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1. Introduction

The rapid advancement of intelligent manufacturing 
and automation systems has led to an increased 
focus on research into cooperative control methods 
for intelligent robots. In complex industrial 
environments, a single robot often struggles to 
efficiently and accurately complete tasks, making 
multi-robot collaborative control essential for 
improving system performance and flexibility. 
However, traditional centralised control methods 
face challenges such as high computational 
complexity and heavy communication burdens 
in large-scale and dynamic scenarios. Efficient 
and cooperative control in multi-agent systems 
has therefore become a key issue. As a result, the 
collaborative control method based on intelligent 
robots based on the distributed DQN (Deep 
Q-Network) algorithm has emerged as a research 
hotspot due to its strong learning ability and 
adaptability. Nevertheless, there are still numerous 
challenges and shortcomings in the application 
of the distributed DQN algorithm, collaborative 
control of multi-agent systems, deep learning 
application in path planning, and distributed 
control strategy of energy systems.

This paper introduces the distributed DQN 
algorithm to address the decision optimisation 

problem of multiple robots in trackless 
cooperative transportation, thereby enhancing 
transportation efficiency and stability. This 
method takes into account the interaction between 
robots and environmental obstacles, which 
makes it suitable for complex environments 
with scalability and flexibility. It offers new 
insights and technical support for intelligent 
robot collaborative control, and is anticipated to 
play a significant role in the fields of large object 
handling and logistics.

The remainder of this paper is as follows. Section 
2 presents the research status of the multi-agent 
cooperative control technology. Section 3 sets 
forth the theoretical basis and research method 
for the proposed model. Section 4 provides the 
experimental results of this research and Section 
5 concludes this paper and outlines possible future 
research directions.

2. Literature Review

At present, multi-agent cooperative control 
technology has been widely adopted. It covers 
robot cooperative control and management, 
intelligent manufacturing and automation 
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systems, intelligent distributed computing and 
network architecture. 

The study of Schultz et al. (2023) emphasises the 
importance of autonomy in multi-robot systems, 
especially in remote operation, where autonomy 
can significantly improve the response speed and 
efficiency of the system. However, the research 
mainly focuses on the construction of the theoretical 
framework and lacks the verification of practical 
applications. Liu et al. (2024) demonstrated how to 
improve the work efficiency and path smoothness 
for robots through collaboration in complex 
environments through the improved path planning 
algorithm. However, it would face computational 
complexity and real-time problems in practical 
applications. The research of Chaudhry & Gautam 
(2020) focuses on the design of the communication 
architecture, emphasising the importance of stable 
and efficient communication for collaborative work 
in multi-robot systems. However, its universality 
and extensibility have not been fully verified. 
Lin (2023) proposed an intelligent anti-jamming 
scheme for UAV swarm based on DQN. In this 
study, the optimal channel selection strategy is 
learned by the DQN model to improve the overall 
anti-interference performance. 

This method is especially suitable for UAV 
communication in complex environments and 
can effectively deal with dynamic changing 
interference sources. However, the study mainly 
focuses on the communication level and less 
on the collaborative control of actual physical 
movements and task execution. Peng et al. (2022) 
discussed the push-grab collaboration method 
based on DQN under a dual perspective. By using 
a RGB-D camera to obtain RGB images of objects 
and point cloud information, the method solves 
the problem of missing information and features a 
high generalisation ability and a good performance 
when new objects appear. This research has made 
significant contributions to the flexibility and 
adaptability of robot operation, but its application 
scenarios are mainly limited to static environments, 
and its adaptability to dynamic and changeable 
environments needs to be further verified. 

Wu & Suh (2024) studied the decentralised control 
application of DQN in multi-robot systems. The 
study not only demonstrates the potential of DQN 
in multi-robot control, but it also presents a new 
perspective for enhancing the overall performance 
and robustness of the system by integrating local 

information. This study is of great significance 
both in theory and practice, but its results are 
mainly based on the simulation environment, and 
its effect and stability in practical applications still 
need further experimental verification. 

In (Al-Selwi et al., 2024) an in-depth four-step 
method based on the PRISMA method is used 
to improve the performance of RNN-LSTM 
by weight initialisation and optimisation. Cui 
et al. (2021) studied the protection technology 
for distributed power generation networks and 
proposed to transform this problem into a multi-
agent reinforcement learning problem. The author 
describes in detail the construction methods for 
the reinforcement learning environment and the 
deep Q learning network. This study shows how 
to optimise the protection strategy of distributed 
networks by the DRL method, but its application 
scenario is relatively specific, mainly in the field 
of power systems. 

The study of Jankovič et al. (2024) investigated 
the advantages of different machine learning (ML) 
methods in production systems, and for a given 
use case, a framework that enhances production 
systems with ML facilitates the transition to 
smarter processes and enables the integration of 
fast, accurate predictions into decision making 
and adaptive control, through linear regression 
(LR), decision tree (DT), support vector machine 
(SVM), Gaussian process regression (GPR) and 
neural network (NN) model prediction accuracy 
performance evaluation indicators RMSE, 
MAE, MSE and R2. The rationale illustrates the 
tradeoffs between model complexity, accuracy, 
and computational training and prediction rates. 
Zhu et al. (2022) proposed a distributed cluster 
regulation strategy based on multi-level deep Q 
learning for the coordinated control of multi-park 
integrated energy systems. This strategy takes 
into account the flexible alternative interval of 
various energy sources, which can coordinate 
the adjustment ability of the integrated energy 
system of each park and improve the stability of 
the overall system. This study demonstrates the 
potential of DRL in the management of complex 
energy systems, but the complexity of its model 
may limit its scalability in practical applications. 

In (Kuo et al., 2024), a hybrid multi-objective 
meta-heuristic and probabilistic intuitionistic 
fuzzy C-means (PIFCM) algorithm was proposed 
for cluster analysis. Three clustering algorithms 
were proposed, namely PIFCM based on multi-
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object GA (MOGA-PIFCM), PIFCM based on 
multi-object PSO (MOPSO-PIFCM) and PIFCM 
based on multi-object GE (MOGE-PIFCM). The 
performance results were compared with those of 
other clustering algorithms (the intuitive fuzzy 
C-means (IFCM) algorithm, the probabilistic 
intuitionistic fuzzy C-means (PIFCM) algorithm, 
the single-objective GA-PIFCM algorithm, the 
single- objective PSO-PIFCM algorithm, and 
the single-objective GE-PIFCM algorithm). The 
results showed that MOGE-PIFCM achieved a 
better solution than other clustering algorithms 
for all performance verification metrics. 

Zhang et al. (2020) focused on robot path 
planning and proposed a method based on deep 
reinforcement learning. Simulation experiments 
show that the method can achieve intelligent 
perception and decision by relying only on 
partial map information. The advantages of this 
approach lie in its adaptability and rapid response 
to environmental changes, which is particularly 
important for robotic operations in complex 
and dynamic environments. However, the study 
does not discuss in detail the performance of the 
algorithm in practical applications, especially on 
resource-constrained hardware platforms. 

In the study of Pan, W (2024), multi-layer 
perceptron artificial neural networks (MLP 
ANN) are used to predict thinning results from 
input parameters, and genetic algorithms (GA) 
are used to optimise these parameters. The results 
demonstrate the effectiveness of the proposed 
method in minimising thinning. Savran et al. 
(2024) and Negoiță & Borangiu (2023) propose a 
genetic algorithm (GA) and a Whale Optimisation 
algorithm (WOA), respectively to optimise motor 
power, battery capacity, and propulsion ratio for 
two different driving modes. GA optimisation is 
found to create vehicle architectures suitable for 
long distance and high performance driving, and 
can provide shorter optimisation times. Long et al. 
(2023) proposes a self-optimising control system 
for an unmanned line marking machine (ULMM) 
based on visual navigation. 

A new algorithm based on HAAR-like features 
is used to detect the guide line (GL) of ULMM 
in order to reduce the influence of complex road 
surfaces and light. To solve the problem of the 
inaccurate ULMM model and local navigation 
information, an online self-optimising control 
algorithm is proposed, which can detect the GL 

accurately. In contrast, Ibrahim et al. (2023) 
focused on the load balancing problem in SDN and 
proposed a sequential deep Q learning network 
(tDQN). The model optimises the switch and 
controller mapping through a reward-punishment 
mechanism, aiming to reduce network latency. 

The experimental results show that tDQN 
significantly improves decision quality during 
iterative learning. Although the method performs 
well in simulated environments, its effectiveness 
in dealing with complexity and uncertainty in real 
networks needs to be further validated. Huang et 
al. (2022) propose an automatic modulation and 
resource allocation (AMC and RA) algorithm based 
on dual deep Q networks (DDQN), which considers 
users as agents and improves throughput at a single 
link and overall system level by learning from 
past experience and implementing the distributed 
policies. Li et al. (2020) proposed a security 
management algorithm applied to power networks. 

By constructing a low-delay real-time 
communication network and learning individual 
characteristic information, the reliability of the 
communication network is trained. Experimental 
results showed that the proposed algorithm greatly 
enhanced the reliability of the communication 
network. Guo et al. (2024) proposed a power 
transformer intelligent cooperative control system 
based on a deep Q network (DQN). 

By establishing the state space and action of the 
transformer control system, deep reinforcement 
learning was used to optimise the control strategy. 
A comprehensive evaluation of these studies 
shows that they provide important technological 
advances in the field of intelligent manufacturing 
and automation systems. However, there are some 
drawbacks to these studies. First, their adaptability 
and expansibility in complex environments are not 
discussed in detail. Second, their applicability in 
the actual industrial environment is not verified. 
Third, although the collaborative collision 
avoidance method performs well in simulations, its 
real-time performance and reliability in practical 
applications still need to be further verified. 
Agarwal & Sharma (2023) trained a reinforcement 
learning agent to tell the user which route network 
had less congestion, and to constantly interact with 
the surrounding environment to help the user find 
the best route. In the experiment carried out, a 
DQN (Deep Q-Network) based on the Q value was 
used, and the DQN agent obtained 345 rewards 
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in 500 iterations. Guo et al. (2024) proposed a 
coordinated sequence optimisation method for road 
network signals based on heterogeneous multi-
agent self-attention networks, so as to improve 
the performance of multi-intersection signal 
control strategies within the road network. Li et al. 
(2025) proposes an improved deep reinforcement 
learning algorithm for robot path planning. First, 
the Dueling DQN network architecture is adopted, 
combined with the preferential experience replay 
strategy, to learn and utilise the experience data 
more effectively. Second, it expands the mobile 
space of the robot and enhances the diversity and 
flexibility of the action space. 

In the process of action selection, the Artificial 
Potential Field (APF) algorithm is introduced 
to intervene in action selection with a certain 
probability, thus speeding up the convergence 
process of the network. At the same time, the 
greedy strategy is used to balance exploration 
and development in favour of better exploring the 
environment and utilising the existing knowledge. 
On this basis, a composite reward function is 
designed to integrate various reward mechanisms, 
which improves the convergence performance and 
path planning ability of the algorithm. 

Cui, X. Y. (2024) proposed an anomaly detection 
scheme based on a Graph Attention Network 
(GAT) and Informer. GAT can effectively learn 
sequence features, and Informer has an excellent 
performance in long-time series prediction. 
Multivariate time series anomalies are detected 
by using the long-term forecast loss and the  
short-term forecast loss. The short-term forecast 
is used for predicting the next time value, and 
the long-term forecast is used to assist the short-
term forecast. The experiments carried out show 
that the proposed method can accurately locate 
anomalies and achieve interpretability. Devi et al. 
(2024) proposes an elastic distributed formation 
controller based on an attack signal compensator. 
Wang, S. et al. (2023) proposes a predictive 
control scheme based on a dynamic event drive. 

By introducing networked predictive control 
methods, the negative effects of time-varying 
delay and aperiodic DoS attacks on system 
performance are effectively reduced. Homod et al. 
(2023) and Li et al. (2024b) propose an obstacle 
avoidance control method for heterogeneous agent 
formation based on deep reinforcement learning, 
which enables agents to gradually optimise 

comprehensive strategies to cope with complex 
interactive information. Wang, X. et al. (2023) 
propose a reactive power-voltage control strategy 
for distribution networks based on multi-agent 
deep reinforcement learning, and adopts multi-
agent double-delay deep deterministic strategy 
gradient algorithm to solve the real-time optimal 
control strategy. 

In (Hu et al., 2023) the multi-agent double-delay 
deep deterministic strategy gradient algorithm 
is used to study the obstacle avoidance and 
target reaching problems for multi-UAV. Guo 
et al. (2023) propose a distributed multi-agent 
reinforcement learning decision algorithm based 
on trajectory prediction, which can solve the 
problem of pursuing intelligent escape targets 
under incomplete information. Oroojlooy & 
Hajinezhad (2023) propose the design of a multi-
intelligent car body segment based on RT-Thread, 
which improves the execution efficiency and 
stability of the system. 

Yin et al. (2024) proposed an improved DDQN 
algorithm based on the average Q value estimation 
and reward redistribution. First, in order to improve 
the accuracy of the target Q value, the average of 
multiple previously learned Q values in the target 
Q-network is used to replace the single Q value in 
the current target Q-network. Second, the reward 
redistribution mechanism is designed so as to adjust 
the final reward of each action by using the round 
reward in the trajectory information to overcome 
the sparse reward problem. In addition, a reward-
first experience selection method is introduced to 
rank the experience samples according to reward 
values to ensure the frequent utilisation of high-
quality data. Finally, the effectiveness of the 
proposed algorithm in fixed-location scenarios 
and random environments is verified by simulation 
experiments. Li et al. (2024a) propose a two-stage 
voltage control strategy for an active distribution 
network in the power grid, which adopts the 
method of offline training and online operation. 
In literature, the multi-agent deep deterministic 
strategy gradient (MADDPG) algorithm was 
applied to construct a multi-conveyor intelligent 
agent cooperative control system. 

In (Luo et al, 2023), aiming at the pursuit and 
escape game problem of UAVs in complex 
combat environments, the Markov model was 
established, and the training process of multi-
agent deep deterministic reinforcement learning 
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algorithm with centralised training and distributed 
execution was constructed by adopting the zero-
sum game idea, and the Nash equilibrium solution 
of the pursuit and escape game was obtained. 
Luo et al. (2023) propose a multi-AGVS path 
planning algorithm based on the multi-agent deep 
deterministic strategy gradient. 

In (Mani et al., 2023), the multi-agent 
reinforcement learning MA-SARSA algorithm 
is proposed, which lays the foundation for the 
research of more complex and changeable multi-
agent cooperation and competition scenarios. 

In (Fayti et al., 2023), a multi-agent deep 
reinforcement learning scheme was proposed to 
complete the cooperative rounding task in the 
game confrontation of unmanned boat groups. 
Zeng et al. (2023) propose an improved sample-
based elastic dynamic event-triggering mechanism 
that includes dynamic auxiliary variables. Yao, 
Li & Gao (2024) propose a Unified model for 
Multi-agent Reinforcement Learning and AI 
Planning (UniMP), which improves the flexibility 
of reinforcement learning algorithms. Gu et al. 
(2023) proposes a Q-learning algorithm based 
on action sampling, in which each agent selects 
actions independently, effectively reducing the 
amount of computation in the learning phase. 

In (Sivaranjani & Vinod, 2023), a consistency 
control protocol was proposed to solve the time-
varying control problem of queue following for 
an autonomous vehicle with external interference 
and unknown input by using a proportional 
integral observer, but the problem of uncertain 
parameter changes during operation was not 
considered. Li et al. (2024b) propose an error 
model based on vehicle dynamics, and deduces 
a steady-state controller to track and control the 
vehicle path to achieve a relatively high-precision 
control effect. Chai, G. et al. (2023) propose a 
cooperative formation control scheme to cope 
with the normal operation of the convoy under 
sensor fault. Tilki, U., Ölgün (2023) propose a 
distributed model predictive controller (DMPC) 
based on the leader-follower approach to deal with 
multi-robot cooperative formation tasks. Zhang et 
al. (2023) propose a region division positioning 
algorithm of the truncated octahedral (TO) model 
controlled by underwater vehicles, which features 
a small error, a high positioning coverage and a 
strong robustness.

A comprehensive evaluation of the above 
literature shows that remarkable progress has been 
made in the fields of robot cooperative control 
and management, intelligent manufacturing and 
automation systems, and intelligent distributed 
computing and network architecture. These 
studies provide important technical advances 
and theoretical foundations for task assignment, 
collaborative path planning, communication 
architecture design, intelligent operation algorithm 
improvement, and applications in intelligent 
manufacturing of multi-robot systems. However, 
these studies also have some common limitations 
and shortcomings, especially with regard to 
the verification of their practical applicability, 
computational complexity, real-time performance 
and reliability, system adaptability and scalability.

First of all, most studies focus on the 
construction of theoretical frameworks or 
experimental verification in specific scenarios, 
and lack an extensive verification of their 
practical applicability in complex and dynamic 
environments. The computational complexity and 
real-time problems related to the path planning 
method in practical applications have not been 
fully solved. Second, although the design of the 
communication architecture performs well in 
specific scenarios, its universality and scalability 
have not been fully verified. In addition, although 
the algorithms in intelligent manufacturing and 
automation systems perform well in experiments, 
the validation of their applicability in real 
industrial environments is still insufficient.

In this paper, an intelligent robot cooperative 
control framework based on a regional distributed 
structure is proposed, which divides the whole 
task into multiple sub-regions, and the robots in 
each sub-region are responsible for completing 
specific transportation tasks. The distributed DQN 
algorithm is applied to the cooperative control of 
intelligent robots for the first time, which achieves 
the cooperative decision and motion control of 
multiple robots in complex environment. This 
structure not only helps to reduce the complexity 
of the system, but also improves the collaborative 
efficiency of the robots and the accuracy of the task 
completion. This method can not only improve the 
decision-making efficiency of the robots, but also 
effectively reduce the consumption of computing 
resources, making the system more expandable 
and flexible.
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3. Research Method

3.1 Model Building

The running track of the material handling robot 
in the new energy vehicle assembly factory 
is simplified as shown in Figure 1 below. It is 
assumed that the target is K, the obstacle is Z, 
and the target area reached by the transport is M. 
The task requires n intelligent handling robots to 
effectively reach the K region and then smoothly 
move the target object to the M region. Therefore, 
the goal of each robot is to control its direction 
and speed of operation and avoid collisions 
between individual robots and between robots 
and obstacles.

Figure 1. Operation diagram for the intelligent 
handling robot

Therefore, the operation process for the robot 
consists in constantly making collision decisions 
regarding other robots or obstacles. The behavior 
of the decision process is described as a 
reinforcement learning problem pertaining to the 
Markov decision process, which encompasses the 
observation space, action space, reward function 
and algorithm framework.

In order to better study the operational problem 
for the intelligent robot, n intelligent robots 
control problems shall be treated as multi-
agent cooperative control problems. Taking the 
position coordinates of the i-th intelligent robot 
as the origin, a rectangular coordinate system 
is established with its forward direction as the 

positive direction of the horizontal axis (x). The 
intelligent robot operation plan is divided into 4 
quadrants, as shown in Figure 2.

Figure 2. Operation area division for the intelligent 
handling robot

The collision avoidance strategies between the 
i-1 intelligent robot and the i intelligent robot or 
obstacles are shown in Table 1.

The optimal path planning for n intelligent robots 
can be described as:
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where di and dj are the positions of any two 
robots,dk is the target starting point, dm is the target 
end point, ds is the minimum safe distance between 
any two robots, dt is the minimum distance 
between the robot and the moving target, and dp 
is the minimum distance between the intelligent 
robot and the obstacle. Di is the distance covered 

Table 1. Collision avoidance strategies for intelligent robots

i position
i-1 position

quadrant 1 quadrant 2 quadrant 3 quadrant 4
quadrant 1 quadrant 4 Quadrant 3 turns to Quadrant 4 quadrant 4 quadrant 4
quadrant 2 quadrant 1 quadrant 1 quadrant 4 quadrant 1
quadrant 3 quadrant 1 quadrant 1 quadrant 4 Quadrant 3 turns to Quadrant 4
quadrant 4 quadrant 1 quadrant 1 quadrant 1 quadrant 1
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by the robot, V is the speed of the robot, and δ is 
the direction of the robot.

The i-th dynamic model of the intelligent robot is 
expressed as follows:
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where xv ,0  is the initial velocity of the robot in 
the x direction, and xia ,  is the acceleration of the 
robot in the x direction, yv ,0  is the initial velocity 
of the robot in the y direction, and yia ,  is the 
acceleration of the robot in the y direction, xi and 
yi represent the distance the robot moves in the x 
direction and the y direction, respectively, and ti 
is the time step.

In the model expressed in equation (1), the reward 
function is mainly divided into the collision 
reward function involving the i-th intelligent robot 
and the j-th intelligent robot, the reward function 
of the i-th intelligent robot approaching the target 
point, the reward function of the i-th intelligent 
robot colliding with the obstacle and the speed 
reward function.

The greater the distance between the i-th 
intelligent robot and the j-th intelligent robot, the 
greater the distance reward. The distance reward 
function is expressed as follows：
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The smaller the distance between the i-th intelligent 
robot and the target object, the greater the distance 
reward. The distance reward function is expressed 
as follows:
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The greater the distance between the i-th 
intelligent robot and the obstacle, the greater the 

distance reward. The distance reward function is 
expressed as follows:
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The speed of the i-th intelligent robot is rewarded, 
and the speed is set to the upper and lower critical 
values, 0.2 and 1, respectively. When the speed 
varies between critical values, the faster the speed, 
the greater the reward. The speed reward function 
is expressed as follows:
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otherwise， 2
,

2
, yixii vvv += 。

With regard to the acceleration reward for the 
i-th intelligent robot, the greater the acceleration, 
the greater the reward. The acceleration reward 
function is expressed as follows:
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≤
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otherwise， 2
,

2
, yixii aaa += 。

Therefore, the total reward function for the i-th 
intelligent robot is:

ii avkitijiall RRRRRR ++++= −−−               (8)

The reinforcement learning framework is shown 
in Figure 3 below.

Figure 3. Reinforcement learning framework for the 
Markov decision process

In the framework of reinforcement learning, the 
intelligent robot makes a decision based on the 
current state of the environment (S, state) and 
decides what action to take next (A, action). 
After each action, the environment will give a 
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corresponding reward (R, reward) based on the 
action of the intelligent robot, and the state S will 
be transferred to the state S^. This is repeated, and 
the robot generates a large amount of S, A, and 
R data in the process of continuous interaction 
with the environment. Based on this data, the 
reinforcement learning algorithm allows the agent 
to make more correct decisions, that is, to learn 
the strategy. Therefore, it can be understood that 
intelligent robots interact with the environment 
through actions, states, and rewards, and constantly 
learn strategies for maximising those rewards.

The behavior of n intelligent robot control 
problems is described as a Markov decision 
process This process includes three states: 
cooperation, competition and independence. The 
framework of n robot reinforcement learning 
algorithms is shown in Figure 4 below.

Figure 4. Markov decision process for n robots

The Markov decision process is defined as follows:
),,,,( γπ RAS                                              (9)

where S is the set of the current environmental 
states of the intelligent robot, A is the set of actions 
taken by n intelligent robot, R is the reward set, 
π  represents the learning strategy and γ is the 
calculated return factor. The learning strategy π  
is calculated based on the following formula:

[ ]sSaApas tt === |)|(π                         (10)
To maximise the employed strategy, one should 
know the cumulative return, which is expressed 
as follows:

∑
∞

=
++=

0
11

m
mt

mRG γ
                                      

(11)

For the cumulative return, the value function is 
used to represent the cumulative return expectation. 

Therefore, the expectation of the i-th intelligent 
robot is expressed by the following formula：
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In equation (6), if the action (a-1) taken by another 
intelligent robot (i-1) makes the return of the i-th 
intelligent robot worse, the i-th intelligent robot 
can get the maximum expected return. This return 
can be expressed as:

∑ −−=
a

iai asaasQasV ),(),,(minmax),( ππ
  
(13)

Then the optimal strategy is found by maximising 
the action value function, according to the 
following formula:
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3.2 The Distributed DQN Algorithm

The DQN algorithm is composed of a Q-Learning 
algorithm and a neural network. It is one of the 
most representative algorithms in the family of 
reinforcement learning algorithms (Lu & Liu, 
2023; Kim & Han, 2023; Niu et al., 2024). As its 
characteristics are concerned, it does not need to 
understand the environment, it directly gives the 
value of each action in the current environment, 
and updates the neural network once that action 
is taken. During algorithm execution, one can 
learn while executing. The DQN algorithm uses 
the experience pool as shared data, adopts the 
structure of centralised training and features a 
decentralised execution. The DQN algorithm 
framework is shown in Figure 5. The DQN 
algorithm uses two neural networks, namely the 
Q-value network and the target Q network, the 
two networks having the same structure.

Figure 5. The DQN algorithm structure
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The intelligent robot constantly interacts with 
the environment. At the moment of state s, it 
generates action a according to its own strategy, 
and action a makes the environment produce 
a new state s^ and at the same time it gets a 
reward r from the environment. The interactive 
data (s,a,r,s^) is introduced into the experience 
playback pool. When there is enough data 
(s,a,r,s^) in the experience pool, a unit of data 
is randomly selected from the experience pool, 
the predicted value of Q is calculated using the 
current network, the target value of Q is calculated 
using the target Q network, then the loss function 
between the two values is calculated, and the 
current network parameters are updated using 
the gradient descent minimisation loss function. 
After the above process is repeated several times, 
the parameters of the current network should 
be copied to the target Q network. The gradient 
descent minimisation loss function is used to 
continuously debug the network weights. The 
calculation formula is as follows:

^
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where θi is the Q network parameter and i
^θ  is 

the target network parameter of the i-th iteration. 
The gradient descent update network weight θi is 
calculated as follows:
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The distributed DQN algorithm proposed in 
this paper includes 4 quadrants according to 
the intelligent robot operation area as shown 
in Figure 2. The distributed DQN algorithm 
framework is shown in Figure 6.

Figure 6. The distributed DQN algorithm structure

Quadrant 1: The focus is on the parallelisation 
of algorithms and the improvement of 
distributed computing capabilities, and the aim 

is to achieve a more efficient model training by 
optimising data parallelisation and parameter 
server mechanisms. The training data is spread 
across multiple compute nodes, each of which 
independently processes a portion of the data and 
calculates gradients, which are then aggregated 
to a parameter server for updating model 
parameters. The parameter server is responsible 
for storing and updating global model parameters 
and ensuring that all compute nodes have access 
to the latest parameters.

Quadrant 2: The focus is on distributed storage 
and optimising the access to the experience 
replay pool to ensure that each compute node 
can efficiently use the experience pool data for 
training. The experience replay pool is split into 
multiple parts and stored on different compute 
nodes. This way, each node can access and update 
its part of responsibility independently, without 
waiting for other nodes. Data access strategies 
should be optimised using caching, prefetching, 
and parallel reading to further improve the 
efficiency of the access to the experience replay 
pool. In addition, data compression and coding 
techniques are used to reduce the overhead of data 
transmission and storage.

Quadrant 3: The focus is on improving the stability 
of the algorithm, and reducing computational 
bias and sample fluctuation by improving the 
experience playback mechanism and target 
network update strategy. Using priority experience 
playback and batch experience playback, the 
sample fluctuation and sample bias are reduced, 
and the convergence speed and stability of the 
algorithm are improved. The target network is 
an important component of the DQN algorithm, 
which is used to calculate the target Q value. Soft 
update and progressive update are adopted to 
reduce the calculation deviation or overestimation 
caused by the calculation of max Q value, and 
further improve the stability of the algorithm.

Quadrant 4: The ability of the algorithm to 
handle complex environments and large-scale 
data sets should be explored, and the robustness 
and generalisation ability of the algorithm should 
be improved by optimising the model structure 
and training strategies. A deep convolutional 
neural network, a recurrent neural network and 
regularisation techniques are introduced to 
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improve the expressiveness and generalisation 
ability of the model. RMSprop and cross-
validation are used to improve the performance 
and stability of the algorithm.

Based on the above design ideas, TensorFlow is 
used to implement the distributed DQN algorithm. 
The execution process for the distributed DQN 
algorithm is as follows.

3.2.1 Initialisation Phase

(1) Environment initialisation. Set up 
reinforcement learning environment, including 
state space, action space, reward function, etc.

(2) Agent initialisation. In a distributed 
environment, multiple agents are initialised, and 
each agent has its own neural network model (i.e. 
Q network) and state and action space.

(3) Experience replay pool initialisation. 
Initialises a distributed experiential replay pool 
that stores experiential data (state, action, reward, 
next state) generated by the agent’s interaction 
with the environment.

(4) Parameter server initialisation. Set up a 
parameter server to store and update global model 
parameters to ensure parameter consistency across 
compute nodes.

3.2.2 Training Phase

(1) Agents interact with the environment. Each 
agent selects an action based on its current state 
and performs that action.

(2) The environment returns the next state and 
reward according to the agent’s action.

(3) The agent stores the current state, action, 
reward, and next state into a distributed 
experiential replay pool.

(4) Experience replay and model update. Sample 
a batch of empirical data randomly from a 
distributed empirical replay pool.

(5) The sampled data is sent to the Q network for 
calculation and the predicted Q value is obtained.

(6) Use the target network to calculate the target 
Q value and calculate the loss function.

(7) Update the Q network parameters through 
backpropagation.

(8) Parameter synchronisation and update. 
The parameter server periodically collects 
model parameters from each compute node and 
synchronises and updates them. The updated 
parameters are distributed to each compute node 
to ensure parameter consistency.

(9) Performance evaluation and adjustment. 
Periodically evaluate the performance of the 
agent, such as cumulative rewards, accuracy, etc. 
Adjust the training strategy and model structure 
according to the performance evaluation results.

In order to reduce the overestimation of the model, 
two estimation functions and Double Q-learning 
are also used in the framework of the algorithm. 
The two estimation functions are QA and QB, and 
each Q function updates the next state with the 
value of the other Q function. The algorithm`s 
steps are as follows:

Algorithm

1. Randomly initialise Q(s,a), where s 
represents the environment and a represents 
the action;

2. Initialise s;

3. Select action a from the neural network 
according to the current s and constraint 
condition ();

4. Perform a, observe s^ (the new 
environment), and r (the incentive).

The implementation process is as follows:
^ *( , ) ( , ) ( , )[ ( , ) ( , )]← + + γ −A A B AQ s a Q s a s a r Q s a Q s aβ   (17)
^ *( , ) ( , ) ( , )[ ( , ) ( , )]← + + γ −B B A BQ s a Q s a s a r Q s b Q s aβ   (18)

s ← s^

Repeat Steps 3 and 4 until s reaches the end state.

otherwise， ),(maxarg ^* asQa A
a= 。

At this point, the algorithm is built.

4. Results and Discussion

In order to improve the clarity of result 
presentation, this paper uses charts and 
visualisation methods to illustrate the performance 
of each employed algorithm under the cooperative 
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working condition for multiple intelligent robots. 
In particular, the success rate curves of each 
algorithm in different training rounds and the 
specific behavior trajectories of multi-robot 
cooperative tasks are drawn. These charts and 
visualisations not only help to understand the 
performance of each algorithm more intuitively, 
but also provide a strong basis for a subsequent 
optimisation and improvement.

4.1 Parameter Selection

The algorithm parameters set in this paper 
mainly include the number of intelligent robots, 
the number of obstacles, the number of model 
training times, the number of samples extracted 
from the experience pool, the reward factor, the 
Q network parameters and the network learning 
rate, and the parameter values are set as shown 
in Table 2 below. The simulation platform is 
MATLAB R2022a.

Table 2. Model parameters

Parameters Values
Number of intelligent robots (i) 1-160

Number of obstacles 5
Training times (N) 200

Q Network parameters (θi) 0.99
Reward factor (γ) 0.99

Number of samples extracted from the 
experience pool 120

Network learning rate 0.001

4.2 Experiment and Discussion

First, the percentage of the robots successfully 
completing a handling process with regard to the 
total handling times is defined as the handling 
success rate.

Second, model training is grouped. The model 
was divided into four groups to carry out 
model training under the conditions of only one 
intelligent robot working, only 2 intelligent robots 
working, only 4 intelligent robots working and 
8 intelligent robots working. The first group was 
trained 10 times, the second group was trained 100 
times, the third group was trained 200 times, and 
the fourth group was trained 280 times.

Third, the handling success rate was tested, as 
shown in Figure 7. As it can be seen, with the 

increase in the number of model training times, 
the material handling success rate was slightly 
improved. With the increase in the number of 
robots at the same time, the material handling 
success rate decreased slightly. The reason for this 
analysis is the increase in the number of training 
times and the overfitting of the employed model. 
However, the overall handling success rate of the 
model is higher than 80%.

Figure 7. Material handling success rates for 
intelligent robots

The in-depth analysis shows that with the increase 
in the number of model training times, although 
the handling success rate features a weak upward 
trend, this increase may be accompanied by 
the risk of overfitting the model. Overfitting 
means that the model performs very well on the 
training data but it is difficult to generalise it for 
previously unseen scenarios, which explains why 
the handling success rate drops slightly in more 
complex scenarios where the number of robots 
increases at the same time. This shows that while 
the model is robust for a single task or a small 
number of robot tasks, its generalisation ability 
needs to be strengthened when dealing with the 
more complex and dynamic environment of multi-
robot collaboration.

Then the performance of the proposed algorithm 
is compared with that of traditional intelligent 
algorithms.

First, the algorithms were chosen. In this study, 
the Twin Delayed Deep Deterministic Policy 
Gradient Algorithm (TD3), the DQN algorithm, 
and the DDPG (Deep Deterministic Policy 
Gradient) algorithm were used and compared 
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with the proposed algorithm, and the number of 
experimental intelligent robots was set at 8.

Second, the handling success rate was tested. As 
shown in Figure 8 below, 10 numbers are drawn 
at different intervals (between 10 and 280).

Figure 8. Comparison of the success rates for 
intelligent robot material handling under the four 

employed algorithms

As it can be seen from Figure 8, the proposed 
algorithm obtained the highest success rate. The 
overall volatility of the proposed algorithm is very 
small, and the robustness of the model is good.

The in-depth analysis shows that the 
TD3 algorithm effectively alleviates the 
overestimation problem of the traditional deep 
reinforcement learning algorithm by introducing 
the double-delay deep deterministic strategy 
gradient method, and improves the stability 
of this strategy. Under the condition of 8 
intelligent robots working together, the TD3 
algorithm shows a good generalisation ability 
and robustness, and the handling success rate is 
maintained at a high level. However, with the 
increase in the number of robots, the complexity 
of the environment also increases, and the 
TD3 algorithm still faces certain challenges in 
handling the interaction and coordination of 
multiple robots, resulting in a slight decline in 
the handling success rate. As a classic algorithm 
in the field of deep reinforcement learning, the 
DQN algorithm achieves an effective decision 
making in complex environments by using a 
convolutional neural network to approximate 
the Q-value function. However, the DQN 
algorithm faces limitations in dealing with a 
continuous action space and is easily affected 
by the overestimation problem. In the scenario 

of eight intelligent robots working together, the 
handling success rate of the DQN algorithm is 
relatively low, especially when the number of 
robots is high, the decline in its performance 
is more obvious. The DDPG algorithm is an 
extension of the DQN algorithm on a continuous 
action space. By introducing the deterministic 
strategy gradient method, it achieves an effective 
decision making in a continuous action space. 
Under the condition of 8 intelligent robots 
working together, the DDPG algorithm shows a 
good adaptability and stability, and its handling 
success rate is higher than that of the DQN 
algorithm. However, compared with the TD3 
algorithm, the DDPG algorithm still has some 
shortcomings in dealing with the interaction and 
coordination of multiple machines, resulting in 
its performance being slightly inferior to that of 
the TD3 algorithm in a complex environment. 
Based on the advantages of the TD3 algorithm 
and the DDPG algorithm, the proposed 
algorithm has been improved and optimised. 
By introducing a more efficient exploration 
strategy, improving the state representation 
method and optimising network structure, the 
algorithm in this paper shows a higher success 
rate and a stronger generalisation ability under 
the condition of 8 intelligent robots working 
together. Compared with the TD3 algorithm, 
the DQN algorithm and the DDPG algorithm, 
the proposed algorithm achieved a better 
performance in a complex environment.

Third, the average reward obtained by the four 
algorithms is illustrated in Figure 9.

Figure 9. Average reward

As it can be seen from Figure 9, compared with 
other algorithms, the proposed algorithm has 
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the highest convergence speed and can obtain 
the highest reward after convergence, and the 
obtained reward is more stable after convergence, 
maintaining itself at about 0.6.

The fitting coefficient (R2) was used for model 
evaluation (Gao et al., 2023). In the context of the 
evaluation, the higher the R2 value, the better the 
model. The definition of R2 is as follows:
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where n is the number of training times, Yi is the 
real measured value, ^

iY  is the value measured by 
employing this model, and 

−

iY  is the average of the 
true measured values.

The robots were trained in different numbers and 
the results for the calculated R2 values are shown 
in Figure 10.

Figure 10. R2 values under the  
four employed algorithms

As it can be seen from Figure 10, among the four 
employed algorithms, the proposed algorithm has 
the best fitting ability. For different numbers of 
robots, the values of the fitting coefficient R2 are 
all greater than 0.9, indicating that the model has 
a good fitting ability.

In order to improve the survivability of the 
algorithm in practical applications, the number 
of robots and the complexity of the environment 
are increased in the experiment carried out to 
verify the capacity expansion performance of the 
proposed algorithm. The experimental situation 
is as follows.

First, the number of intelligent robots employed 
in the model was increased to 20, 40, 80, and 160. 
Figure 11 shows the model capacity in relation to 
the handling success rate.

Figure 11. Model capacity test

The experimental results show that when the 
number of intelligent robots is 20, the handling 
success rate can be stably maintained above 
0.8, which fully validates the model’s efficient 
coordination ability and excellent task execution 
ability in a relatively complex environment.

However, with the further increase in the number 
of intelligent robots, the success rate of material 
handling has shown a slight downward trend. 
Specifically, when the number of robots climbed 
to 40, 80 or 160, the handling success rate 
dropped slightly to 0.78, but it still remained at a 
relatively high level. This result not only reveals 
that the model has a good scaling ability in the 
face of large-scale robot-based collaborative 
tasks, but it also points out the challenges in 
maintaining an efficient collaboration and task 
execution in high-density and highly interactive 
multi-robot environments.

The in-depth analysis shows that with the increase 
in the number of robots, the complexity of the 
environment is significantly increased, and the 
interaction and coordination needs of robots are 
sharply increased, which brings about higher 
requirements with regard to the model`s decision-
making ability, environmental perception ability 
and real-time response ability. Although the model 
proposed in this paper shows a good performance 
in dealing with these challenges, in some extreme 
cases, such as resource competition, path conflict 
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and communication delay caused by an excessive 
number of robots, the success rate of the model 
may be affected to some extent.

Second, the complexity of the environment should 
be improved. To verify the generalisation ability 
of the model, the number of intelligent robots 
should be increased and the random placement 
of obstacles should be adjusted. The results for 
the model generalisation ability are shown in 
Figure 12.

Figure 12. Model generalisation ability test

As it can be seen from Figure 12, when the number 
of robots is 20, the handling success rate remains 
at 0.8, however, when their number increases to 
40, 80 and 160, the success rate decreases slightly, 
but it remains at 0.78. The experimental results 
show that when the number of intelligent robots 
is 20, the model shows an excellent performance, 
and the success rate of material handling remains 
at the high level of 0.8. When the number of 
intelligent robots is further increased to 40, 80 
or 160, although the handling success rate drops 
slightly to 0.78, the model still maintains a high 
success rate on the whole, which indicates that 
this model shows a good capacity expansion and 
generalisation ability when faced with large-scale 
and high-density robot collaborative work and 
dynamically changing obstacle layout. The model 
can effectively deal with the problems of path 
planning, obstacle avoidance strategy and task 
assignment among robots in a complex interactive 
environment, which ensures the efficient execution 
of tasks.

Finally, the algorithm was applied to the small 
area environment of the actual production shop 

for testing purposes. The experimental process is 
as follows.

First, spatial modeling is carried out. The operation 
scenario for the handling robot in the automobile 
intelligent assembly factory is modeled by means 
of a grid, arranged according to an equal spacing 
criterion, and structured into 11 rows and 11 
columns with 121 nodes. It is assumed that the 
target is K, the obstacle is Z, and the target area 
reached by the transport is M. The task requires 
n intelligent handling robots to effectively reach 
the K region and then smoothly move the target 
object to the M region, and the four intelligent 
handling robots are represented by the letters A, 
B, C and D, as shown in Figure 13 below. The aim 
of the material transportation process is to find the 
optimal path.

Figure 13. Electronic map of the automobile 
intelligent assembly factory

Second, model testing is carried out. The 
intelligent handling robot first runs from the 
current location to the specified pick-up point, 
loads the goods from the specified pick-up point, 
and then moves the goods to the target point. 
For each task, multiple intelligent robots move 
at the same time, and the proposed algorithm 
coordinates the task allocation among the 
intelligent handling robots to carry out the path 
planning for each intelligent handling robot for 
transporting goods. Intelligent handling robot A 
and D should be taken as an example, as shown 
in Figure 1. The optimal running path of robot A 
is represented by blue and red trajectories. The 
optimal running path of robot D is represented 
by purple and green trajectories.
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Figure 14. Optimal running path of intelligent robot 
A and D

Third, practical testing is carried out. By applying 
the electronic map model shown in Figure 13 to 
the intelligent workshop for regional testing, 
the operation results shown in Figure 14 can be 
obtained. The results show that the proposed 
method is feasible.

Taking the implementation of four intelligent 
robots as an example, between two adjacent 
nodes separated by a distance of 28 meters, the 
four robots completed one handling operation for 
testing purposes. The task completion efficiency 
before and after the application of the proposed 
model is shown in Table 3 below. The accumulated 
idle time refers to the stationary waiting time for 
the intelligent robot.

Table 3. Application efficiency of the proposed model

The employed 
method

Completion 
time Accumulated idle time

Traditional model 178s 98s
Textual model 56s 12s

It can be seen from Table 3 that under the condition 
of handling the same material, the application of 

the model proposed in this paper reduces the task 
completion time by 122 s and the waiting time for 
the intelligent robot by 86 s in comparison with 
the traditional model.

5. Conclusion

In this paper, an intelligent robot motion 
coordination control method based on a regional 
distributed structure is proposed to fulfill the 
simultaneous transportation task for multiple 
robots. The method mainly relies on the deep 
Q-network (DQN) algorithm, and by means 
of reinforcement learning, the intelligent robot 
learns the optimal control strategy in the process 
of interacting with the industrial environment.

However, although the proposed method shows 
a great potential in theory and practice, there 
are still some limitations to it. First, the DQN 
algorithm needs to discretise the continuous 
action space when dealing with continuous control 
problems, which leads to a loss of accuracy and 
a dimensional disaster, affecting the performance 
of robot in complex environments. Secondly, 
the training process for the DQN algorithm 
is slow and requires a lot of training data and 
computing resources, which will bring about 
certain challenges with regard to its practical 
application. In addition, the DQN algorithm will 
face oscillation problems, resulting in an unstable 
training process, which would require the further 
optimisation and stabilisation of this algorithm.

Future work could further study and optimise the 
cooperative control strategy of distributed robot 
systems in order to improve the cooperative 
efficiency and stability of multiple robots in 
complex environments. This could include 
research into more refined task allocation 
algorithms, more efficient communication and 
perception mechanisms, etc.
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