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ABSTRACT
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INTRODUCTION

The advanced software development environments making use of formal methods may
vary from experimental systems developed in research units and universitics to industrial
projects. Seven conclusions are drawn about formal methods’ impact on users (whether
these formal methods are included in software development environments or not):

1) Formal methods are very helpful in detecting errors during the early stages of

development and in almost climinating certain classes of errors.

2) The software system designer must clearly predefine his/her opinion or clarify
his/her opinion about the system to be built when using formal methods.

3) Formal methods are useful for almost any kind of application; in a non—critical
system, even if its further development will not be a formal one, just wraling
down a formal initial specification means something better than dealing with
other informal/semi~formal methods; in a critical system there must be a formal
specification to start with and a very rigorous step-by-step development
process must be followed within which formal expression and justification hold
for each step and for the whole process.

4) Formal methods are based on mathematical specifications which, being
abstract, are much easier to understand than programs.

5) When using formal methods, the development costs will diminish becanse all
the development stages, including the early ones, which would be error—prozne,
ifinformally or semi~formally approached, are formally expressed and justified.

6) Formal methods help clients understand what type of a system they are going 1o bay.

7) Formal methods are successfully used on practical industrial projects.

These conciusions have been reached by experimenting the CICS project @ 1BM,
for example, or the CASE project at Praxis Systems.

1. FORMAL METHODS, LANGUAGES AND SUPPORT SOFTWARE SYSTEMS

For the last ten years, there have been carricd out basic rescarches on formal
methods, languages and support software systems, with a three—fold orientation:

1) Formal semantics building of specification/programming languages.

2) Specification of software development process semantics.
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1) Integrated and sdvanced scquential and concurrent software development
crvironments building which support results of 1) and 2).

One first research direction resulicd on the onc hand in formal methods/formal
exceutable specification languages building and, on the other hand, in formal models
for the existing programming/development languages building (e.g. Ada).

A development method is a formal one to the extent to which it makes a rigorously,
mathematically-based description of the system properties. Such notions as system
propertics, consistency and completeness, as well as the developmcnt process itself may
be preciscly defined.

The description of real system properties will be possible by means of a formal
specification language. A formal method may be supported or not by tools, but a formal
ianguage must be supported by tools. By means of a formal specification language the
cxtent to which a specification is implementable can be verificd by proving the system
propertics correctness, with no need to run the corresponding software for that.

A formal language has three characteristics:

~ A formal syntax;
- A formal semantics;
- A satisfies relation.

A formal syniax is given by means of an abstract syntax, which is a function system
for buiiding and decomposing composed syntactic objects.

Functions and relations among them are defined by means of axioms. -

A formal language semantics can be built in two ways:

A) Syntbetically when specification/program meaning is defined by composing the
meaning of the sub-specifications/sub—programs by appropriate operators
attached to the language constructs.

Examples of synthetical semantics will be denotational semantics and algebraic

semantics. ’

B) Analytically, when meaning is only given to complete systems of
specifications/programs and not to fragmentary specification/program.

The sxplicit syntactical structure of the complete specification/program system will

chude a set of processes in il

Examplcs of analytical techniques are the various definitions of the operational
semantics of specifications/programs.

The satisfies relation of a formal language has two roles:

- To accustom with different views on system componcuts/ob]ccts,
- To make restrictions on the system.

A second research direction resulted in semantic models of scqucnual software
development process building (which are conceptually convergent) and in several
semantic models of concurrent software development process building (which are not
as conceptually convergent as the sequential models).

An exampic of sequential model, which is part of the PROSPECTRA advanced
software development environment, refers to the development process as a formal
object that does not only represent a documentation of the past but also a plan for further
developments.

It can be used to abstract a class of similar developments from a particular
deveclopment.

Examples of concurrent models will be labeled transition systems and
svnchronization trees (CCS-Milner language ), Petri nets. The CSP models family is
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another example, including: The Counter Model, The Trace Mode! (tmlbe presentes
later on), The Divergence Model, The Readiness Model and The FailugesiModel

, , The Counter Model is the least sophisticated one, adequately deaffiing with oaly
tree-like networks of processes. The Trace Model allows the descriptiomxetf srbitrary
networks of processes. Both the Counter Model and the Trace Model camsgaecify safety
propemes (see note *) but no one can deal adequately with diverging. prwsmesses (sec
note *°). The Divergence Model is able to reason about systems that ey ddivesge.
Additionally the Readiness and Failure Models may reason about liveness (mmcmmote® )
and safety.

A third research direction resulted in building integrated and advanced sequemiaal and
concurrent suflwarcdcvclopmmtmwmmenbsofwhidlthrccmamchamctcmﬁmm

A) The operational life cycle;

B) The existence of a formal model which the software development enviromment

data processing is based on;

C) The existence of a knowledge base, which represents the developmment

environment expert domain,

Besides the above mentioned research directions, formal methods/languages: :and
advanced scftware development environments supporting them are used in industrial prajsects.

Some examples are given below:

TRANSACTION PROCESSING : IBM’s CICS is a large, twenty-year mld
transaction-processing system. It contains more than half a million lines of code. Thze Z
formal specification method has been used by IBM in specifying again the key CIICS
interfaces with a view at enhancing maintainability.

HARDWARE : Tektronix has been using Z method to specify the functionailits: of
oscilloscope families.

COMPILERS : The Danish Datamatik Center has for many years been desveloping
industrial compilers using formal methods.

SOFTWARE TOOLS : The CASE Project (Praxis Systems).

REACTOR CONTROL : Rolls - Royce and Associates used a cominination of
English and formal specifications to specify nuclear-reactor control software. Theyused
animation to explore the specification.

2. EXAMPLES OF FORMAL METHODS/LANGUAGES TAXONOMIES

Formal methods/languages may be classified according to severa! criteria [7]
Formal methods/languages fall into two classes defining the system belsavionr:
A) Model-oriented methods/languages, in which system behavimur is: specified
directly, by constructing a model of the system in terms aif mathematical
structures (tuples, relations, functions, sets, maps, trees, sequeences. €tc.).

*  Safety for concurrent processes corresponds to partial correafiness for sequential
programs. Intuitively, safety properties specify that some comdlition docs not
hold whereas liveness properties specify that some conditiomwill hold.

** A concurrent and distributed system (network of processes)) is non—divergent if
recurrence goes on and there is no infinite consecutive segjuence of hidden
events which the system may get involved in.
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B) i methodslanguages, in which system behaviour is specified
hdkwlhbyﬂa:ingamdpmpuﬁﬁ(usnaﬂyaﬁoms)lhatmbcsaﬁsﬁedby
the systca; in this case a minimum number of restrictions has to be made (that is,
the minimum numbao‘[ropaﬁc&salbfyingthcsystmmquh‘emems).mh:ga
lhemmbadimpkmnmiom,lhcmalhthemmbao{mstﬁcﬁons

mmmaomwmwmwmw semantics with
Wdtamﬂhugxmg:smyaddﬂimﬂywppm;opaaﬁmalmanﬁmhordam
dewihecyﬂcm.cihad‘ﬂﬂmlzdornﬁ.malyﬁdmchniquﬁwﬂibeuwd, ie. we will
proceed with opuauonnlumannm,whﬂedescritmg!hcspecnﬁcaumfpmgrammng
Wmmmmmmmumwmm
proceed with denotational semantics and algebraic scmantics.

For example, operational and algebraic semantics are known for OBJ3 language,
opcraﬁonalanddenomﬁcnalsemamksarcknmfm CSP language, etc.

The following examples refer to model-oriented methods/languages:

- For sequential software systems: VDM (Vienna Development Method with its
language, VDL), method Z. '

- For concurrent and distributed systems : Petri nets, languages CCS(Milner)
and CSP(Hoare).

Here are examples of property~oriented methods/languages:

- For sequential software systems: the Larch language family, languages OBJZ,
OBIJ3, Act Onc, P-AnndA-S, Pluss, method Z.

- For concusrent and distributed systems: temporal logic, language LOTOS (a
combination of Act One and CCS). '

Formal mcthods/languages can fali under two categories as to their specifications
preseatation form: textual and graphical. Generally, both forms are needed and actually
they co—exist, the graphical form being elaborated after the textual one and aiming at
making an as fricndly as possible user interface. :

Specification bebaviour shall determine that formal methods/languages belong to
two calegories: -

- executable (c.g. languages OBJ2, OBI3);
- noncxecutable (e.g. language VDL, methed Z).

Last but not least, formal methods/languages fall into two classes if their support
tools types are considered:

- Method-oriented tools (¢.g. syntax-directed editors);
- General tools [e.g. theorem-provers - Rewrite Rule Laboratory (RRL), the
Boyer-Moore Theorem Prover, etc.].

3, LIFE CYCLESUPPORTED BY AN ADVANCED SOFTWARE DEVELOPMENT
ENVIRONMENT BASED ON FORMAL METHODS

An advanced software development environment based on formal methods supports
a life cycle consisting of several phases [1}, [2], [S): :

A) Requirements analysis;

B) Formal specification;

C) Formal specification verification;

D) Specification implementaiion in some exccutable specification language and in

programming languages.
This life cycle is called operational (6] for executable specifications.
Phasc order is given in Figure L:
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Figure 1. Operational life cycle

3.1. REQUIREMENTS ANALYSIS

Requirements analysis is a complex process of vital importance for the Suture system.
Besides system data collecting, requirements analysis includes data ongaaezation so as
io deduce the relevant requirements as well as the absent ones. Being s:am intuitive
analysis, requirements analysis may not be easy to support by a formal metihod; which
needs rigour, that is well-defined requirements. An advanced software diswilopment
environment coherently gathers both formal methods and heuristic/imiformal or
semi-formal methods in order to support requirements analysis.

If sequential software development is supported by the environment, sizstic analysis
techniques of structural properties can be introduced (e.g. data fiow dhagrams). If
concurrent software development is supported by the environment. a solutias: for hinting
at the software dynamic behaviour will be to build up requirements exphoratioss prototypes.
which use animation techniques. With a minimum of system requirememits, zm matial system
specification is built and portions of it are ideatified and sclected in order ti'be animated
Animation will then involve (dynamically) steppimg through cach process action ari:
examining the output behaviour. Animation can be used to determame camsad relationship:
embedded in the specification, or simply as a means of browsing through-ithe specification:
to ensure adequacy and accuracy by reflecting the specified behavaour beck to ‘the userlls:
particular, the need for reflecting specified behaviour under diffierent carcamstances (i
animation replay with different data values) must be considered.

By animation new requirements for the future systems can be adentitied. The
technique is generalfy applied to critical system components.

There is no clear—cut separation between requircmcots amabysis and formd
specification. However, ini order to formally specify a software systes, requircmens
1dﬁnnﬁcdatthxsphascmustbcaccm'ntcandnon-amhgmus

32. FORMAL SPECIFICATION
Building formal specifications takes several steps:

~ State the critical requirements, which are usunally 2 mstuwal language-He
statement of what is desired, in precise mathematical terms;

- Produce a high-level formal specification of the system: msing a formi:
specification langunage;

~ Refine system formal specification in the same formal specification languag:
by producing more and more detailed formal specifications;
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- Code final system formal specification in 2 high-level programming language.

To demonstrate the consistency of the high-level programming language code with
the critical requirements will obviously be a difficult task. One can manage this by
verifying specification on cach step (see 33).

The rest of the paragraph will show how simple formal specifications in well-known
specification languages arc built, based on the already mentioned taxonomic criterion
that is the definition of system behaviour, which points to two method/language types:

- Modcl-oricnted methods/languages;
- Property-oncnted methods/languages.

Sequeatial case, model-orieated specifications

A symbol table specification is to be modclled in VDL (Vienna Development
Languagc) (scc Fig. 2).
VDL Languagc is model-oriented and supports four models: tuple (for both
sequences and lists), set, map and tree.
The state of the table is modclled by amapping from keys to values (ST = map Keyto Val).
The table contains four operations:
- INIT, which initializes the symbol Lable to be empty;
— INSERT. which adds a ncw binding to the symbol table in case key k is not to
be found in the domain of the table;
~ LOOKUP. which returns the value to which key k is mapped, requiring that
key k should be in the domain of the table, .
DELETE. which retracts the binding associated with k from the table,
requiring that key k should be in the domain of the table (where =2 1s the
domain subtraction opcrator).
By convention, unprimed variables in VDL stand for the state before an operation
i« performed and primed variables for the state afterwards.
Supplementarily some predicates appear in VDL specification in Figure 2, named
4~ pre-and postconditions
A precondition of an operation is a predicate that must hold in the state on each call
Af the apcration: if it doss not hold, the aneration’s hehaviour is unspecified.
A postcondition is a predicate that holds in the state upon rcturn.
Additional declarations of external state variables in Figure 2 are the following:
- rd (for read-onlv-access) expresses the fact that LOOKUP does not modify
the symbol tabie (st = st');

wr ({or write-and-rcad-access) expresses the fact that INSERT and DELETE
modify the symbol table.

ST = map Key to Val LOOKUP (k:Key)v:Val
INIT {} ext rd st:ST

ext wr st ST pre k ©dom st

postst’ = {} post v = st(k)
INSERT (k:Kev. v-Val) : DELETE(k:Key)

ext wr st: ST ext wr st:ST

pre k & dom sl pre k €dom st

postst’ = st U {k =~} postst’ ={k} <3 st

tigure 2. - VDL symbol table specification (7]
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Sequential case, property-oriented specifications

The same symbol table is modelled in the property-oriented Lazch language family.
Ia Larch two levels of specifying can be addressed:
- A state-dependent level, functionally similar to 2 VDL specification, known as
an interface specification;
— A state-independent level, expressed as an algebraic specification, known as atrait.
For each operation in an interface specification, the requires.and.ensures Clases
are used as VDL pre-and postconditions. The modifies clause liststhoss objects whise
valuc may be altered as a result of executing the operation. Hence TOOKUP doesmot
modify the symbol table, whereas INSERT and DELETE do madify it.
The trait is an aigebraic specification consisting of two parts:
— A signature, which contains the declaration of a set of function symbok jthe
syntactic part);
— A set of equations that define the semantics (meaning) of the function syadols
(the semantic part).
The symbol table abstract data type specified in the interface specification rages
over values denoted by terms of sort S (see Fig. 3).

symbol_table is data type based on S from SymTab

init = proc () returns ks:symbol__table}
. ensures s = emp A new (s
insert = proc (s:;symbol_table, k:key,v:val)
requires ~ 1sin (5,k
modifies (s) 44 (skw)
ensures s =3 v
lookup = prec (s: sbol_tablc,k:kcy) returns (v-val)
requires 1sin gs:,{m
ensures vV = s)s(,)k)
delete = proc (s;symbol_table k:key)
requires isin (s,k)

modifies (s
ensures s = rem (s,k)
end symbol_table
SymTab: trait
intreduces
emp : -»$
add:S, II% v -=»§
rem: S, =S
find: §, K -V
ism: §, K —>Bool

S generated by (emp, add)
K

S partitioned by ﬁné’)l:sm)
WS RN L e,
o e add (rem(e, KD, )
find (sdd(sk ) K1) = = k=KL then v
mﬁﬁfﬁ"é’(&?}l’?ﬁ (k=Kk1)V isin(sk1)

a5 Y:loll.l:grfs(mm,ﬁnd,isi{!) exemapting (rem(emp),find(emp))

F:gumS.Ln’chsynhollnblcspedﬁuﬂenm
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There are scveral clauses (in Fig. 3):
- The generated by clausc states that all symbol-table values can be represented
by terms composed of iwo function symbols only, emp and add;
- The partitioned by clause intuitively states that two terms are cqual if they
cannot be distinguished by any of the functions listed in the clause;
- The exempting clause expresses exceptions from the equation writing rule,
meaning that there are no right hand sides for rem(emp) and find(emp).
One can notice that the user-defincd function symbols in a Larch trait are the same
as those which appear in the pre- and postconditions of the interface specification.
1 can also be noticed that Larch has no special built-in notation (as, for example,
VDL) which the user can benefit (must memory nothing) or not (large sets of
user-defined symbols and equations for them must be provided).

Concurrent case, model-oriented specifications

An unbounded buffer specification in CSP model-oriented specification language
is given in Figure 4.

CSP language in this example is based on The Trace Model (see commentary in
Chapter 1 on CSP model family) where every process is represented by a set of traces,
a trace being a finite or infinite sequence of actions. CSP supports interleaving type of
concurrency, which mcans that in case of communicating processes only one action of
onc process is performed at a time.

A process can communicate with other processes and with an external enviror.ment via
a finite number of input-output channels by sending messages. Processes synchronize on
actions so that the action of sending output message m on named channel ¢ should be
synchronized with the action of simultaneously receiving an input message on C.

The unbounded buffcr in Figure 4 is defined recursively with two clauses to handle
the empty and non—empty cases.

The first clause,

Py =lei?lm =P .

cxpresses the {act that if the buffer is empty, in the event that there is a message m
on the left channel (left?m), it will input it. The notaitun x->F, for x=action and
P = process, denotes a process which engages in action x and then behaves like P.

The second clause,

Pegs~s = (efi?n>P__ .. . |rightim—=P,)

expresses the fact that, if the buffer is not empty, two things can happen:

1} The buffer will input another message o from the left channel, appending it to

the end of the buffer;

or

2} The buffer will output the first message through the right channel.

Notation s ~ t denotes the concatenation of sequence s to sequence L. CSPuses | to
denote choice operator, that is, if x and y are distinct actions, x>P | y> Q describes a
process that initially engages i x and then behaves like P, or initially engages in y and
then behaves like Q.

Ii is possible that CSP states and proves properties of its traces, by using algebraic
ruics on them The last fine in Figure 4 states that the unbounded buffer describes a set
of traces sansfymng two predicates:
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- mﬁrameﬁmxecmmmewqmudommnmammrm'
channel is a prefix of the sequence of input messages on the left chanseel
(ss t denotes that sequence s is a prefix of sequence t);

- ﬂemdmcmmmmcpmmmmbeingpaﬂedw
refuse communication on cither the right or the left channel.

BUFFER =P,
where Py = kfttm* P p s
andPemsrs = (it Pems~gnca> | rightlm=Fg)

BUFFER sat(right < loft) A (if right =lcft then left @ ref else right € ref)

Figure 4. CSP specification of an unbounded buffer and condition for provimg
specification correciness n

Concurrent case, property-oriented specifications

In Figure 5 an unbounded buffer is specified by means of temporal logic. Temperal
logic is a property-oriented method for specifying properties of concurrent syslems. 1t
works with modal operators that make assertions about system bebaviour; these
operators refer to a temporal logic inference system, which can be analysed by mezans
of past, present and future states.

Commonly used modal operators and their meanings are given below:

- [P expresses that predicate P holds for all future states;

. O P expresses that there is a future state for which predicate P will hold;

- O P expresses that in the next state predicate P will hold.

A temporal logic specification is represented by an unstructured set of predirates,
all of which having to be satisfied by a given implementation. The formulas in Fagure 3
are interpreted with respect to sequences of events. A buffer has a left input dhannei
and a right output channel.

Expression <c¢ !m> denotmﬂacadiohofpladngmessagcmonchannclc%cﬁrﬂ
predicate <right'm> O <left!m> states that any message transmitted to the rightt channcl
(<ﬁghﬂm>)mxstha\cbecnpﬂhﬂyphccdmthelcﬁdmnnc!(0<lcﬁ 'm>). The
second predicate,

(<rightim> AO ¢ <rightlm’>) = O (<lefilm>A 0 © <left! m’>)
expresses the fact that messages are transmitted in FIFO order; if message mplaced on
the right channel (< right!m>) is preceded by some other message m', alsa.am the right
channel (O ¢ <right!m’>), there must have been a preceding action (the szcond L
of placing m on the left channel (<left!m>) and an even earlier event thiett placed m’
on the left channel ahead of m (O © <left tm’ >). The third predicate,

(<lefttm> AO O <leftlm’ >)= (m #m')

channclandforeadlprcvhlslyplamdmmgem’mthckﬁchaml(@© <left'm’'>)
mandm’arenotoqual.Thisisanassumptionofthccnvimnmmtmd&ﬂiscsszmia!fm
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specification validity. Witiout it, a buffer thal transmits duplicate copies of its input to
the output would be considered correct.
The first three predicates state safety properties of the system. The fourth predicate
(<leftim>) = ¢ (<right!m>) states a liveness property, that is, each input
message will eventually be transmitted. '

(1) crightm> = & <icfilm>

(2) (<nght'm> AQ ¢ <nghtim'>) = ¢ (<lkftim>A O ¢ <leftim’>)
) (<lcfim> AO O <lkftim’>)=> (m#m’)

(3) (<lefitm>) = O (<right!m>)

Figure 5. Tempeoral logic specification of an unbounded buffer [7]

33. FORMAL VERIFICATION OF SPECIFICATIONS

The first step in the formal verification of specifications is to informally check the
way formal critical requirements reflect customers® critical requirements. This step is
informal because customers’ requirements are informal.

Another step is to prove that the highest-level specifications are consistent with the
formal critical requirements. There are two different approaches based on whether
model-oriented or property-orieated specifications are dealt with.

For model-oriented specifications, the effect of performing each operation has to
be specificd based on the fact that certain conditions must be satisfied when the
operation is invoked; for each operation, there are entry (pre-) and exit conditions
(postconditions) and if the system state, before invoking the operation, satisfies the entry
conditions, the state after the operation has been executed will satisfy the exit conditions.
When proving consistency of model-oriented specifications, one must verify that the
initial state saiisiics the formal critical requirements and that every operation preserves
the critical requirements {operation invariants).

For property-oriented specifications, formal verification is performed by means of
building homomorphisms between abstract data types on the first (critical
requirements) and second level (highest-level specifications) which must preserve

An example is given below (taken from [2]) for property-oriented specifications
refinement and formal verification.

The used specification language is called ASPIK and is a part of the ISDV system
developed in Germany.

Informal specification: Some sort of container is needed, that has a limited capacity.
Things must be put into it and taken out, and the container should be organized so that,
taking out an element, the element put before should be yielded.

The result of this informal specification could be the following specification, which
assumes a sort ELEM, describing the things to be put into the container and a sort
BOOL, describing the truth values; sort CONTAINER is to be built:
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spec LIMITED-LIFO

/* specification of a limited container behaving LIFO-like as long as it is noit ful!

*

!

use ELEM;

sorts CONTAINER; -

ops INTO: CONTAINER ELEM -» CONTAINER

LAST-IN: CONTAINER -+ ELEM
FIRST-OUT: CONTAINER —» CONTAINER
FILLED?: CONTAINER ~+ BOOL

props [PROP1] ALL C: CONTAINER ALL E: ELEM | FILLED?(C)

- LAST-IN(INTO(C,E)) = =E & FIRST-OUT O(CE))==C;
endspec

The newly introduced sort CONTAINER has four operations, which are used for
stating its essential property: aslong as a container is not filled, putting an element imito
the container and taking an element out again yiclds the same element. Nothing is stated
about what happens when the container is full.

The above specification is refined by adding further axioms (Figure 6). This new
specification uses more keywords with the following meaning:

- Constructors denote thos operation symbols (taken from the signature above) that
are goingtobe the basis for the definition of all the others (bere EMPTY and PUSH);

_ Auxiliaries/define-auxiliaries denote new operation symbols bascd om
constructors and necessary for defining the other operation symbols in the
signature; in Fig. 6, DEPTH is the auxiliary, which has domain STACK and
range NAT (the natural numbers); function SUC, which appears when dcfining
DEPTH, is the successor function, SUC(N) =N + 1, transforming each natural
number into its successor;

- Carrier, more precisely, a reachable carrier of sort STACK (the refinement of
previous CONTAINER sort) represents the set of all reachable elements (the
elements in STACK algebra which are the value of some term) in sort STACK:
here the carrier definition is given by means of the constructors and auxiliaries;

— Define-constructor-ops denotes the specification section where constructor
symbol operations are assigned a meaning;

- Define-ops denotes the specification section in which sort STACK remaining
symbol operations are assigned a meaning.

ASPIK uses if-then-else and case control structures to express axioms for the
operation symbols.

The last part of Figure 6 represents the map between the two levels, which relates
the LIMITED-LIFO axiomatic specification to the LIMITED-STACK algorithmic
one by associating sort CONTAINER with sort STACK and the operations,
carrespondingly. The ELEM specification is mapped identically to itself as indicated
by the basic clause. :

Each refinement or implementation step is associated with a set of correctness
conditions which can be verified in a stepwisc manner and immediately after the relation
definition. In case of Figure 6, the correctness condition to be verified is that the
algorithmic STACK version satisfies the last-in first-out property cxpressed by
CONTAINER specification, which means that:

ALL S:STACK ALL E:ELEM | FULL(S)

- TOP(PUSH(S,E)) = = E & POP(PUSH(S E)) = =S.
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spec LIMITED-STACK

* Standard algorithmic dcfinition of a limited-stack. Push on a full stack, pop or top
“of an cmpty slack resultin errors,

use FLEM
LIMIT,

sorts STACK,

DS EMPTY: =+ STACK
EMPTY?, FULL?: STACK = BOOL
PUSH: STACK ELEM —STACK
POP: STACK = STACK
TOP: STACK ~ ELEM;

spec body

consiructors L\H'FY
PUS

auxiliaries DLPI’H 'STACK = NAT;
define-auxiliaries
Iﬁ)EPTH[.\T) = case ST ls
: ZERO
b PUSH STO,ELO):
SUC(DEPTH(STO)

E5aC;
define carriers
1S-STACK(ST) = case ST is

* PUSH(STO,ELO):
if NOT(I‘S STACK(STO))
then FALSE
else (DEPTH{J&TO) LT LIMIT)
otherwise TRUE

esac;
define-construciors-o
PUSH(S ()I L)Y = if(DEPTH TO LT LIMIT)
then * PUS 0O.ELO
else ERROR- STACK
EMPTY = * EMPTY,

define-ops )
EMPTY?2(ST) = case ST1
* EMPTY :
" PUSH(STO ELO} FALSE
e5ac;
FULL?{ST) = NOT(DEPTH(ST) LT LIMIT)
POP(ST) = case ST is
* EMPTY : ERROR-STACK
* PUSH(STO ELQ):STO
£S4C;
TOP(ST) = case ST is
MPTY : ERROR-ELEM
* PUSH(STO,ELO): ELO
eSac;
endspec
map(LIMITED- L[F() FIX = LIMITED-STACK)
REFINEMENT:
base
ELEM;
sorts CONTAINER =STACK;
ops INTO = PUSH
LAST-IN = TOP
FIRST-OUT = POP
FILLED? = FULLY;
endmap

tigure 6. Specification refinement in ASPIK
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Once proved the consistency of the highest-level specification, the consisteancy of the
next lower specification is to be proved and so forth, from level to level wuntil the
lowest-level specification is proved to be consistent with the level above it.

Finally, it remains to prove that the high-level programming langmage
implementation is consistent with the lowest-level specification. .

By transitivity it can be deduced that the highest-level specification is consistentwith
the high-level programming language implementation and that they both are consisttent
with the initial formal critical requirements. Formal verification of the consistcnegy.of
each specification level is a specification verification and the verification of the lastlkavel
between lowest-level specification and high-level programming languragc
implementation is a code verification (see Figure .

REQUIREMENTS
I informal verification

Critical requirements expressed formally
spec. formal verif.

High-level formal specification

specification formal
I verification

Low-level formal specification (prototype)
code formal verification

Program in high-levcl programming language

Figure 7. Formal verification hierarchy [8]

3.4. IMPLEMENTATION OF FORMAL SPECIFICATIONS INTO EXECUTABLE
SPECIFICATIONS AND PROGRAMMING LANGUAGES

Implementation of formal specification into an executable specification langruags
bas been dealt with in Section 3.3. The same ISDV system is going to be mentiioned
concerning formal specification implementation into programming languages. Ficre az
imperative programming language, ModPascal, is chosen as a candidate for a itarga
language. ModPascal was designed as an extension to the widely distributred and
accepted programming language, Pascal. ModPascal remodels some ASPIK cenceph
being object-oriented and allowing for hierarchical definitions.

Semantically, modules and enrichment constructs from ModPascal arc asssociated
with a uniquely constructable algebra; this supports in checking correctngess of e
transition from algorithmic specifications in ASPIK to ModPascal objects.

Correctness proof of all refinements is done in ISDV by means of two-antlomasc
theorem-proving systems:

— The MKRP system, which is a resolution-based theorem prover forr first onder
logic augmented by an induction module; '
_ The Rewrite Rule Laboratory, which is based on equational logic.
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4. ARCHITECTURE OF AN ADVANCED SOFTWARE DEVELOPMENT
ENVIRONMENT BASED ON FORMAL METHODS

An advanced sofiware development environmeal based on formal methods

intcgrates individual tools (as prescoted in the next table) by means of a project
database.

The database will contain represcatations for: ,

- Objects, representing data type and process spcclﬁcauons,
- Propertics of objects or system modcl;
- Analysis/specification and proving steps.

phase methods generic tools

: » . - screen-onented editors

requirements analysis consistency checks s
modelisi - syntactic edivors
o : - libraries of
formal specification z:&corésy-onented parameterized
_ specifications

. : - symbolic interpreters
specification formal - testing e
verification - consistency proofs utheotCRt EOVETS (ox

consistency proofs
specification - libraries of

impicmentation into fini paraf?etcfucd
exccutable specification step-by-step rciining specifications
- - theorem—provers for

nlangua,g executable specifications

Brilica - editors
implemeniation intc precompiling - precompilers
several programming - compiling ~ompilels
i PEOgY P - module librarics

- (symbolic) debuggers

Table 1. Methods and generic tools in an advanced software development
environment based on formal methods

The architecture of an advanced software development environment based on
formal methods is very schematically drawn in Fig. 8, from which it may be deduced that
such an environment{3}:

- Provides information aboul its state

and
- Offiers tools for
o the constructive part - edit, synthesis/transformation, executable specification
refining,
» the amalytical part - (semi-automated) correctness proofs of specification
properties:
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as well as for the combination of both parts.

if supplementarily endowed with a knowledge base (a database augmentsed withsuct:
capabilities as multiple inberitance, inference capability and constraint msaintenance}
an advanced software development environment becomes a knowledge-Baased systers
{1}, which is evolving, as a resuit of applying its inference facilities (Jearninng facilities®
to particular software projects.

Some of the essential requirements [6] for a software engineering knovededge bas.

are given below:

1) A representation model for the knowledge base should exist;

2) This representation model, as part of a software development emrvironmes:
should allow an easy access to knowledge, its modification as well as Fknowledg-
execution;

3) The knowledge base should have all the information on the initial versiion of the
life cycle operational model (phases, activitics, available techniques zand took:.
techniques and tools selection criteria, etc.).

The best representation model is considered to be the frame model: (lots ¢

information enabling space efficiency and rapid information access), whichiis similz:
to object-oriented modelling.

User interface

Tools: editors, provers, interpretem,-

(pre)compilers
1
Objects l’mperﬁeslmoM'
restrictions;, ]
types, tasks, thearems valiility, |
theorems implem. relattions l

Figure 8, Architecture of an advanced software development enviromment based u
formal methods
A knowledge base for software engineering has not beea completfely built ve: 3
takes much time and experience to perform such an action.
Small parts of a software engineering knowledge base [6] have aliready been bt
and uwsed for non—critical components.

5. EXAMPLES OF ENVIRONMENTS FOR ADVANCED SOFTWARE
DEVELOPMENT BASED ON FORMAL METHODS

Two examples of such environments (PROSPECTRA and FOR-ME-TOO) are
given, both being operational for sequential and concurrent systerms, as well

PROSPECTRA (PROgram developmeni by SPECification amd TR Ansformages'
has been elaborated as an ESPRIT project within a team of sparcialists from Germass,
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Spain, France, Great Britain, Denmark. In PROSPECTRA a development is
represeated as a formal object haviny two roles:

- Documentation for already performed analysis/design actions/decisions;

— Plan for futurc developmenis.

Thus, » PROSPECTRA development can be used to abstract from a particular
development 0 & class of similas developmeats, that is 2 development method,
incorporating a certain strategy:

o An clementary development step is a program transformation, the application
of a transformation rule that is gencrally applicable; -
o A particular development then becomes a sequence of rule applications.

The PROSPECTRA support software development system guides the user by a
step-by-sicp refinement to decide, starting from an initial set of rules, what
transformations to apply, strictly having in mind the obscrvance of specification
correclness over the entire development process.

A wide-spectrum specification language starting from formal specifications to Ada
programs (known as P-AnndA-S), its semantics COVETiNg CONCUTrency aspects, is
defined for PROSPECTRA. The PROSPECTRA project has made significant
advances in the field of the so-called transformational approach’ (the leader in this area
being the CIP Project) and brought this approach closer to industrial use. Another
ESPRIT project aiming to show the feasibility of applying PROSPECTRA methodology
for devcloping correct software based on transformations, is PROSPECTRA-D
(Demonstration of PROSPECTRA methodology). Experiments were conducted in
PROSPECTRA-D for specifying some examples with the specification language
P-AnndA-S, which helped to gradually introduce this new methodology to industrial
projects.

FOR-ME-TOO (FORmalisms MEthods and TOOIs) is another ESPRIT project
claborated by a team from Germany, France and Italy. FOR-ME-TOO objective was
to define, implement and cxperiment both sequential and concurrent software
deveiopment and systematic sofiware verification and validation technology, based on
sofrware components reuse. )

Sequential software descriptions reuse and analysis are made in terms of an algebraic
specification language, LPG. Concurrent software descriptions reuse and analysis are
made bv means of several classes of Petr nets.

From the results of practical projects, it can be deduced that through an extensive
use of case studies, FOR ME-TOO helps user understand component reusability
throughout development projects.

CONCLUSIONS

| Formal methods/languages are helpful in detecting errors in early software
development phases and can even eliminate certain classes of errors.
Formal methods/languages decrease development costs.
Formal methods/languages are successfully used on industrial-scale projects.
By using formal methods/languages, a software system behaviour can be
specified o two wavs: '
- Directly, by consiructing a mathematical model of the system
{modei-onented specifications);
— Indirectiv, by stating a set of properties (axioms) that must be satisfied by
the svaiom  mreneriv-onented specifications).

hali il
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5. Advanced software development environments support operationadlifife cycke
and formal methods/executable specification languages use for both se:guential
and concurrent software development.
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