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1. Introduction

In the last few years, quadrotors, as unmanned 
aerial vehicles (UAVs), have garnered significant 
attention and they were widely adopted across 
various sectors, including commercial, industrial, 
and military applications. However, despite their 
many advantages, quadrotors are vulnerable to 
actuator faults and external disturbances, which 
can critically affect their stability. To address these 
challenges, actuator fault-tolerant control (FTC) 
systems have become a focal point of research. 

FTC systems can either have a passive design, 
which treats faults as perturbations and uses 
general optimisation methods, which can be 
limiting or an active design, which utilises a 
detailed fault estimation (FE) using observer-based 
methods (Lan & Patton, 2016) and a recovery 
module that takes the necessary actions to correct 
the faulty system for precise control adjustments 
and adaptability (Jain, J. Yamé, & Sauter, 2018). 
Among the most commonly used techniques for 
the recovery module of FTC systems are sliding 
mode control (SMC) and backstepping.

Backstepping has become an attractive control 
technique for dealing with issues associated with 
underactuated systems, such as quadrotors.

Many control techniques based on backstepping 
have been proposed without considering the 
impacts of faults or disturbances, for example 

in (Bouadi, Bouchoucha & Tadjine, 2007) and 
(Saibi, Boushaki & Belaidi, 2022).

There have been several ideas for addressing 
the impacts of disturbances in the context of 
backstepping control systems, such as in (Huo, 
Huo & Karimi, 2014; Xuan-Mung & Hong, 
2019; Karahan, Kasnakoglu & Nuri Akay, 2023). 
However, these papers do not address the faults 
within the system. 

In (Khebbache et al., 2012; Mlayeh & Ben 
Othman, 2022; Mlayeh & Khedher, 2024), 
the authors propose a passive FTC technique 
based on a backstepping approach to overcome 
the effect of actuator faults without considering 
the effect of disturbances.

The existing control techniques based on 
backstepping have made significant strides, but 
many either do not account for both disturbances 
and faults or focus on one aspect while neglecting 
the other. To that, the proposed backstepping-based 
FTC techniques are mostly passive strategies.

Despite its advantages, traditional backstepping, 
unlike conventional SMC, is sensitive to 
disturbances. However, practically, the upper bound 
of external disturbances, which is necessary for 
the traditional SMC, is challenging to determine 
perfectly a priori. These limitations highlight the 
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necessity of improving backstepping by integrating 
it with other techniques, such as adaptive control, 
fuzzy logic, or neural networks. Such enhancements 
can help mitigate the impact of disturbances and 
improve the controller’s robustness.

In this study, these gaps are addressed by 
proposing a novel backstepping-based active FTC 
strategy that simultaneously tackles both external 
disturbances and actuator faults.

In the field of active FTC, there is now an 
extensive amount of research on FE techniques, 
principally based on adaptive observers (AOs) and 
sliding-mode observers (SMOs) (Lan & Patton, 
2016). AOs enable us to estimate faults when they 
are modeled as changes in parameters.

For FE, several authors have used adaptive 
observers (Besançon, 2007; Zhang, Jiang & 
Cocquempot, 2008). However, they make the 
assumption that the number of measured outputs 
and the transfer functions between faults are strictly 
positive real (SPR), however, for many real-world 
systems, including quadrotors, this is not the case. 
A new adaptation law with relaxed SPR is proposed 
by Oucief, Tadjine, & Labiod (2016).

This paper is based on the joint use of an AO for 
FE, and an adaptive backstepping FTC (ABFTC) 
technique for stabilizing the faulty system and for 
disturbance estimation and compensation.

The primary contributions of this study are the 
following: (1) using a comprehensive nonlinear 
model of the quadrotor UAV that accounts 
for the system’s nonlinearities and high-order 
nonholonomic constraints; (2) a nonlinear AO is 
used to estimate both system states and actuator 
faults simultaneously, without requiring the 
traditional observer matching condition. This 
approach effectively handles faults that affect 
unmeasured state dynamics. The observer design 
is simplified through a linear matrix inequality 
(LMI) optimisation approach; (3) using the AO-
based FE, an ABFTC controller is proposed 
for compensating for external disturbances 
and actuator faults; (4) the ABFTC is meant to 
estimate the unknown external disturbances and 
compensate for their effect without the need for 
a precise upper bound for external disturbances; 
(5) an adaptive law is designed to decouple 
disturbances from actuator fault estimates in order 
to obtain a more accurate FE.

The remainder of this paper is organised as follows. 
Section 2 provides a short explanation of the 

system’s nonlinear dynamic model. In Section 3, 
a nonlinear AO is introduced to estimate the faults 
and next a novel law is proposed for decoupling 
disturbances from actuator fault estimates. Section 
4 presents a robust adaptive backstepping control 
technique that is used for handling external 
disturbances and failure effects. Further on, Section 
5 presents the validation of the FTC strategy using 
MATLAB simulations. Finally, Section 6 sets forth 
the conclusion of this paper.

2. Quadrotor Modeling

Let’s consider an inertial frame E (O, X, Y, Z), 
and let B (o, x, y, z) designate a frame that is 
permanently coupled to the quadrotor, as illustrated 
in Figure 1. The quadrotor’s absolute position is 
defined by the three coordinates (x, y, z) and its 
attitude by the three Euler’s angles (φ, θ, ψ), 
namely roll, pitch, and yaw.

Figure 1. The quadrotor configuration

The quadrotor model is provided as in (Bouadi, 
Bouchoucha & Tadjine, 2007) by:
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where:

 - C is the cosine function, and S is the sine 
function; 

 - Ix, Iy and Iz are the constant’s inertia;
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 - Kfax, Kfay and Kfaz are the aerodynamic friction 
coefficients around X, Y, and Z;

 - Jr is the rotor inertia; 

 - Ω is the disturbance due to the rotor imbalance;

 - d is the distance between the quadrotor centre 
of gravity and the rotation axis of propellers;

 - m is the quadrotor’s mass;

 - g is the gravity acceleration constant;

 - Kftx, Kfty and Kftz represent the translation drag 
coefficients; 

 - U1, U2, U3, and U4 represent the control inputs 
of the system.

U1, U2, U3, and U4 are expressed based on the 
angular speeds ωi (for i ∈ {1, 2, 3, 4}) of the four 
propellers as follows: 

2
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22
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p p
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(2)

1 2 3 4ω ω ω ωΩ = − + −                                     (3)

The control inputs remain restricted by the motors’ 
maximum rotational speeds ωmax, which are 
illustrative of their physical constraints:

2
1 max0 4  pU K ω≤ ≤

(4)
2 2
max 2 max   p pK U Kω ω− ≤ ≤

2 2
max 3 max   p pK U Kω ω− ≤ ≤

2 2
max 4 max2  2  d dK U Kω ω− ≤ ≤

The high-order nonholonomic constraints may be 
obtained from the translation dynamics equations 
(1a)-(1f):
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This corrective block will be used to generate the 
intended roll (φd) and pitch (θd). 

3. The Adaptive Observer

3.1 Adaptive Observer Design

The system state space in equations (1a)-(1f), 
including actuator faults, is given by:

( ) ( ) ( , ) ( , ) ( )
 

( ) ( ) 
x t Ax t BФ x u y u Ef x
y t Cx t

   







 

            
(6)

where x ∈ ℝ12 is the state vector of the system, 
which can be expressed as: 

[ ] [ ]1 12, , , , , , , , , , , , ,
T T

x x x x y z x y zϕ θ ψ ϕ θ ψ= … = 

        (7)

where xi for i ∈ {1, 12} denotes the system states. 
A ∈ ℝ12×12, B ∈ ℝ12×14, E ∈ ℝ12×4, and C ∈ ℝ6×12 
are known constant matrices. f(x) = σ(x)fa(t), 
is the resultant of the actuator faults, where 
fa∈ ℝ4 represent the actuator fault vector, with 
fa = [fa1, fa2, fa3, fa4]. σ(x) : ℝ12 → ℝ4×4 is a known 
function matrix that might have nonlinear 
dependencies on x and η(y, u) and Φ(x, u) are 
known nonlinear function vectors. u = [U1, U2, U3, 
U4]

T is the input control vector, and y ∈ℝ6 is the 
system output expressed as y = [φ, θ, ψ, x, y, z]T. 

In this paper, the system model in equation (6) 
satisfies the following conditions:

C0: The pair (C, A) is observable; 

C1: η(y, u) is continuous in y and u;

C2: σ(x) and Φ(x, u) fulfill the Lipschitz property, 
i.e. there exist positive constants γ1 and γ2 such that 
for all x, 12x̂∈ :

1( , ) ( , )ˆ ˆ     Ф x u Ф x u x x                      (8a)

2ˆ( ) ( ˆ)x x x xσ σ γ− ≤ −                              (8b)

C3: The actuator fault vector fa is bounded and 
piecewise constant:

3( )af t γ≤                                                   (9)

where γ3 is a known positive constant.

C4: The matrix E σ(x) is persistently exciting, 
such that for all t ≥ 0:

1 12 2 12
t

 ( ) ( )
+

≥ ≥∫

t
T Tn I E x x E dt n I

τ

σ σ
              

(10)

where τ, n1 and n2 are positive constants. I12∈ℝ12×12 
represents the identity matrix.

The standard form of the AO for the system in 
equation (6) is given in (Cho & Rajamani, 1997). 



https://www.sic.ici.ro

88 Abderrahim Ezzara, Ahmed Youssef Ouadine, Hassan Ayad

To be used in FE, the system must be satisfying 
the famous matching condition given by:
ET P = FC                                                  (11)
The equality ET P = FC holds if and only if 
(Corless & Tu, 1998):
rank(CE) = rank(E)                                  (12)
In the case of the proposed model given in 
equations 1(a)-1(f) and (6), rank(CE) = 0 and 
rank(E) = 4. Unfortunately, the observer matching 
requirement in equation (12) is not fulfilled for 
this system, and therefore the standard form of the 
AO cannot be used.

In (Oucief, Tadjine & Labiod, 2016), the authors 
proposed a novel approach for developing an 
AO for a particular class of nonlinear systems. 

For developing the considered adaptive observer, 
in addition to conditions C0, C1, C2 and C3 the 
system model in equation (6) has to fulfill the 
following conditions:

C5: The matrices A, B, C and E must satisfy 
the following:
CB = 06×14                                                (13a)
CE = 06×4                                                 (13b)
rank(CAE) = rank(E)                             (13c)
C6: Given bounded x, the first derivative in time 
of σ(x) is continuous and bounded.

The system state space x = [x1,...,x12]
T, as given 

in equation (7), is rearranged to satisfy condition 
C5 as follows:

1 7x x=

(14)

2 8x x=

3 9x x=

4 10x x=

5 11x x=

6 12x x=

2
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When these conditions are satisfied, a stable 
observer for the system in equation (6) has the 
form (Oucief, Tadjine, & Labiod , 2016)

ˆ ˆ( , ) ( , ) ( )  ( )ˆˆ ˆ ˆx Ax BФ x u y u Ef x L y Cx                     (16a)
σˆ ˆ( )   T

af W x Hy                                    (16b)

 
 

ˆˆ( ˆ(
ˆ

η( , )dσ )   σ )d  

T
T

HC Ax y uxW Hy xt G y Cx

 
 
 
  

 
  




          
(16c)

where ˆ ˆˆ ˆ )( ) σ( ) (af x x f t , and f
˰

a is the actuator FE 
vector. Γ = ΓT > 0 is the learning rate matrix, while 
H and G are constant matrices that need to be found.

Theorem 1. Under conditions C1, C2, C3, C5, 
and C6  the state estimate x̂  converges to the real 
state x asymptotically, and ˆ ˆ( )Ef x  converges to 
Ef (x) if there are positive real constants ε1 and 
ε2, and matrices P = PT > 0 ∈ℝ12×12, G ∈ℝ4×6, and  
H ∈ℝ4×6 such that:

( ) ( ) 1 2
1 2 1 2 2

1 1 12 2 2 3 12 0

T T TA LC P P A LC PBB P PEE P

I I

ε ε

ε γ ε γ γ− −

− + − + +

+ + <    
(17a)

HCA − GC = ET P                                   (17b)
Furthermore, if E σ(x) fulfills the persistent 
excitation (PE) condition given by C4, then f

˰
a 

converges to fa.

Conditions C0 to C6 are met for the proposed 
system, hence the adaption law in equation (16) is 
possible. To find the observer gains, (17a) and (17b) 
can be turned into a LMI optimisation problem. By 
applying the Schur complement (Boyd et al., 1994) 
and by considering L = P−1 M for the inequality 
(17a), the following LMI is obtained:

1
1 14 14 4

1
4 14 2 4

0 0
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T
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PB PE
B P I
E P I
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−
×
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×

Λ
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with 1 2 1 2 2
1 1 12 2 2 3 12

T T TA P PA C M MC I Iε γ ε γ γ− −Λ = + − − + + .
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Also, by applying the same technique utilised in 
(Corless & Tu, 1998), (17b) may be solved using:

4

12

    0

      :


 
 
 
 

T

I П

П I

Minimize subject to






                      

(19)

where П = HCA − GC − ET P, and δ is a  
positive scalar.

3.2 Disturbance Decoupling

It is supposed that the system attitude of the 
quadrotor is subject to external disturbances 
d = [dφ,dθ,dψ]T. The states x7, x8, and x9 in equation 
(14) become:

( )2
7 71 8 9 2 3 8 1 2 1
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x
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(20a)

2
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(20b)

2
9 7 7 8 8 9 3 4 3

1
( )a

z

x a x x a x b U f d
I

ψ= + + + +

        
(20c)

As a result, disturbances will significantly impair 
the accuracy of FE, resulting in an inaccurate FE 
and potential false alarms. To tackle this issue, an 
adaptive law is created to separate disturbances 
from actuator fault estimates:

† )ˆ ˆ ˆ( ) ( ()a a tf f Dd tt = −                                   (21)

where f
˰

a
†
  represents the improved fault estimate, 

f
˰

a is the original fault estimate given by equation 
(16), d

˰
= [d

˰
φ, d

˰
θ, d

˰
ψ] is the disturbance estimation 

vector, and D = diag (λ1,λ2,λ3) is a diagonal matrix 
with λi ≥ 0 for i ∈ {1,2,3}.The parameters λi are 
determined through a tuning process based on 
simulation to optimise the disturbance decoupling 
and enhance the accuracy of FE.

Based on equation (21), the actuator fault estimate 
with an improved attitude becomes:

†
1 1 1 1
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where Θi for i ∈ {1,2,3} are activation parameters 
given by:

ˆ

ˆ

0

1

ai i
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ai i

if f

if f

≤ ∆
Θ =
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(23)

where Δi for i ∈ {1,2,3} is the threshold parameter.

4. The FTC Strategy of the Quadrotor 

The proposed control approach is based on two 
loops, the internal loop has four control laws 
(U1, U2, U3, and U4), and the external loop 
has two virtual control laws (Ux and Uy). The 
synoptic scheme (Figure 2) below illustrates this 
control strategy.

Figure 2. The proposed FTC structure

All phases of computation concerning Lyapunov 
functions and tracking errors are summarised  
as follows:

{ }
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The related Lyapunov functions are provided by:
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The synthesised stabilising control laws are 
described in the following:
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where ki > 0 for i ∈ {1,12} and kai > 0 for 
i ∈ {1,2,3,4}. 
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Disturbance estimates are given by:

1 7
ˆ  d eϕ β=

2 8
ˆ  d eθ β=

3 9
ˆ  d eψ β= (27)

where βi > 0 for i ∈ {1,2,3}.

Proof: 

The expression of U2 is demonstrated by 
considering the roll (φ) subsystem:

1 7

7 1 1 2 1 1( ) ( ) ( ) ( )
1

a
x

x t t t

x x

x Ф bU b f d
I



   








 

        

(28)

where 2
1 1 4 6 2 2 3 4( )Ф    x a x x a x a x . fa1 and dφ are 

the actuator fault and disturbances that cannot be 
measured, respectively. The calculation of the 
control law U2 is done in two steps.

Step 1: The first tracking error e1 is examined, and 
provided by:

e1 = x1 − x1d                                                  (29)
The first Lyapunov function candidate is 
expressed as:

2
1 1 1)(

1

2
V e e=

                                                 
(30)

The time derivative of equation (30) is given by:

1 1 1 1 1 7 1( ) ( )dV e e e e x x= = −

                               (31)

According to Lyapunov’s theory, the stability of 
e1 can be achieved by incorporating a new virtual 
control (x7)d which represents the desired value 
of x7:

7 1 1 1 1 1      ( 0)( )d dx x k e kα= = − >                    (32)

Equation (31) then becomes 2
1 1 1 1) 0(V e k e= − ≤ .

Step 2: As x7 is not a real command, the following 
tracking-error variable e7 is defined in relation to 
x7 and α1:

7 7 1 7 1 1 1de x x x k eα= − = − +                            (33)

The augmented Lyapunov function is given by:
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The time derivative of V7 is given by:
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Using 1 1 1 7e k e e= − + , equation (35) becomes:
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Substituting 7x  by its expression, equation (36) 
yields:
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The stability of (e1,e7) may be achieved by adding 
the real input control U2. Based on the principle 
of certain equivalence, fa1 and dφ are replaced by 
their estimates:
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Equation (37) becomes:
2 2
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where 
†

1 1 1
ˆ

a a af f f= −  and ˆd d dϕ ϕ ϕ= −  (assuming 
that dφ

.

 ≈ 0). The presence of term error dϕ  in the 
expression of V̇7 does not allow the determination 
of its sign. The Lyapunov function in equation 
(34) is increased by a square term to dϕ :
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The time derivative of V7
† is expressed as:
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Selecting a proper adaptation law for the 
estimate d

˰
φ will eliminate the term of uncertainty.  

By choosing:

1 7
ˆ  d eϕ β=

                                                   (42)

equation (41) becomes:

( )2 2
7 1 7 1 1 7 7 1 7 1 1
† ( , ) aV e e k e k e b e f= − − − Γ − 

       (43)

The presence of term errors denoted by f~a1 in the 
expression of V̇7

† does not allow the determination 
of its sign. By choosing: 

11 1 7 ( 0))g ( >Γ = aa kk si n e                           (44)
Equation (43) then becomes:

( )† 2 2
7 1 7 1 1 7 7 1 7 1 1),( a aV e e k e k e b e k f≤ − − − − 


            (45)

It is supposed that an unknown parameter ka1 > 0 
exists, such that:

1 1a af k≤

                                                   
(46)
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Finally, equation (45) becomes:
† 2 2

7 1 7 1 1 7 7( ), 0V e e k e k e≤ − − ≤

                        (47)

Finally,
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By following the same steps, U3, U4, Ux, Uy and 
U1 can be extracted.

High-frequency switching of the control signal 
can cause chattering, which wears down actuators 
and degrades the system performance. For this 
reason, the sign function may be substituted 
with another smooth function. In this paper, the 
following function is chosen:

{ })g ( 7,8, 9,12i
i

i

e
si n e i

e ε
= ∈

+                  
(49)

where ε is a given small positive constant.

5. Simulation Results and Analysis

To evaluate the performance of the proposed 
ABFTC, simulations were executed in MATLAB/
Simulink with a fundamental sample time of 
0.001s. The quadrotor prototype for this study is 
the Draganfly IV, manufactured by “Draganfly 
Innovations”. Parameter identification is analysed 
in (Derafa, Madani, & Benallegue, 2006) and 
summarised below:

Table 1. Quadrotor model parameters 

Parameter Value

m 400 g

g 9.81 m·s−2

d 25.5 cm

Jr 2.8385 × 10−5 N·m / rad / s2

Kp 2.9842 × 10−5 N / rad / s

Kd 3.232× 10−7 N·m / rad / s

Ix, Iy ,Iz (3.828, 3.828, 7.135) × 10−3 N·m / rad / s2

Kftx, Kfty ,Kftz (3.2, 3.2, 4.8) × 10−2 N / m / s

Kfax, Kfay ,Kfaz (5.567, 5.567, 6.354) × 10−4 N / rad / s

5.1 Observer Design

In this subsection, the parameters and the matrices 
of the observer are determined.

The values γ1 = 35, γ2 = 2.06, and γ3 = 10.2 were 
chosen. Let ε1 = 76 and ε2 = 80.

The observer matrices are given by:

3 11 12

12 6 6
10

0T
P P

P
P ×

= ×
 
  

( )11 g 8.598, 8.598, 7.683, 5.823, 5.823, 6.715P dia=  
( )2

12 10 1.11,1.11,1.11,1.19,1.19,1.12−= − ×P diag

(50)

[ ]4
1 210= ×

T
M M M

( )1 g 2.881, 2.881, 2.336, 0.709, 0.709,1.240M dia=

( )2 g 0.846, 0.846, 0.755, 0.572, 0.572, 0.661M dia=

[ ]1 4 1 20H H H×=

( )1 0.0286, 0.0286, 0.0342, 0H diag=

[ ]2 0 0 0 0.0475
T

H =

[ ]5
1 210  

T
L L L= ×

( )3
1 10 7.6, 7.6, 6.1,1.6,1.6, 3.9L diag− ×=

( )2 5.916, 5.916, 4.181, 0.795, 0.795, 2.307L diag=

3
49.10  IΓ = × 51.0001 10δ −= ×

5.2 Simulation Parameters

In addition, to carry out realistic simulations, an 
additive Gaussian noise is introduced during all 
simulations for both disturbances and injected faults.

To simulate the nonlinear dynamics of the 
employed quadrotor in a real-world environment, 
the control inputs are constrained according to 
equation (4), based on the assumption that the 
maximum rotor speed is 8000 rpm. The linear 
velocities (ẋ, ẏ, and ż) and angular velocities  
(φ̇, θ̇, and ψ̇) are bounded  by practical values.

The proposed paths for the conducted simulations 
are selected so as to follow a helicoidal trajectory:

( )
15 55

6

70 110
6

d

t
t

t

π

ψ
π

≤ <
=

− ≤ <







(51)

with xd (t) = 22sin(0.6t), yd (t) = 22cos(0.6t) and 
zd(t) = 0.5t.

The simulations were carried out for two 
scenarios, a fault-free case and a faulty case. Two 
time-varying actuator faults fa1 and fa4 associated 
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with the roll φ and altitude z commands are 
introduced. In addition, an additive Gaussian 
noise ( )2

1 0.05, 0.01a  is added to fa1 and 
( )2

4 0.01, 0.02a  is added to fa4 with a sample 
time of 0.02s in both cases.

In both scenarios, the system is assumed to be 
affected by attitude disturbances, given as: 

( ) ( )2
,1sin 0.2 0.0005,0.0005d d tϕ θ ϕ θ= = + 

( ) ( )20.2sin 0.2 0.0001,0.00005d tψ ψ= + 

Disturbance decoupling parameters are established 
as: λ1 = 3.95, λ2 = 3.95, and λ3 = 1.04.

5.3 Simulation Results

Based on the proposed ABFTC, Figure 3 provides 
a comparative analysis of the system’s attitude and 
position states under fault-free and actuator fault 
conditions. It reveals that, despite the introduction 

of faults, the system states consistently converge 
to the desired values, indicating the ABFTC’s 
efficacy in fault handling. 

As observed, the roll and pitch angles are 
maintained within a moderate range of ±5°, these 
values effectively facilitating the quadrotor’s 
smooth movement.

Figure 4, which depicts the tracking errors related 
to the system’s attitude and position demonstrates 
the system’s performance in both fault-free and 
faulty scenarios. 

Figure 5 illustrates the disturbance estimation 
performance of the adaptive control law, it can 
be seen that the estimated disturbances align 
closely with the real ones, facilitating an effective 
decoupling from the system dynamics.

In Figure 6, the first image illustrates the real 
actuator fault fa1 alongside its estimates with and 
without disturbance decoupling. It is evident 

Figure 3. Attitude and position trajectories in the fault-free and faulty cases

Figure 4. Tracking errors in the fault-free and faulty cases
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that the disturbance decoupling significantly 
enhances the accuracy of FE. The second image 
corroborates this by showing the estimation of fa4, 
which closely matches the real fault.

Figure 7 displays the control inputs in the faulty 
case, revealing how the system adapts its control 
inputs to manage faults effectively. In spite of 
them, the quadrotor’s closed-loop dynamics 
remains stable. Furthermore, this control approach 
provides input control signals that are both 
acceptable and physically achievable, reflecting 
the robustness and practicality of the proposed 
FTC approach. Also, it maintains a low energy 
consumption with small control inputs.

Figure 8 illustrates the quadrotor aircraft’s 3D 
trajectory during its flight. 

The simulation results show a good performance 
and resilience for trajectory tracking even after 
actuator faults occur.

To numerically evaluate the results obtained from 
the simulations, the RMSE (Root Mean Square 
Error) was calculated using certain established 
numerical criteria (Table 2).

Table 2. RMSE values for the attitude (in rad) and 
position (in m) trajectories

Fault-free case Faulty case
RMSEφ 9.4 × 10−5 3.4 × 10−4 

RMSEθ 9.4 × 10−5 9.4 × 10−5

RMSEψ 5.4 × 10−6 5.4 × 10−6

RMSEx 2.2 × 10−2 2.2 × 10−2

RMSEy 2.3 × 10−2 2.3 × 10−2

RMSEz 7.7 × 10−6 2.4 × 10−3

While faults introduced in the roll (φ) and vertical 
(z) axis led to moderate increases in RMSE, the 
pitch (θ), yaw (ψ), and horizontal positions (x, y) 
remained unaffected, highlighting the controller’s 
robustness. The relatively low increase in RMSE, 

Figure 5. Attitude disturbance estimation Figure 6. Actuator fault estimation performance

Figure 7. The control inputs of the actuators in the 
faulty case

Figure 8. The quadrotor global trajectory in 3D in 
the faulty case
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even in the faulty case, showcases the method’s 
ability to isolate faults and maintain a stable 
system performance. 

The RMSE values for the actuator fault estimation 
under various conditions are included in Table 3.

Table 3. RMSE values for the actuator FE under 
different conditions

f
˰

a1 f
˰

a
†
1 f

˰
a4

Absence of fai 2.85 0.07 0.04
Absence of di 0.13 0.13 0.93
Presence of fai and di 2.85 0.36 0.93

As it can be seen in Table 3, in the fault-
free case, where the system operates without 
faults but with disturbances, the disturbance 
decoupling significantly enhances the FE 
accuracy, with a RMSE of 0.07 rad for f

˰
a
†
1, in 

comparison with a RMSE of 2.85 rad for f
˰

a1 
without decoupling. This improvement helps 
to accurately distinguish between faults and 
disturbances, thus preventing false alarms and 
avoiding incorrect fault declarations. 

 In the absence of disturbances, but where faults 
are present, the RMSE values for the improved 
and normal FE (f

˰
a
†
1 and f

˰
a1) are equal, indicating 

that the disturbance decoupling does not affect the 
FE accuracy when there are no disturbances. In 
the presence of faults and disturbances, the RMSE 
for f

˰
a
†
1 increases to 0.36 rad and the RMSE for f

˰
a1 

is significantly higher at 2.85 rad, underscoring 
the critical importance of disturbance decoupling 
for maintaining an accurate FE.

Finally, for f
˰

a4, the RMSE is very low in the fault-
free case (0.04 rad). However, in the faulty case 
scenario, the RMSE for f

˰
a4 increases to 0.93 rad.

6. Conclusion

This paper introduces a new active FTC strategy 
for diagnosing actuator faults in a quadcopter in 

the presence of external disturbances. Firstly, 
a complete dynamical model for a nonlinear 
quadrotor was introduced, taking into account 
several physical phenomena that might impact the 
proposed system’s navigation in space. Secondly, 
to estimate the actuator faults, an AO has been 
developed, which does not require that the system 
meet the traditional observer matching condition. 
This approach effectively handles faults that 
affect the system`s unmeasured state dynamics. 
Thirdly, a new ABFTC controller was presented, 
in the presence of actuator faults and external 
disturbances, based on the adaptive backstepping 
technique. This controller utilizes the AO-based FE 
to compensate for actuator faults, and the external 
disturbances were estimated using an adaptive 
control law. In order to decouple disturbances from 
actuator fault estimates a novel adaptive FE law 
was proposed. Finally, several simulations were 
run in MATLAB to verify the effectiveness of the 
proposed strategy for a defective system. Two time-
varying actuator faults related to the roll φ and the 
altitude z commands were introduced. In addition, 
disturbances and faults were coupled with additive 
Gaussian noises to simulate a realistic flight 
environment. The Root Mean Square Error (RMSE) 
was used to numerically assess the accuracy of 
the simulation results, providing a measure of the 
differences between the estimated and actual values.

The simulation results demonstrate the success 
of the proposed strategy. It allowed for a precise 
FE even in the presence of external disturbances 
and noise, as well as stability and trajectory 
tracking. Moreover, this control method provided 
physically achievable input control signals. The 
fact that the highest RMSE for system attitude 
in the faulty case is lower than 10−4 rad, and the 
highest RMSE for system position  is lower than 
10−2 m further highlights the proposed method’s 
effectiveness in maintaining an accurate system 
control performance.
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