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ABSTRACT

An cfficient and numerically stable dual algorithm - PODQP - for solving positive definite .guadatic
programming problems is briefly described. Both inequality and equality constraints are dealt with The
algorithm employs an active sct strategy and can exploit a priori information about an initial actheset In
particular, the algorithm is strongly recommended forsolving nonlincarly constrained optimization profiicms
using projected Lagrangian techniques. Orthogonal transformations are used for updating the matrices and
matrix factorizations after each change performed in the active set.

1. INTRODUCTION

The algorithm PODQP described in this paper solves positive definite (stractly
convex) quadratic programming problems with equality and/or inequality constraimis,
mathematically defined in the form

min {cTx + % TLLTx | Alx = by; AJx 2 by}, 6Y]

where x and ¢ are real n-vectors, b 4 'f, b'zr)T is a real m-vector, LT is an axn real npper

triangular nonsingular matrix, Ag {A1,A;) is a real nxm matrix, and by and A; have'm’
elements and columns, respectively. Matrix LT can be conceived as the Cholesky factor
of the symmetric positive definite Hessian matrix of the problem, G 4 LLT andtheith
column of matrix A is the normal vector of the i-th constraint, a;rx = b, i = I:m{fthat

is, 1takes the values 1,2,...,m). We suppose thatn > 0andm = m’ =0. Notie that equality
constraints, if present, should be the first m’ constraints.

Efficient and robust algorithms to solve (1) are primarily needed by the development
of successive quadratic programming methods for solving general nonlinearly
constrained optimization problems (Han, 1976; Powell, 1977, 1982). These hghly
successful methods require the solution of a strictly convex quadrafic program te
determine the search direction at each iteration k. The Hessian matrix of this program
is a positive definite approximation Gy of the Hessian matrix of the Laggamgian function
at the current iterate %, Usually, G is set to the identity matrix amdl the Cholesky
factorization of Gy is directly updated. This important usage of the afigorithm to be
described motivates the assumption on the availability of the Choleskw factor LT LT
is not available, it can be obtained from G using the LINPACK suibroutine DPOFA
{Dongarra and co-workers, 1979).

The algorithm PODQP is based on a numerically stable dual algemithm proposed by
Goldfarb and Idnani (1983), that is faster than other algorithms whem an initial feasible
point is not available. But PODQP includes several improvements. In the first place,
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our algorithm uses meve efficicnt solution techniques. For instance, Houscholder
transformations arc cmployed for updating the matrices after adding a new constraint
to the active set. In addition, advantage can be taken of the prior information on an
adivcscnudcsaibedinthcnmm.mispmﬁculaﬂymhdwhmgmeﬁl
nmﬁnmlyconstraincdopeimizaﬁonprohkmsmsirhedbysumssiwquadmﬁc
programming methods, because then the active set tends not to change very much from
one eration 1o asother and significant computational savings can be obtained.

Our code is an improvement of that listed in (Sima and Varga, 1986), and it can
exploit the prior information about the active scL. Several subroutines from the
LINPACK package (Dongarra and co-workers, 1979) and IMSL library (*** IMSL,
1980) are also called. Details are given in the next section.

2. THE ALGORITHM

The algorithm does not nced an initial feasible point, because it uses the dual
fcasibility. Starting from the easily computable unconstrained minimum of the problem
(1), the algorithm solves a sequence of subproblems, maintaining the primal optimality,
until primal feasibility is achieved. If the minimum step in the primal space - such that
the most violated constraint (including the equality ones) does not violate the dual
fcasibility - is finite, then that constraint is added to the working set, that is the set of
consiraints satisfied as equalities. Otherwise, the nearest dual violated constraint is
deleted (dropped) from the working set. (Clearly, the equality constraints rre never
candidatcs for deleting.) Only orthogonal transformations are used to update the
quantitics when the working sct changes. The updates required when adding a
constraint are made by a Houscholder transformation, using IMSL subroutine VHS12.
The updates required when deleting a constraint are obtained by applying a sequence
of plane rotations, computed by IMSL subroutine DROTG.

We now show in more details how the algorithm works. Clearly, an active set strategy
s used. The solution of the problem (1) involves the solution of a sequence of quadratic
programming subproblems, each having as working set a subset of constraints in (1).
Let P(J) denote the subproblem with the objective function in (1) and with the

constraints indexed by J CM-E-{L 2,...m}. For instance, P(@), where & denotes the
empty sct, is the problem of finding the unconstrained minimum.

If the solution x of a subproblem P(J) is in the subspace defined by the active linearly
independent constraints indexed by a set K in J, we say that (xK) is a subsolution.
Ciearly, if (xK) is a subsolution of the subproblem P(J), it is also a subsolution of the
subproblem P(K). The algorithm for solving the positive definite quadratic
programeming probtem (1) can be summarized as follows:

0) Assume a subsotution {x,K) be given.
1) Repeat, until all constraints are satisfied,
1) Choose a violated constraint p € M\ K.
2) E P(K U {p}) bas o feasible solutions, STOP (neither problem (1) bas).

3) Obtain a new subsolution (KK U {p}), where KCK and F(x) > F(x) and set
(xX) = (xK U {p}). :

2) STOP (x is the optimal solutica for problem (1}).
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Since the unconstrainzd minimum of the problem (1), %, = -G *c fwith GQLLT!%
can be very easily obtained, one may always initialize the above sketched abgorithm with
Xo. The previous implementations of this algorithm used this initializatiowm :See, for
instance, (Sima and Varga, 1986, Sima, 1990) in the context of solvimg :gewcral
nonlinearly constraincd optimization problems; morc preciscly, each guadralic
programming subproblem encountered during the iterative process was sofwad dy
starting from the subsolution (x5,@). But the numerical experience has shown that dor
set of constraints that are active in the solution of the quadratic program tcnds nod 5o
change very much from one iteration to another. In many cases, the optimal basis
remains the same for all iterations, and in other cases, there is an almost maximal
intersection. To take advantage of this, the dual algorithm for solving the quadratic
program can be called twice, except for the first iteration of the gencral algorithm for
nonlincarly constrained optimization problems. On the first pass, all the constraints
which are not in tae optimal basis K of the previous iteration are ignored; in addition,
the first violated coastraint (with the least index) is chosen to be inciuded into the
working set, instead of the most violated one. On the second pass, all the constraints are
taken into account, but the algorithm is initialized with the optimal solution of the first
pass, instead of the unconstrained minimum. Tn this way, the number of working set
changes reduces and an increase in efficiency is obtained. Note that the solution
computed by the first pass is a subsolution of the current quadratic program, and the
solution obtained after the second pass coincides with the solution of the curremt
quadratic program. This strategy is implemented as an option in the Fortran code
PODQP, described in the next section.

The implemented algorithm can be summarized as follows:
1° [Find the unconstrained minimum.}]
If prior information is used, set J = K. Else set J = M.
x=GlF=cw2,H=G,N =0, K=02,t =0,u=0.
2° [Choose a violated constraint, if exists.]
52 alxb, i EI\K VE [fEI\K |5 #0,j= m,5 < 0,j > m).
IV = & and first péss, setJ = M and go to 2° (begin the second pass).
Else if V = @, STOP (x is feasible and optimal). .
Else, choose p € V, and set n = ap, e (uT,U)T.
3° [Check for feasibility and determine a new subproblem.]
3°1 [Determine step direction.}
z = Hn (the step direction in the primal space).
Ift > 0,r = N n (the negative step direction in the dual space).
3°2 [Determine step length.
Hr<0Oort<m’,thena; = ®.
Else, 0y 2 u/r, = min {w/r; | 1;>0,j = m + Lt} (the maximum step
in the dual space without violating dual feasibility).
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Ifjz} = 0, thendy = ®.

Else, @4 - -spf:.Tn {the minimum step in the primal space
such that the p-th constraint becomes feasible).
a = wmin{dd,dy) {stop leagth),
3*3 [Determinc a new subprobicm and take siep.]
Ii @=® ,STOP (the subproblem and hence, (1) are infeasible).
@, = ®,theaa*u +& (-r,1)" (step in dual space),
K + K\ {1} (drop constraint ),
t« - 1, update H and N', and go to 3°L.
Else, x + % + @z, F+F + @z'0(@R + w4y,
u+u + a(-r',1)7 (step in primal and dual space).
If @ = (full step), K = K U {p} (add constraint p),
tet + 1,update H and N', and go to 2°.
If @ = @ (partial step), K = K \ {1} (drop constraint I),
t+t- 1, update Hand N, and go to 3°1.
in implementation, the matrices H and N’ are not used. The computation: nvolving
these matrices are replaced by other mathematically equivalent ones. More precisely,
lt G = LLT be the Cholesky factorization of G, and L'IN = Q g be the QR
factorization of L'IN, where the columns of N are the t columns of A corresponding to
the current active constraints. Denoting ] = LTQ = [J3,3], where J; bas t columns,
thea H = Jp31, and N = RYT. Therefore, we have 2 = Jody, 1 = R'dy, whered £ 7
The matrix € is initialized to the identity matrix. All modifications caused by changes in

the working sci {adding and/or dropping constraints) are performed using orthogonal
transformations (Householder transiormations and plane rofations, respectively).

We also tried to replace the plame rotations by modified Householder
ransformations of order rwo. Theoretically, an improvement in efficiency would be
expected, siace the application of a plane rotation on two vectors of length n requires
4n floating-point multiplications and 2n additions, while the usage of modified
Householder transformations involves 3n multiplications and additions. But no
improvements have been obtained in our experiments on a FORMOX 286 (IBM-PC
compatible) microcomputer, for vectors with elements randomly generated from a
umiform distribution within the interval (0,1). Consequently, the plane rotations have
been retained in our codes. '

1, USAGE

The algorithm bricfly described above is implemented i the subroutine PODQF, tobe
mmmmdhﬁﬁswdimﬁmbaskhﬁmmaﬁmmthcumgedthissubrmﬁn;ﬁs&dhebw,
is directly obtaincd Srom the first nes of its-eede, written m the Fortran 77 langnage.
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SUBROUTINE PODQP(N, MEQM,C,G,LG,A, LA B T,ACTIVE,X,
1 FVAL,VLAM,INFO,W,LW,R LR WA1,WA2)

PODQF subroutine solves a positive definite quadratic pr.
problem with N variables and M constraints, defined by

min (C'X + (12)X’GX!A'X.GE.B), G = LL’,
where the Cholesky factor of G, L', is given. (" denotes the
transposition.) The dual algorithm of Goldfarb and Indani, with
extensions to solve problems including equality constraints amd
to take into account the prior information about the active set;,
is implemented.

0OOOQOO0NO0ON0

Declaration of formal arguments.

INTEGER INFO,LA.LG,LRLWMMEQN,T

INTEGER ACTIVE(®)

DOUBLE PRECISION FVAL

DOUBLE PRECISION A(LA,*),B(*),C(N),G(LG,N),R(LR,*), VLAM(*}.
1 W(LW N),WA1(N),WA2(*),X(N)

Dcsa’iplion.ofargumcnts.

N is a positive mt::gcrmpurvmble that specifies the number
of independeut variables.

- MEQ is a non-negative integer input variable that specifies the
number of equality constraints,

M is a non-negative integer input variable that specifies the
number of constraints (including the equality constraints).
M should be greater than or equal to MEQ.

Cis areal one-dimensional array ot dimension at least N thait
contains on input the coefficients of the linear terms of the
objective function of the problem. C is unchanged on outpmzi.

G is a real two-dimensional array with row dimension LG and
column dimension at least N. On input, the N by N uppexr
triangular part of G contains the Cholesky factor L’ of the
matrix G. The strict lower part is arbitrary. G is unchanged
on output. -

LGisaposiﬁvcintcgcriﬁputvaﬁabbthatspedﬁcstheﬁmt
dimension of the array G. LG should be greater than ar equal
to N.

A 15 a real two-dimensional array with row dimessioa LA and
column dimension at least M that contains the transmose of the
constraint matrix. M = 0, A is not referenced. EBMEQ > 0,
the first MEQ columms of A correspond to equaliky constraints.
A 18 unchanged on output.

LA is a positive integer input variable that specifies the first
dimension of the array A. LA should be greaterifhan or equal
toN.

OO0 aO0000000000O0000000000NN00O0

Studics in Informatics and Control Vol.1,No.1 March 19952



nnnnnnrznnnnnnnnnnnnnonnnnnnnnnnnnnnnnnnnn

r}()ﬁﬁﬁﬁﬁﬂ(‘)ﬁﬁﬁnﬁ

B is a real one-dimensional azvay of dimension at least M that
contains on input the coefficients of the right hand side of the
constraints of the probicm. If M = 0, B is oot refereaced.

B is unchanged oa output.

T is 2 non-negative integer inputioutput variable that contains
the number of constraints which are active at the solution.
T is 1o be input oaly if INFO .NE. 0 on inpul.

ACTIVE is an integer one-dimeasional array of dimension at least
M, if on input INFO = 0, and 2*M, if on inpwt INFO NE. 0.

If INFO NE. 0, oo inpul, then the first T elements of ACTIVE
contain the indices of the constraints which are assumed to be

- active at the algorithm initialization, If INFO = 0, on input,

then the cootent of ACTIVE is arbitrary. On output, ACTIVE(J),
J = 12, T, contains the index of the J-th active constraint.

X is a real one-dimensional array of dimension at least N that
costairs on output the final estimate of the solution.

FVAL is a resl outpul variable that contains the value of the
objective function at the solution X.

VLAM is a real onc-dimensional array of dimension at least M that
contains on output the Lagrange multiplicrs at the solution X.
The multipliers corresponding to the non-active constraints
are set to zero.

INFO is an integer input/output variable that contains an option/

Jerror diagnosss information.

On input, the values of INFO and their significance are:
INFQ = 0, No prior information is available.

INFO # 0, Prior information is available in T and ACTIVE.
In this case, two passes through Goldfarb-Idnani
. algosithm are performed.

On outpuy, the values of INFO and their significance are:
INFO = -L I = L...N, The diagonal element G{L]) is zero.
INFO = 0, lovalid mput parameters.

INFO = i, Solution has heen determined.
INFO = 2 Probiem constraints seem {0 be mconsistent.
INFO = 3, T is greater than N, but X is infeasibie.

W is a real two-dimensional working array with row dimension LW
and column dimension at least N. During the computations,
W conlains the matrix J in the Goldfarb-Idnani algorithm.

LW is a positive integer mput vanabie that specifies the first
dimension of the array W. LW should be greater than or equal
o N.

R is a real two-dimensional working array with row dimension LR
and column dimension at least N+ 1, During the computations, the
upper triangular part of arrav R contains the upper trianguiar
smatrx R in the Goidfarb-1dnani algorithm The subdiagonal
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locations of R arc used as working storage.

LR is a positive integer input variable that specifies the fire
dimension of the array R. LR should be greater than or eggual
toN.

WA1 and WA2 are real one-dimensional working arrays with dimensio=

at least N and max(N,M), respectively. WA1 and WA2 temporarily
contain the vectors z and r in the Goldfarb-Idnani algorithm,

Called subprograms

DIMACH (PORT library)
DDOT, DROTG, VHS12 (IMSL library)
DTRSL (LINPACK package)

OOOOOONOO0O0N00006

Subroutine PODQP is useful for solving any positive definit: quadratic
programming problem, when an initial feasible point is not known.

4, PERFORMANCES

We shall merely report here the resulis obtained with the latest version of the
code, since numerical results for the previous version were implicitly prescoted in
(Sima and Varga, 1986; Sima, 1990). Consequently, we shall compare the gainiie
speed resulted from the usage of prior information on the active set when «solving
general nonlinearly constrained optimization problems with Powell's method
(Powell, 1982), which involves the solution of a positive definite guadrafx
programming subproblem at each iteration.

Table 1 presents the execution times in seconds on a FORMOX 286 microcomputzr
(MS DQOS operating system, Fortran compiler, version 5.00), for solving sevemd
nonlinear problems with both the old subroutine (PODPP) and the ncw onc. We
mention that all increase in speed is due to the usage of the informagion about the actire
set from an iteration to the following one. The number of quadratic programmiing
subproblems, as well as the total number of additions/deletions of constraints to/fran
the working set are also given.

The characteristics of the problems im Table 1 are defined in Table 2, wiare
references for the mathematical formulation are also given.

Notc that we solved 127 quadratic programming problems. The total number of
constraint additions to the working set was 1082 for the old version (PODPP)and
963 for the new version (PODQP). The total number of constraint deletions wasI40
for the old version (PODPP) and 21 for the new version {(PFODQP). Note tharthe
total number of constraint deletions never exceeded 3 for the pew version, whilethe
old version sometimes involved 24 deletions. The nember of constraint addiims
was also reduced accordingly. The mean value of the gaim in efficiency s 23 % (if
an average of the percentages in Table 1 is computed), but the actual ime gain is oen
greater {about 25 %), since small gains were obtained for casier to solve problems.
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TABLE 1. Comparative performance results whean solving
nonlincarly constrained optimization problems.

ﬁ(:a;m = i:ﬁmm) Gain (%) 4, bPNﬂ:m No. additions No. deletions
PODPP PODQP PODPF/PODQF PODPP/PODQP
1 1.10 093 15 6 12424 0/0
2 1.59 137 14 10, 4039 10
3 456 307 33 14 643 21/1
4 796 5.11 3% 7 80/63 2013
5 1.10 0.94 15 7 24/24 0/0
6 1264 10.16 20 6 84/80 t/E)
7 758 5.16 32 3 52/42 10/0
8 17 20.43 27 12 184/162 24/2
9 637 533 16 3 42/40 53
10 2790 2192 21 13 18217 1473
11 2615 1895 28 11 170/150 2313
12 165 1.43 13 12 35/32 41
13 637 488 7. ol P 102/93 112

TABLE 2. Characteristics of and references to the problems i Table 1.

Dimensions

References and initialization Xo

Probicm Active consir.
No. N M om t
i 1 1 0 3
2 ) 1 5 3
3 6 o 3 2
4 9 6 14 8
5 4 1 8 3
6 13 1 17 13
7 13 2 17 13
8 13 2| 17 12
9 13 1 17 12
10 13 1 17 12
11 13 1 17 12
prd 4 0 6 2

12

Bartholomew-Biggs, 1978, xo = (155,1)".

Lowe, 1974; Si.:{ga and Varga, 1986 {Tx. 6.4.1),

o = (3,5,53) .

Bartholomew-Biggs, 1978; Sima and Varga, 1986
(Ex. 64.2),% = (5.54,44,12.02,11.82,702,852) .
Bartholomew-Biggs, 1978; Sima and Varga, 1986
(Ex. 64.3) 0= (8.8,2,2,10454,1.0454,1.0454.0,0)".
Dumitru, 1975; Sima and Varga,1986 (Ex.6.4.6),

o = (4,22,13,25).

Lowe, 1974; Sima and Varga, 1986 (Ex.6.4.7, lincar
modelxo=(2,.1,1,1,1,3,1,1,2,.1,1,1,1)".
Lowe, 1974; Sima and Varga, 1986 (Ex. 64,7, nonlinear
model) o =(1,1,1,1,2,1,1,1.1,1,1,1,1)".

idem, %o 85 for problem 7.

idem. 0 = (4,05,05,05.05,3,01,01,1,03,03,03,2)".
idem, X, as for problem 9, greater accuracy.

idem, X0 =

= (.mm,o.o.e,u,173919,0,0,.030643.0,0,0,019853}7.

Test example for NAG library, %o = a-L0.0"

Test exampie for NrAGlibnry(NAG, 1981),
» = (516141} .
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5. CONCLUSIONS

, A new implementation of tu dual algorithm of Goldfarb and Idnars {$2983), for sabvisgg
sinctly coavex quadratic programming problems, is presented. It can take Snto accouss the
prior knowledge about the initial active set. This option is particularly vsefii? when sohing
general nonlinearly constrained optimization problems using succesime quadrafic
programming techniques. A significant gain in efficiency is obtained in S case, as the
oumerical experience illusirates. The algorithm can also be modified to expiirit the piior
knowledge about an initial feasible point, and the corresponding primal-dual afgsorithm wit
be suitable especially for finearly constrained optimization problems.
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