actual output. The above formulation corresponds to an optimal control problem,
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but it can be easily translated to an optimal filtering problem. If certain well-
known conditions hold, then CARE (1) has a unique solution X = X T > 0. This
is called the stabilizing solution, because the corresponding closed-loop system is
stable, that is A(A + BG) C C™, where A(M ) denotes the spectrum of the matrix

M, and G € R™*" is the optimal control matriz, defined as G 2 —R"1BTX.

It is well-known (Laub, 1979) that the stabilizing solution of an ARE can be
obtained taking a basis for the stable invariant subspace of a matrix of order 2n,
defined in terms of the system and performance index matrices. For instance,
denoting H 2 [ g —-f‘iT ], F 2 BR-'BT, if [ST, STL|T € R*™"" generates
the stable H-invariant subspace and Sii is nonsingular, then X = —S91 Sfll is the
stabilizing solution of (1). (If matrix H isnot dichotomic, that is it has an eigenvalue
A € AH) with Re(A) = 0, or if 511 1s singular, then there is no such solution
of (1).) The QR. algorithm has been used for determining and ordering the real
Schur form (RSF) of matrix H, to obtain such a basis. However, this approach has
the disadvantage of not exploiting the particular structure of H, involving special
properties of its spectrum. (Matrix H is Hamiltonien, hence the eigenvalues appear
in pairs (A, —A) and, in case of dichotomy, there are exactly n stable eigenvalues.)
Moreover, the symmetric matrix X is essentially obtained as a product of two
matrices, Sg; and S;ll, and this could lead to unsymmetry and inaccuracy.

This paper uses a structure preserving algorithm for solving CARE. The key
idea is to compute a basis for the stable invariant subspace by a structure preserv-
ing QR-like algorithm, exclusively using similarity transformations with symplectic
matrices. Such and algorithm, called the SR algorithm, has been proposed by
Bunse-Gerstner and Mehrmann (1986) and uses orthogonal symplectic matrices as
much as possible in practice. Another, more efficient algorithm (Bunse-Gerstner,
Mehrmann and Watkins, 1989), which constitutes the basis for the implementation
discussed below, exclusively uses non-orthogonal transformations. A variant of the
SR algorithm based on Gaussian elimination is used, combined with the symmetric
updating method in (Byers and Mehrmann, 1985), and with Van Loan’s algorithm
(Van Loan, 1984) for getting accurate approximations of the eigenvalues of H. In
conjunction with Newton’s algorithm in a defect correction procedure (Mehrmann
and Tan, 1988), this approach is very efficient and accurate. Algorithmic details
and computational experience with GRICSR are presented in (Sima, 1992). A short
presentation is included in (Sima, 1991).

Several definitions are needed for the following presentation. A matrix S is

symplectic if STJS = J, where J 2 [ -E)I é ] , and I is the identity matrix of
order n (also written I). A matrix M 2 [ %; ﬁ:z ] , Mi; € R™", is called

J-Hessenberg (matriz) if M1y, Ma; and Mag are upper triangular matrices, and M2
is in Hessenberg form (HF). M is called J-triangular if My, Mia, Mz and Msq
are upper triangular, and M3; has zero diagonal elements, and M is J-tridiagonal
if M1y, Ma; and My are diagonal, and M is tridiagonal.

Let So, denote the class of symplectic matrices of order 2n. By definition,
if 5, 8' € 83, and S is nonsingular, then S™! € Sz, and SS’ € San. Given a
matrix M € R¥*™*?" 3 decomposition M = SR, where S € Sz, and R is J-
triangular, is called an SR decomposition of M. There are mathematical results
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(Bunse-Gerstner and Mehrmann, 1986) which characterize the matrices that have
no SR decompositions, or transformations to J-Hessenberg form. Briefly speaking,
the set of matrices with no SR decompositions has the Lebesgue measure zero and
the SR decomposition of a matrix M is essentially unique.

In the following section, the notation “ = n : rn” means that the variable i
successively takes the values n,n + 1,...,m; similarly, A(z : j,k : I) denotes the
submatrix formed by the rows i : j and columns k : [ of the matrix A.

2. OUTLINE OF SOLUTION TECHNIQUE

Algorithm GRICSR reduces a Hamiltonian matrix H to a special ordered RSF ma-
trix, using elementary symplectic transformations with the Gaussian elimination
matrices, defined below. Let k € {1,...,n}, v€R, w=(0,...,0, Wey1,..., wa)” €

R™, let e be the k-th coordinate vector in R”, and let y(L, V) = [ g LI'{T ] De-
fine
Gl(k: U) = 7’(Inn Vl): Gg(k, v) = 7(-[“! VQ)) Ga(k, w) = 7(‘[’:0)! (2)

where V; = v(ex—1e] +exel_,), Va = verel, L = I, +we} . Note that G, G2 and
G5 are symplectic, easily invertible, and can be used to annihilate certain elements
of any vector z € R®®. As in the case of Gaussian elimination, pivoting is needed
for numerical stability. The permutation matrices involved must also be symplectic.
One uses Py, = diag(P, P), where P interchanges the k-th and [-th elements of z.
Such a permutation is denoted P(k,z). Since the matrices G1, G2 and G3 may be
ill-conditioned (if |v| or || w || is large), it is necessary that their condition would
be monitored and remedies should be provided for unacceptable situations. This
question will be further discussed.

Algorithm 1 Reduction of a Hamiltonian matrix H € R****" to J-tridiagonal
form using Gaussian symplectic transformations.

DNlForj=1:n-1
1) H—THT},§ — ST}, T=G5(i+1,He;)P(n+j+1,He;).
2) H—THT',S — ST, T =G} (j +1,He;j).
3) H—THT',S « ST, T =Ga(j +1,He;}P(j + 1, He;).
4) If hjy1; # 0 and hpyj,; = 0 then Stop, else
H«—THT-',S « ST}, T =Gy(j + 1,¢],, He;).
5 H—THT 'S — ST, T=GY(j +1,Hent;)P(n+j+ 1, Heny;).
6) H —~THT!,S « ST}, T =G} (5 +1, Heny;).
7V H «— THT"',S « STY, T =G3(j+ 1, Heny;)P(j + 1, Henyj).

The various transformations T' are not actually computed, but applied to H and
accurnulated in S. If S = I3, on input to Algorithm 1, ther S contains on output
the transformation matrix that reduces H to J-tridiagonal form. If S is chosen so
that Se; = Me;, then this property is preserved by the algorithm.

A gain in efficiency for Algorithm 1 is possible if, instead of accumulation, a di-
rect updating of the matrices corresponding to the solution of Riccati equation takes
place, exploiting the symmetry (Byers and Mehrmann, 1985). In this case, not the
entire matrix S = (S5;;), ¢,j = 1 : 2, must be stored, but only Sl"ll, X ==8nS3
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andY = Sfll 512, where X and Y are symmetric matrices, gince S is symplectic. All
the information required about S can be reconstructed from the matrices Sy %
and Y, which take half of the memory space for S. Indeed, S5, X and Y can
be updated after having applied the transformations with matrices G, G5 and G's
from (2). Let 5 be the updated matrix S after such a transformation. In case of
updating by G1, the results are

'§1_11 =e X=X, Y=87(-Suvi+Su)=Y-W. (3)
In case of updating by G, the results are
Sol=1syt, X=X, ¥ =LYI". 4)
The results corresponding to updating by G7T are similar. Finally, in case of updat-
ing by G%, denoting « 21— vel Yey, the results are

- ~ v - ~
Soliee Sat+ zYeke{Sfll, X=X+ ;Sl_lTeke’fSul, Y=Y+ %Yekef}’. (5)

Note that o # 0 was assumed; if a = 0, then Sy, is singular. Obviously, no use
of (5) will be recommended if the updating factor |v/e| is large (for instance, if o
is negligible compared with v, to machine precision), because the loss of aceuracy
could be then significant.

Using the formulae (3) — (5), the cost of updating the matrices X, Y and 5
in Algorithm 1, adapted to this case, is almost half of the initial value. Some other
advantage of using the updating relations is that the symmetry of X is preserved
at each stage of the algorithm. This is valid for the next algorithms too.

Algorithm 1, for reducing a Hamiltonian matrix to J-tridiagonal form, is used to
compute the RSF, in the same way as the reduction to HF is used in the QR algo-
rithm. The SR algorithm below is the most general algorithm performing this com-
putation by exclusively using symplectic transformations which preserve the Hamil-
tonian structure. All the computations are possible by means of the G1, Gz, G3 and
P transformations.

Algorithm 2 Reduction of a Hamiltonian matrix to the RSF using sym-
plectic transformations.

1) Hy =S5 HSo, S=3580, So€ Sz, Hy J-tridiagonal.
2){Fork=1,2,...

1) Hiyr = S;inSk, S — 58S, Sk € Son, Hgq1 J-tridiagonal,
where S; is obtained from the SR decomposition, pe(He) = Sk Rk,
of a polynomial py in Hj.

The polynomials px(z) are usually chosen as either & — Ag, where A = Hi(2n,2n),
or (¢ — Ak )(z — i), where Mg, Ay € A(Hy(2n—1:2n,2n—1: 2n)). However, since
if A€ MH) \R, then —X, A, —A € M(H), one can use a polynomial of degree four,
pe(z) = (£ — A1)(z — A2)(z —~ As)(z — Ag), where A, to A4 are the eigenvalues of a
submatrix of the form (for j =n — 1)

a; 0 CJ‘ bj
| 0 gy b g
i sl PPV i S N £ (6)
0 gy 0 —ajn
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In general, for large values of k, Hx and pi(H}) have SR decompositions (since { Hy }
tends to a J-tridiagonal matrix). But for small values of k, it is possible that pe(Hy)
has no SR decomposition, or is close to such a matrix. This fact will be detected
by obtaining a large condition number for a transformation G;, i € {1,2,3}. fa
condition number exceeds a certain bound, ¢;, the current iteration is abandoned
and a random symplectic matrix is used; one says that an ezceptional transformation
is employed. To avoid an infinite loop, no more than 20 exceptional transformations
are allowed per iteration.

Algorithm 2 is implemented without explicitly computing the decomposition
pi(Hi) = S Ri. The following computations must be performed at each iteration
k. The first column z of p;(H}) is computed. Then, a symplectic matrix S that
reduces x to a multiple of e; (in R*") is determined, the matrix SH; S~ is calculated
and, finally, the symplectic reduction of SH;S-! to J-tridiagonal form, Hy4; =
S'S-Hk.g"lf}"l, is performed, updating the matrices .5’1'11, X and Y accordingly; if
87! is (nearly) singular, then an exceptional transformation is used. If Pk is the
four degree polynomial above, then r € Im(ey, ez, e3), hence § is simply computed,
and SH S ! is a J-tridiagonal Hamiltonian matrix, except for six extra nonzero
elements in the upper-left corner of each submatrix H; e RV, i,i=1:2In
order to reduce this matrix to J-tridiagonal form, a specialization of Algorithm 1
is used.

In general, the sequence {H} converges to a matrix with 4 x 4 principal sub-
matrices like (6), each having the spectrum of the form {}, —}, }, ~A}, where
A € C\{RUR;}, that is not all b; elements will necessarily tend to zero. If some
eigenvalues are real, then 2 x 2 submatrices will also appear. At the beginning of
each iteration, one checks if some elements b; are negligible, that is smaller (in mag-

nitude) than 2 em || H ||1, where €y is the relative machine precision. If |bj] < &,
then the eigenvalue problem is decomposed in two smaller subproblems which are
solved consecutively. The iterative process continues until a complete splitting into
2 x 2 or 4 x 4 subproblems occurs, that is until at least every second element b, is
negligible.

The next stage is the separation of the stable H-invariant subspace. Let N; =
[ aj ¢y

g —aj
—A. If ¢; = 0 and a; = A, the spectrum covers the desired form and no further
processing is needed. If g; = 0 and a; = A, then the desired form is obtained using
a Ga-type transformation, so chosen that GT le; — 2&,—]T has the second element
zero. Hence, it follows that v = 2a;/c;. Finally, if ¢; # 0, the desired form is
obtained by applying a Ga-type transformation, so chosen that GTla; — A a]T

be a resulted 2 x 2 submatrix. Its eigenvalues are A = (af- +¢j qj)% and

has the second element zero. Therefore, v = —g;/(a; — A) and this value gives
= -A ¢
GIN;G;T = [ i ] .

Similar ideas are used to order the eigenvalues for an 4 x 4 submatrix (6) with
b; # 0. Clearly, the computing formulae are more complicated (Sima, 1992).

The eigenvalues of N in (6) are computed considering that A(N;) = {}, g, -, —u},
where 4 = A, hence A(N?) = {A%, 4%}, u? = A2, Since A(N?) = XV), where
2 w2 . . 1
a | a7 +gjc; gj+1b; 2 2 :
Vi J , A% and are the roots of the appropriate
[ q;b; afpy + 0i+1i41 J e SRR
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quadratic equation.

The convergence rate of Algorithm 2 is improved by replacing the eigenvalues
Xi, i = 1 : 4, defining the polynomials pg, with the corresponding eigenvalues of
matrix H, economically computed in advance (with both relative and absolute great
accuracy) using the following algorithm (Van Loan, 1984).

Algorithm 3 Reduction of the square of a Hamiltonian matrix H.

l)W:Hz. )

2) STWS-——[% __IQET], S€S2n, STS——”IQﬂ, QIDHF

One says that the matrix on the right hand side at step 2) of Algorithm 3 is in
Hamiltonian- Hessenberg form. The use of an orthogonal symplectic matrix S cer-
tifies good numerical properties. The matrix W is not actually constructed, but all
the necessary operations are implicitly performed on the n x n submatrices of the
Hamiltonian matrix H. Only the submatrix H(1:n,1:n) and the lower triangles
of H1 : n,n+1:2n) and H(n+1:2n,1: n) are stored. The eigenvalues of
H are obtained knowing that A; = A(@)%, Mgi = =X, i=1:n, where
A(Q), i = 1: n, are computed by the QR algorithm, applied to the matrix @ in
HF.
All the features above are combined in the following algorithm.

Algorithm 4 Solving algebraic matrix Riccati equation (1) using sym-
plectic transformations.

1) Apply Algorithm 3 to the matrix H = [ S _f;rr ] .

2) Compute the stable eigenvalues of H, Ai = —-(.\;(Q))%.

3) Initialize the matrices: X =0, Y =0, S;;' = In.

4) Reduce H to J-tridiagonal form, using Algorithm 1, but updating 51—11, X
and Y according to relations (3) - (5), instead of accumulating the transfor-
mations.

5) Apply Algorithm 2, but update 57!, X and Y, instead of accumulating the
transformations. As polynomial pg, choose either (A — A)(A + X;), or (A —
XA - 5\;)(A+4\,‘)(/\+/_\,‘), depending on A; € Ror A; € C, respectively, where
i is initialized by n and is decreased by 1 or 3, respectively, until convergence
is achieved.

The use of the eigenvalues which are computed based on Algorithm 3 as (double or
quadruple) implicit shifts, enables a very fast convergence of the SR algorithm. As
experimentally proved, the average number of SR iterations per stable eigenvalue
is usually 1. Bunse-Gerstner, Mehrmann and Watkins (1989) estimate that the
algorithm requires about 28n® flops, but the overhead is quite involved, compared
to other algorithms. The memory space needed for the data is of 6n24+m?24+nm+5n
locations.

Algorithm 4 computes an approximate symmetric solution X of CARE. Since
Gaussian elementary transformations are used, X may be quite inaccurate, if the
transformation matrices used in the process have large condition numbers. There-
fore, if the norm of the residual of X is too large, relative to the norm of X, then
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the Newton method — as described in (Sima, 1990) — is used in an iteration of the
defect correction procedure (Mehrmann and Tan, 1988), to improve the accuracy
of solution. This enables a large bound for the condition numbers be employed (for
instance, ¢; = 10~2/ex), and unnecessary exceptional transformations be avoided.

3. USAGE

Besides GRICSR subroutine, the called routines SQRED and GJTRID, which can
be used independently, are also presented. Only the double precision versions are
currently available.

GRICSR. subroutine computes an approximate solution of the continuous-time
algebraic matrix Riccati equation (1) using the Gaussian symplectic transformations
method. '

SQRED subroutine performs the implicit reduction of the square of a Hamilto-
nian matrix to Hamiltonian-Hessenberg form, using orthogonal symplectic transfor-
mations.

GJTRID subroutine performs the reduction of a Hamiltonian matrix to J-
tridiagonal form, using Gaussian symplectic transformations.

3.1. Description of User’s Interface
Calling sequences

CALL GRICSR (W,M,A,B,Q,R,NIT,CB,X,IER,F,Y,SINV,REIG,IEIG,V,W,
1 HA,NB,NQ,NR,NX)
CALL SQRED (WN,A,G,H,X,W,HA)
CALL GJTRID (4,Q,F,X,Y,SINV,Di1,D2,BS,N,V,W,ESC,CH,CP,CB,BAD,
1 FAIL,FA,NQ,NX)

Input 'parameters

N - is an integer variable that specifies the order of the matrices 4, @ and
X, and the number of rows of matrix B. N represents the dimension of
the system state vector. ¥ must be no greater than NA, NB, RQ and NX.

M ~ is an integer variable that specifies the order of matrix R and the number
of columns of matrix B. M represents the dimension of the system input
vector. M must be no greater than NR.

A - is a double precision real two-dimensicnal array with row dimension NA
and column dimension at least N. A contains the N by N system state
matrix.

B - is a double precision real two-dimensional array with row dimension NB

and column dimension at least M. B contains the ¥ by M system input
matrix. B is not modified on output.
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NIT

CB

SINV

244

- is a double precision real two-dimensional array with row dimension ¥Q
and column dimension at least N. Q contains the N by ¥ symmetric pos-
itive semi-definite state weighting matrix, in full storage. The elements
of the strict upper triangle are not referenced.

— is a double precision real two-dimensional array with row dimension
FR and column dimension at least M. R contains the M by M symmetric
positive definite input weighting matrix, in full storage. The elements
of the strict lower triangle are not referenced.

- is an integer variable that specifies the maximal number of iterations of
the SR algorithm.

- is a double precision real variable that contains the maximal allowable
value for the condition numbers of transformation matrices.

- is a double precision real two-dimensional array with row dimension ¥
and column dimension at least .

GRICSR first uses X as a working space and then initializes the strict
lower triangle to 0. -

On the first call of GJTRID, the routine uses the initialization provided
by GRICSR and then updates the lower triangle of array X, correspond-
ing to updating the matrix X.

In SQRED, X is used as a working array.

— is a double precision real two-dimensional array with row dimension N
and column dimension at least N.
GRICSR initializes its lower triangle to the lower triangle of matrix
F £ BR-'BT and then uses its strict upper triangle as a working area.

GJTRID uses the initialization provided by GRICSR in the lower tri-
angle.

i

is a double precision real two-dimensional (working) array with row
dimension N and column dimension at least N.

GRICSR initializes the lower triangle of Y to 0 and uses its strict upper
triangle as a working space.

On the first call of GITRID, the routine uses the initialization provided

by GRICSR and then updates the lower triangle of array Y, correspond-
ing to updating the matrix Y.

— is a double precision real two-dimensional (working) array with row
dimension N and column dirension at least ¥+1 in GRICSR and ¥ in
GJTRID.

GRICSR first uses SINV as a working space and then initializes the first
¥ by N locations to I,,.

On the first call of GJTRID, the routine uses the initialization provided
by GRICSR and then updates the content of array SINV, corresponding
to updating the matrix Sy, 11.
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V,W - are double precision real one-dimensional working arrays of dimensions
at least N. In GRICSR, W may be dimensioned max(¥,6).

NA,NB, - are integer variables set equal to the row dimensions of the two-
NQ,NR,¥X dimensional arrays A, B, Q, R and X, respectively.

G - is a double precision real one-dimensional array of dimension N+ (¥+1) /2.
G contains the lower triangle, packed column-wise, of the symmetric

matrix F 2 BR-1BT.

H - is a double precision real one-dimensional array of dimension N*(H+1) /2.
H contains the lower triangle, packed column-wise, of the symmetric
matrix Q.

D1,D2 - are integer variables set equal to the lower and upper indices, respec-

tively, of the submatrices in A, @ and F which must be dealt with in
the reduction to J-tridiagonal form.

BS - is an integer variable that specifies the maximal number of subdiagonal
elements in a column which must be zeroed.

ESC - is an integer variable that specifies the number of exceptional transfor-
mations performed up to the current call. On the first call of GITRID,
ESC should be initialized to 0.

CM — is a double precision real variable that contains the largest condition
number encountered up to the current call. On the first call of GITRID,
CM should be initialized to 1.0DO0.

CP - 18 a double precision real variable that contains the decimal logarithm
of the product of condition numbers of transformation matrices used up
to the current call. On the first call of GJITRID, CP should be initialized
to 0.0D0.

BAD - is a. double precision real variable that contains the modulus of the largest
(in modulus) updating factor of a Ga-type transformation, encountered
up to the current call. On the first call of GITRID, BAD should be
initialized to 0.0D0.

Output parameters

A ~ on normal return from GRICSR and GJTRID, contains the diagonal
matrix A of J-tridiagonal form corresponding to the Hamiltonian ma-
trix.

On return from SQRED, contains the matrix A obtained after applica-
tion of the orthogonal symplectic transformations.

qQ - contains the diagonal matrix @ of the J-tridiagonal form corresponding
to the Hamiltonian matrix. In GRICSR, Q should practically be zero.

R — the upper triangle contains the Cholesky factor of the matrix R (if
R > 0). The strict lower triangle is not modified.
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NIT ~ contains the number of iterations performed by the SR algorithm.

X - on normal return from GRICSR, X contains the symmetric solution of
the Riccati equation.

On normal return from GJTRID, the lower triangular part contains the
updated lower triangle of the matrix X.

IER - is an integer variable set equal to a diagnostic or error completion
code.

IER = 0 is the normal completion code.

IER = —I, I €{1,2,...,N} : if the QR algorithm has not converged in
30 iterations when determining the eigenvalues I and N+I of the
Hamiltonian matrix.

IER = 1: if the dimensions are unsuitable (N > min(NA,NB,NQ,NX) or
N <0).

IER = 2 : if matrix R is not positive definite.

IER = 3 : if the given matrix @ is numerically zero (diagnostic). A
possible solution of Riccati equation (1) is X = 0.

IER = 4 : if the Hamiltonian matrix has eigenvalues with zero real
parts. '

IER = 5 : if the J-tridiagonal form could not be determined.

IER = 6 : if the SR algorithm failed.

IER = 7 : if the SR algorithm has not converged in NIT iterations.

F - contains the symmetric tridiagonal matrix F of the J-tridiagonal form
corresponding to the Hamiltonian matrix.
Y — the lower triangular part contains the updated lower triangle of the
matrix Y. :
SINV - contains the updated matrix Sp;'.
REIG, - are double precision real one-dimensional arrays of dimensions at least
IEIG ¥ which contain the real and imaginary parts, respectively, of the sta-
ble eigenvalues of the Hamiltonian matrix (the poles of the optimal
system).
W ~if IER € {0,5,6,7} on output from GRICSR, then the first six locations

of W contain the following performance information:

W(1) — the number of exceptional transformations used in the initial
reduction to J-tridiagonal form;

W(2) - the number of exceptional transformations used in the SR al-
gorithm;

W(3) — the decimal logarithm of the product of condition numbers;

W(4) — the largest condition number encountered;

W(5) ~ the largest (in modulus) updating factor encountered;

W(6) - the number of SR iterations per eigenvalue (considering N eigen-
values).

G - contains the lower triangle (packed column-wise) of the matrix F ob-
tained after application of orthogonal symplectic transformations.
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H — contains the lower triangle (packed column-wise) of the matrix Q ob-
tained after application of orthogonal symplectic transformations.

BS ~ contains the current D2 value, if an exceptional transformation was per-
formed.

ESC ~ contains the number of exceptional transformations performed at the
reduction.

CM — contains the largest condition number encountered.

CP - contains the decimal logarithm of the product of condition numbers.

BAD ~ contains the modulus of the largest (in modulus) updating factor.

FAIL - is a logical variable that contains an error information item. FAIL is

.FALSE. on normal output, and .TRUE. if one of the transformations
involved is unacceptably ill-conditioned.

Called Subprograms

GRICSR: SQRED, HQR1, SEIG, GJTRID, GSRIT, DPOFA, DTRSL, D1MACH,
DAXPY, DCOPY, DCSQRT, DDOT, IDAMAX

SQRED : DROTG, H12, SYSIMH

GJTRID: DCOPY, EXCTRA, GiGEF, G2UPD, G3GEN, G3TUP, G3UPD, IDAMAX,
PERHM, SIMHG1

Applicability and restrictions

GRICSR subroutine may be used only if the Hamiltonian matrix is dichotomic, that
is if it has no eigenvalues on the imaginary axis in C. Moreover, it is assumed that
matrix R is positive definite. The last condition is required merely to compute the
matrix F £ BR-1BT.

The usage of symplectic transformations guarantees that the Hamiltonian struc-
ture is preserved during the entire computational process, hence that the eigenvalues
appear in pairs (A, —A) and, in case of dichotomy, there are exactly n stable eigen-
values. Due to the rounding errors, the above statements are generally not true if
a non-symplectic method is used.

The usage of orthogonal symplectic transformations in SQRED guarantees good
numerical properties. The large eigenvalues (in magnitude), computed using the
results returned by SQRED, have great accuracy.

For n < 2, GRICSR determines the solution in zero iterations, by merely per-
forming the separation of the stable part of spectrum of the Hamiltonian matrix.
For n > 2, the usage of the eigenvalues computed based on Algorithm 3 as (double
or quadruple) implicit transformations, has enabled that the convergence of the SR
algorithm be achieved in a small number of iterations. In the experiments per-
formed, the average number of iterations per eigenvalue (considering n eigenvalues)

was 1. For a single example the value 1.5 was obtained, frequent values being in
the range (0.8, 1.2).
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GRICSR, computes an approximate symmetric solution X of the Riccati equa-
tion (1). Since Gaussian elementary transformations are used, X may be quite
inaccurate. Therefore, it is generally advisable to apply the defect correction pro-
cedure in (Mehrmann and Tan, 1988). In the examples discussed below and in all
other supplementary tests, an iteration of this procedure, based on Newton’s algo-
rithm, was performed. Newton’s process has always converged (with usual tolerance

€ = 5.0D-6) in two — or rarely — three iterations, even if X had only the first sig-

nificant digit correct. Generally, the norm of residual of X was 0(6%}). When the
defect correction procedure is used, the maximal allowable value of the condition
numbers (CB) may be very large. In the tests performed, the number of exceptional
transformations was very small (often 0).

GRICSR subroutine should not be used for problems known to be very ill-
conditioned, such as Example 6 in (Laub, 1979) for n > 10, ¢ = 10%. For instance,
for this example, with n = 10, either the SR algorithm does not converge (if CB >
4.0D15), or the maximum allowable number of 20 exceptional transformations per
call of GJTRID is exceeded on the first iteration (if CB < 1.0D15).

3.2. Examples

Example 1 The following program sequence computes the approximate solution
X of the algebraic matrix Riccati equation (1), and the corresponding optimal sta-
bilizing matrix G, using Gaussian symplectic transformations. The system output
is weighted with the matrix Q in the performance index, and a proportional-plus-
integral optimal control law is designed. It is assumed that the matrices A, B, C,
@ and Q (where Q is the integrator output weighting matrix), of dimensions n x n,
nxm, I xmn, lxl and [ x I, respectively, as well as R, of dimension m x m, are
given. The matrices Q and @ are stored in the arrays Q and QI, respectively. The
extended matrices are constructed in the arrays A, B, C and Q. The approximate
solutions are improved using an iteration of the defect correction procedure with
Newton’s algorithm. The matrix G ie obtained in the array H.

INTEGER I,IER,INFO,J,L,M,N,NA,NB,NC,NI,NIT,NITN,NH,NN,NQ,NQI ,NR,NX

C
C The arrays A, AOLD, @, QI, R, X and F must have at least N+L,
H N+L, N+L, L, M, N+L and N+L rows and columns, respectively.
C The array B must be dimensioned as (N+L,M).
C The array C must be dimensioned as (max(L+L,M),N+L).
C The array H must be dimensioned as (M,N+L).
c The array AOLD will contain a copy of the matrix A, possibly
c extended for integrators.
c The working arrays SINV, Y, DQ and DR muat have at least
C (N+L,N+L+1), (N+L,N+L), N+L and M locations, respectively.
c The working arrays V, W, REIG and IEIG must have at least
C B+L locations.
Cc
DOUBLE PRECISION A(KA,NN),B(NB,M),C(NC,NN),Q(NQ,NN),QI(KQGI,L),
1 R(NR,M) ,AOLD(HN ,NN) ,H(NH,NN) ,X (NX,NN),
2 F(NN,NN),Y(NN*NN) ,SINV(NK,NN+1) ,V(NN) ,W(NN),
3 D;(NN) ,DR(M) ,REIG(NN) , IEIG(NN)
DOUBLE PRECISION ZERO,ONE
PARAMETER (ZERO = 0.0D0, ONE = 1.0D0)
DOUBLE PRECISION DASUM,EPS,(QNORM,XNORM,CB
EQUIVALENCE (QI(1,1),H(1,1))
C

NITH = HIT
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C Construct the matrices for proportional-integral control.
DO 20 J = 1,8
D010 I = 1,L
10 A(N+I,J) = -C(I,J)
CALL DCOPY (L,ZERG,0,C(L+1,J),1)
20 CONTINUE
Do 30 J =1,L
CALL DCOPY (N+L,ZERO,0,A(1,N+]),1)
CALL DCOPY (L+L,ZER0,0,C(1,N+]),1)
C(L+J,N+J) = ONE
CALL DCOPY (L,ZERG,0,Q(L+1,J},1)
CALL DCOPY (L,ZERD,0,Q(1,L+J),1)
CALL DCOPY (L,QI(1,3),1,Q(L+1,L+3),1)
30 CONTINUE
DO 40 J = 1M
40 CALL DCOPY (L,ZER0,0,B(N+1,J),1)

C Update problem dimensions.
N=N+1L
L=L+L
c Compute the state veighting matrix.
CALL UTAU (L,N,qQ,C,Y,NQ,NC)
C Save A in AODLD and the diagonals of ( and R in DQ and DR.

D0 50 J = 1,N

50 CALL DCOPY (N,A(1,3),1,A0LD(1,]J),1)
CALL DCOPY (N,Q,NQ+1,DQ,1)
CALL DCOPY (M,R,NR+1,DR,1)

c Solve the Riccati equation.
CALL GRICSR (N,M,A,B,Q,R,NIT,CB,X,IER,F,Y,SINV,REIG,IEIG,V,W,
1 NA,NB,NQ,NR,NX)
IF (IER.EQ.0 .OR. IER.EQ.7) THEN

C Compute the gain matrix in array C.

CALL DCOPY (M,DR,1,R,NR+1)
DO 60 J = 1,M-1
60 CALL DCOPY (M-J,R(J+1,J),1,R(J,J+1},8R)
CALL OPTR (N,M,AOLD,B,R,X,0,C,INFO,CB,NN,NB,NR,NX,NC)
IF (INFO.EQ.0) THEN

c Construct the packed upper triangle of Q and save X
C in array A.

CALL DCOPY (WN,DQ,1,G,NQ+1)

NI =1

DO 70 J=1,8
CALL DCOPY (J,G(1,J),1,Y(NI),1)
CALL DCOPY (N,X(1,1),1,A(1,1),1)

NI = NI +J
70 CONTINUE
c Initialize the stabilizing matrix with 0.
DO 80 J = 1,N
80 CALL DCOPY (M,ZERO,0,H(1,J),1)

CALL DCOPY (M,DR,1,R,NR+1)
DO 90 J = 1,M

90 CALL DCOPY (M-J,R(J+1,3),1,R(J,J+1),NR)
C Compute the residual of the Riccati equation solution.
CALL REZRIC (N,M,AOLD,B,Y,C,X,0,SINV,NN,NB,NC,NX)
(NORM = ZERO
XNORM = ZERO
NI =1
DD 100 J = 1,N
QNORM = MAX (QNORM,DASUM(J,Y(NI),1))
XNORM = MAX (XNORM,DASUM(N,X(1,1),1))
NI = NI + 1]
100 CONTINUE

GNORM = QNORM/XHORM + ONE

IF (QNORM.EG.ONE) GO TO ...
C Refine the solution of the Riccati equation and compute
C the optimal stabilizing matrix.
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CALL NTN (N,M,AOLD,B,Y,R,H,EPS,HNITN,X,IER,SINV,F,Q,
1 - NN, NB,NR,NH,BX)
IF (IER.EQ.0 .OR. IER.EQ.3) THEN
DO 110 J = 1,K :
CALL DAXPY (N,ONE,A(1,1),1,X(1,D1),1)
CALL DAXPY (M,ONE,C(1,J),1,H(1,1),1)
110 CONTINUE
ENDIF
ENDIF
ENDIF

The routine NTN is obtained by modifying NTNC subroutine from the BIMAS
library (Varga and Sima, 1985). Versions of UTAU and OPTR subroutines could
be found in BIMAS.

Example 2 The program sequence listed in Example 1 was used for the intercon-
nected power system model (Hung and MacFarlane, 1982), n =7, m = 2, [ = 3,
without error integrators, and the quadratic performance index defined by the ma-
trices Q@ = CTC and R = 100],. The results obtained are:

r.5821 .0945 .4653 .0431 —.1347 -—.0033 -—.0564
.0945 .0456 A7T17 0 —-.2203  -.0033 -—.0048 -—.0181
4653 A717 .6805 ~—.6875 —.0564 -.0181 —.0819
X = .0431 -~.2203 -.6875 4.3064 —.0431 .2203 6875
—.1347 -—.0033 -~.0564 ~.0431 5821 0945 4653
—.0033 -.0048 —.0181 .2203 .0945 .0456 AT17
L —.0564 -—.0181 —.0819 6875 4653 1717 .6805

G=

.0004 .0006 .0023 " -.0275 -.0118 -—.0057 —.0215

[ -.0118 —.0057 —.0215 L0275 .0004 .0006 .0023]

Residual of solution (in 1-norm) = 3.8980D-011
Horm of residual/mnorm of solution = 6,2789D-012

The solution X of the Riccati equation (1) was obtained with Algorithm 4 af-
ter NIT = 8 iterations. The eigenvalues of the optimal (closed-loop) system are:
{—1.6815,—1.3866 & 2.2079j, —.5623 & 3.1319j, —13.1443, —13.1622}. Note that the
1-norm of the residual of X is 0(1071°). Using then NTN with EPS = 5.0D-6, two
iterations were performed; the computed correction had elements with moduli less
than 1071% and the final value of the convergence criterion was 3.9522D-12.

Example 3 Using the program sequence in Example 1 for the chemical reactor
model (Hung and MacFarlane, 1982), n = 4, m = 2, | = 2, and the quadratic
performance index defined by the matrices @ = dia.g(@,@) = I4, R = 1001z, the
results were:

63.3241  10.2177 45.1674 —23.8206 —4.5368 9664

10.2177 3.4175 7.5223 —2.8706  —.4927 -—2.2582

S 45.1674 7.5223 32,2611 —16.8068 -—3.1083 .6648
—23.8206 —2.8706 —16.8068 10.2998 3.7302 2.0161 |’

—4.5368  —.4927 —3.1083 3.7302 6.4133 8.5448

9664 —2.2582 .6648 2.0161 8.5448  22.8617

G= —.8228 —.2469 -—.6028 2369 .0209 .0978
1 1.4210 2367 1.0149 -—.5287 -—-.0978 .0209 |’
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3.6756D-010
2.4830D-012

Residual of solution (in 1-norm) =
Horm of residual/norm of solution =

Algorithm 4 performed NIT = 8 iterations. The eigenvalues of the optimal (closed-
loop) system are: {—.0373, —.4346 £ .3702j, —1.9971, —5.0867, —8.6686}. Using then
NTN with EPS = 5.0D-6, two iterations were performed; the computed correction
had elements with moduli less than 107°  and the final value of the convergence
criterion was 3.4050D-11.

Example 4 This example considers the system defined by A = AT, B = (7,
where A and C are the matrices of the chemical reactor model (Hung and MacFar-
lane, 1982), and the quadratic performance index defined by @ = I3, R = 101,
The results are listed in (Sima, 1992). Algorithm 4 performed BIT = 4 iterations.
The eigenvalues of the optimal (closed-loop) system are: {—.1980,—2.0443, —5.0671,
—8.6716}. Using then NTN with EPS = 5.0D-6, two iterations were performed; the
computed correction had elements with moduli less than 10~!1, and the final value
of the convergence criterion was 0.0D0.

Table 1 summarizes the performance statistics obtained using the program se-
quence in Example 1 for the optimization problems described above. The item
“log(prod. condition nr.)” means the logarithm of the product of condition num-
bers, and “Iterations/eigenvalues” — number of iterations per eigenvalue.

Table 1: Performance Statistics.

Ex. 2 Ex. 3 Ex. 4
log(pred. condition nr.) ©.0820D+01 | 1.3346D+02 | 3.3742D+01
Largest condition number | 1.4876D+03 | 4.3493D+04 | 1.9210D+02
Largest updating factor 7.0708D+02 | 2.1205D+04 | 2.8921iD+02
Iterations/eigenvalues 1.1429D+00 | 1.3333D+00 | 1.0000D+00

No exceptional transformations have been performed neither in the initial reduc-
tion, nor in the iterative process. Detailed results and conclusions on the numerical
experiments are reported in (Sima, 1992).

3.3. Implementation Details

After initializing the performance parameters, GRICSR subroutine constructs the

lower triangle of the matrix F 2 BR-'BT and computes the tolerance ¢, used in
the negligibility tests (¢ = €, || H ||, where ¢, is the rounding unit of the computer
machine). Then GRICSR prepares the call of SQRED routine, taking into account
that SQRED changes the contents of the input arrays. To reduce the memory
requirements, matrix A is saved in the array W and in the strict upper triangular
parts of the arrays F and Y. Moreover, the columns of the lower triangle of matrix F
are concatenated in the array SINV, and then, similarly, those of matrix ¢}. For this
reason, GRICSR treats SINV as a one-dimensional array, of dimension ¥ x (N+1).

The results delivered by SQRED in the arrays A and SINV are used to com-
pute the eigenvalues of the Hamiltonian matrix. To simplify processing, and since
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memory space is available (for later calculations), the matrices F' and @Q, ob-
tained in SINV, are testructured to the two-dimensional storage; F' is entirely
stored in the array X, and the lower triangle of @) is stored into the correspond-
ing portion of ¥. The matrix V 2 424 F@Q, in HF, is computed and A(V) is
then determined. Since A(HZ) = A(V), it follows that \(H) = —(A(V))3 and
Anyi(H) = =Xi(H), i = 1 : n. The components of indices n + ¢ are not stored.
The eigenvalues with negative real parts, \;(H), ¢ = 1 : n (representing the optimal
system poles), are ordered in the increasing order of the moduli of real parts, and
in case of equality, in the increasing order of the moduli of imaginary parts.

Next, GRICSR reconstructs the matrix A from the information stored in W and
in the strict upper triangles of F and Y, and initializes the array SINV to I, and
the lower triangles of the arrays X and Y to 0. The GJTRID and GSRIT routines,
which implement the initial reduction to J-tridiagonal form and the SR algorithm,
respectively, are then called; at the same time, the stable eigenvalues of H are
moved by GSRIT into the first n positions.

Finally, the upper triangle of the solution matrix is constructed, and the infor-
mation regarding the performances is stored in W.

SQRED subroutine implements the implicit variant of Van Loan’s algorithm
(Van Loan, 1984). Orthogonal transformations — Householder transformations U,
computed by H12 routine, and standard plane rotations V, computed by DROTG
routine (Lawson and co-workers, 1979) — are exclusively used. Only matrix A
and the lower triangles (packed column-wise) of the matrices F' and Q are stored
in SQRED. The routine has a loop ¥ = 1 : n — 1. The elements k+ 1 : n of
the vector Q(Aex) — AT(Qey) are first computed in the working array W and the
Householder transformation U, that modifies the (k4 1)-th element and annihilates
the elements k + 2 : n, is determined. The transformation U is applied to A, in
the form A — U AU, using two calls to H12 routine (the first call determining U at
the same time), and then U is similarly applied to Q and F, by calling SYSIMH
subroutine. (To simplify the code, SYSIMH reconverts the packed storage to the
two-dimensional storage in the working array X.) Next, SQRED computes a; 2
(A(Aex) + F(Qex))k+1 and az = (Q(Aex) — AT(Qex )k 41, determines the rotation
V that modifies a; and zeroes az and applies V to 4 (4 «— VAVT) and, similarly,
to F' and Q. To accomplish these operations, it is necessary to save in advance the
(k + 1)-th row of F in the array W and the element ag41 441 in a local variable.
Finally, a Householder transformation U, that modifies the (k + 1)-th element and
annihilates the elements k + 2 : n of the vector A(Aex) + F(Qex) (computed in W),
is determined and applied as above.

GJTRID subroutine implements Algorithm 1. But facilities for working only
with the submatrices (D1:D2,D1:D2) in A, F and @, and for annihilating at most
BS sub- and superdiagonal elements in each row and column of these matrices are
included. BS has the value D2 at the initial reduction to the J-tridiagonal form,
or when some exceptional transformations are used, but during the SR algorithm,
BS can have the values 1 or 2. (Initially, D1 = 1, D2 = N.) The calculation and
application of the symplectic matrices Gy, G2, P and G3 is made by calling the
subroutines G1GEN, SIMHG1, G2UPD, PERM, G3GEN, G3TUP and G3UPD,
and the routines called by them. Mind that no special routine is included for the
calculation of a Ga-type transformation, since this is simply obtained by calling
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G1GEN, but interchanging beforehand the values of its first two arguments. Both
G1GEN and G3GEN estimate the condition number of the transformation matrix,
test its size and accumulate the decimal logarithm of the product of condition
numbers of all transformations performed up to the current call. (The logarithm
is used since the evaluation of the product could produce overflows.) If any of the
transformations involved in the iterative process is too ill conditioned, then GJTRID
resorts to an exceptional transformation (actually representing the product of a
random Gs-type transformation and a random G3-type transformation), by calling
the routine EXCTRA. At most 20 exceptional transformations are allowed on one
single call of GJTRID. It must also be emphasized here that the routines can work
with (D1:D2,D1:D2) submatrices and use exclusively the lower triangles of the arrays
Q, F, X and Y. However, the indices vary from 1 to ¥ when the matrices X, Y and
Spi are updated. _ '

GSRIT subroutine implements the iterative SR algorithm. At the beginning of
each iteration, GSRIT tests if there is a negligible subdiagonal element in F, and,
if so, the problem is split into two subproblems. Once a submatrix N; or order
two or four has been detected, GSRIT applies the transformations needed to move
the stable eigenvalues in the upper-left corner, by calling the subroutines DEF2X2
or DEF4X4, respectively. (This is equivalent to finding one vector or two vectors,
respectively, of a basis for the stable H-invariant subspace.) DEF4X4 also deals with
the case when A(N;) = {\, g, —A,—p}, A,p €R. Clearly, if the convergence has not
been obtained for any submatrix N; at the current iteration in GSRIT , then the
iterative process continues by using a double or quadruple transformation, calling
the subroutine GSR2 or GSR4, respectively. The “exact” eigenvalues, computed by
GRICSR after the call of SQRED, are used. GSR2 and GSR4 apply an SR step;
the nonzero elements of the first column of matrix pg(H) are computed, then the
symplectic transformation reducing this column to e; is determined, and finally, the
matrix resulted from applying this transformation is reduced to J-tridiagonal form.

4. CONCLUSIONS

An efficient algorithm for solving CAREs using Gaussian symplectic transformations
has been discussed, and numerical results obtained based on an implementation of
this algorithm have been described. The underlying method exploits the special
spectral properties of the Hamiltonian matrix associated with the optimal problem,
and delivers a symmetric solution. The method works well in practice, except for
very ill-conditioned CAREs, for which other methods also encounter difficulties.
The numerical experience has shown that large condition numbers of the transfor-
mation matrices are tolerable, particularly when a defect correction procedure is
used for increasing the accuracy of the computed solution.
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