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1. Introduction

Image segmentation plays a crucial role in the 
diagnosis of lung diseases by providing an accurate 
and efficient method for correctly identifying the 
organ of interest (Selvan et al., 2020) and different 
disorders (Lei et al., 2020).

Accurate organ delineation despite the existing 
pathologies is crucial, for example to determine 
the overall lung volume such that a viable organ 
percentage can be computed (e.g. in the case 
of COVID lesions, just a part of the lung still 
functions correctly, and this information is crucial 
for further treatment planning (Lee et al., 2020)).  
Also, lung segmentation helps as a preliminary 
step when the detection of a different disease is 
of interest, as it improves the results (Gordaliza 
et al., 2018). 

The chest radiography (X-ray) is one of the most 
used non-invasive methods for assessing lung 
diseases and the automatic processing of this 
type of images is of high interest, due to the large 
number of procedures of this sort (Shen, Wu & 
Suk, 2017).  However, due to their higher noise 
levels (e.g. the overlapping of  organs such as 
the ribs and clavicle), X-rays are challenging 
(compared to CTs for example) when automatic 
segmentation is of interest. Substantial research 
efforts lead to high performances of X-ray lung 
segmentation algorithms varying from rule-based 

algorithms to neural network models (Agrawal & 
Choudhar, 2023).

The study of Azimi et al. (2022) examines 
how precise lung segmentation enhances the 
classification performance. By isolating lung 
regions, a CNN-based model (e.g. ResNet-50) 
improved the accuracy from 88% to 92% for 
pneumonia and from 84% to 90% for COVID-19 
detection. This highlights that accurate 
segmentation reduces noise and helps models 
focus on relevant areas.

X-ray lung segmentation methods perform well 
on healthy lungs, but their performance may vary 
when applied to patients with diseases such as 
COVID-19 or tuberculosis. This is because such 
conditions can cause significant changes in the 
lung structure, such as opacities, consolidations, 
cavities or other abnormalities, which are not 
detected as part of the segmented lung.  

Therefore, ensuring model generalization across 
datasets with different diseases, acquisition 
conditions and labelling styles remains an  
open challenge.

This study evaluates the generalization capability 
of the U-Net architecture for lung segmentation 
across multiple datasets, which include diverse 
imaging conditions and pathologies. 
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Unlike prior studies that primarily focused on 
modifying network architectures, this paper 
investigates how different preprocessing strategies 
(CLAHE, Gaussian, Laplace filtering), training 
strategies and label consistency influence the 
segmentation performance. 

The key novelty of this work lies in proposing a 
fine-tuning strategy using self-generated pseudo-
labels to mitigate labelling inconsistencies 
across datasets. This approach aims to improve 
segmentation performance while maintaining a 
lightweight architecture, making it more suitable 
for real-world clinical applications.

The remainder of this paper is organized 
as follows. Section 2 presents the related 
work, summarizing the key advancements in 
lung segmentation and contextualizing the 
proposed approach in the recent literature. 
Section 3 introduces the dataset and preprocessing 
pipeline, detailing the acquisition parameters, 
annotation strategies, and normalization techniques 
employed for preparing the chest X-rays dataset. 
Further on, Section 4 sets forth the proposed 
method, describing the architecture of the U-Net 
model, the training procedures, and the different 
testing scenarios implemented for evaluation 
purposes. Section 5 presents the experimental 
results, providing the quantitative metrics and 
qualitative assessments across various testing 
conditions. Section 6 discusses the implications 
of the findings of this paper, the limitations of 
the proposed approach, and potential directions 
for future work. Finally, Section 7 concludes 
this paper, highlighting the key contributions 
and practical significance of the proposed 
unsupervised segmentation technique and 
possible future enhancements for a better  
model performance.

2. Related Work

Neural networks have been extensively used for 
the lung segmentation task.  

In (Rahman et al., 2021), an adapted version 
of the U-Net architecture was proposed for 
automatic lung segmentation in chest X-rays, 
achieving a Dice coefficient (DC) of 94.21% on 
the Montgomery County dataset.

An improved model for lung segmentation in 
chest X-rays was developed using the U-Net 
architecture with pre-trained EfficientNet-b4 
as the encoder and residual blocks, and the 
LeakyReLU activation function in the decoder. 
The model obtained a Dice coefficient (DC) of 
97.9% on the JSRT dataset and a DC of 97.7% on 
the Montgomery County dataset (Liu et al., 2022).

In (Kim & Lee, 2021), adding attention 
modules to a U-Net architecture increased the 
segmentation performances to a DC of 98.2% on 
the Montgomery dataset and to a DC of 95.4% on 
the Shenzhen dataset.

The work of Naqvi et al. (2022) presents a 
new method that enhances the standard U-Net 
architecture by incorporating morphological 
operations (e.g. dilation, erosion) as post-
processing steps to refine segmentation and 
achieve a Dice Similarity Coefficient above 95% 
on the Montgomery and Shenzhen datasets. 

The study of Bombiński et al. (2024) highlights 
a key challenge in automated lung segmentation: 
underestimation of lung regions due to anatomical 
variability and image noise. The findings show 
that for datasets like JSRT and Montgomery, many 
segmentation models achieve an IoU (Intersection 
over Union) below 85%, underscoring the 
need for more robust preprocessing techniques 
and advanced architectures to improve the 
segmentation accuracy.

A comparative analysis in (Hryniewska-Guzik et 
al., 2024) evaluated the performance of several 
deep learning architectures, including U-Net, 
ResNet, and DenseNet. The results showed that 
while the standard U-Net achieved an average 
Dice Similarity Coefficient (DSC) of 92%, more 
advanced models, such as U-Net++ and hybrid 
architectures incorporating Attention Mechanisms, 
reached a DSC of over 94% demonstrating 
the benefits of architectural improvements. 
Additionally, this study found that data 
augmentation and transfer learning significantly 
enhanced the segmentation robustness across 
diverse datasets.
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3. Dataset and Preprocessing

3.1 Dataset Description

In the study of Danilov et al. (2022), three publicly 
available datasets containing lung X-rays images 
and the corresponding segmentation masks are used. 
The datasets are the following: the Darwin dataset 
(6,106 images), the Montgomery dataset (138 
images), and the Shenzhen dataset (566 images).

Darwin dataset: This dataset primarily includes 
heart and lung opacities, which are useful for 
assessing the severity of viral pneumonia (e.g. 
COVID-19). It contains 6,106 images, out of 
which 1,397 depict viral pathologies, 2,591 
bacterial pathologies, and 2,118 are normal 
images. The images vary in resolution and 
orientation, ranging from 156x156 pixels to 
5600x4700 pixels. Some chest radiographs are 
of lower quality compared to standard X-rays. 
Lung segmentations were performed by human 
annotators using Darwin’s Auto-Annotate AI and 
reviewed by expert radiologists (Anon, n.d.).

Shenzhen dataset: Published by the United 
States National Library of Medicine, this dataset 
contains normal chest X-rays and X-rays featuring 
tuberculosis manifestations, aimed at supporting 
research on the automated diagnosis of lung 
diseases, particularly tuberculosis. The data was 
collected from the Department of Health and 
Human Services (Maryland, USA) and Shenzhen 
No. 3 People’s Hospital (Shenzhen, China) 
(Danilov et al., 2022). The dataset includes 566 
images, 240 from tuberculosis patients and 326 
from healthy individuals.

Montgomery dataset: The dataset contains 
138 images: 58 from patients diagnosed with 
tuberculosis and 80 from healthy individuals 
(Jaeger et al., 2014). 

3.2 Image Preprocessing

All images are grayscale images (they have only 
a one-color channel representing light intensity). 
For this study, they were resized to 256x256 
pixels to ensure uniformity across the dataset, 
simplifying multi-layer convolution and pooling 
computations while reducing computational 
complexity of larger images (e.g. 5600x4700 

pixels). Standardizing the image size also helped 
eliminate inconsistencies and provided a uniform 
basis for training and evaluation.

The following preprocessing strategies were 
combined and tested for evaluating their impact 
on the final models’ performances: 

a.	 CLAHE (Contrast Limited Adaptive Limited 
Histogram Equalization) - a preprocessing 
technique used to enhance image contrast by 
applying local histogram equalization while 
limiting noise amplification was employed 
in order to enhance the contrast locally. This 
approach increases the level of local detail 
and prevents contrast overload by limiting 
contrast enhancement, thus avoiding noise or 
artifacts (Zuiderveld, 1994);

b.	 Gaussian filter was used to reduce noise and 
smooth fine variations in the images. This 
eliminates artifacts and improves the overall 
image quality. The filter applies the Gaussian 
function to the image by convolution, 
calculating a weighted average of the 
neighbourhood pixels, where pixels closer 
to the center pixel have a greater influence 
(Marr & Hildreth, 1980);

c.	 Laplace filter is an edge detection filter 
that highlights areas with rapid intensity 
variations in the image. It helps to emphasize 
fine details and anatomical structures such 
as organ outlines or lesions. The filter is 
based on the Laplacian operator (a second-
order derivative operator) and measures the 
rate at which the intensity gradient changes 
(Haralick, 1984);

After filtering, all images were normalized to [0, 
1]. This step was performed to prepare the image 
for input to the deep machine learning model. 

No data augmentation techniques were applied.

All preprocessing was performed before model 
training, ensuring that every dataset underwent 
consistent transformations.

4. Method

4.1 The U-Net Convolutional Neural 
Network Model 

The objective of this study is to analyse the 
performance of a classical U-Net neural network 
(Ronneberger, Fischer & Brox, 2015) used in the 
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segmentation process on three different datasets 
containing radiological images of a varying 
resolution and quality.  

The architecture employed in this study is 
shown in Figure 1. It consists of four levels of 
convolutional and pooling layers, followed by a 
central convolutional layer, and then four levels 
of upsampling and concatenation. The final layer 
is an output layer with a sigmoid activation 
function. Each convolution layer contains 32, 
64, 128, 256, and 512 filters, respectively, with a 
kernel size of 3x3.

4.2 Training and Testing Scenarios

The model is trained using the datasets presented 
in the previous section and the following scenarios 
(which leads to models with different performances): 

Scenario 1. The Shenzhen and Montgomery 
datasets were used in the training and validation 
process, while the testing was done with the 
Darwin dataset:

Train set - 562 images

Validation set- 142 images

Test set- 6.106 images

This scenario tests the model’s performance on 
chest X-rays featuring normal lungs, COVID-19 
pathology, or viral and bacterial pneumonia, using 
a model trained on X-rays of healthy individuals 
and tuberculosis patients.

Scenario 2. The Darwin dataset was randomly 
split as follows:

Train set - 4884 images

Validation set - 1222 images

The Shenzhen and Montgomery datasets, as 
described in the previous section, were used 
for testing:

Test set 1 - Montgomery dataset - 138 images

Test set 2 – Shenzhen dataset – 566 images

Scenario 2 evaluates the proposed model’s 
performance on chest X-rays featuring normal 
lungs or tuberculosis pathology, using a model 

Figure 1. U-Net - graphical representation and 
structural details
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trained on chest X-rays featuring COVID-19 or 
viral pneumonia.

The purpose of these two scenarios is to test if the 
segmentation performance using a model trained on 
specific pathologies can lead to comparable results 
when used on data related to another pathology. 

Scenario 3a. The model was trained and 
tested on all tree datasets according to the  
following distribution:

Train set - 4,736 images 

Validation set - 1,037 images 

Test set - 1,037 images 

The chest X-ray images from the Darwin, 
Montgomery and Shenzhen datasets were 
randomly split intro train (approx. 70%), 
validation (approx. 15%) and test (approx. 15%) 
sets, keeping as much as possible the same 
distribution of chest X-rays of healthy individuals 
vs. lung diseases as in the original datasets. 

This scenario evaluates the model’s performance 
on a homogeneous dataset containing all types 
of pathologies, including COVID-19, viral and 
bacterial pneumonia, and tuberculosis, as well as 
normal chest X-rays.

Scenario 3b. The model obtained in scenario 3a 
is fine-tunned by reusing the train images from 
the Montgomery and Shenzhen datasets but using 
the segmentation masks generated by the model 
obtained in scenario 3a instead of the original 
masks. This fine-tunning step was pursued due to 
an observation regarding quite different manual 
segmentation styles across datasets, namely the 
left lung segmentation in the Darwin dataset is 
performed such that it takes into consideration 
a larger lung area near the heart, while in the 
Shenzhen and Montgomery datasets the left lung 
segmentation is performed in a narrower fashion. 
From the authors` observation this difference 
can lead to a model that performs an under-
segmentation of the left lung when it is affected 
by a disease in the proximity of the heart. This 
discrepancy confuses the model, leading to a 
systematic under-segmentation in cross-dataset 
tests. This fine-tunning step aims to diminish the 
effects of different manual segmentation styles 

across databases, while keeping the network  
size unchanged.  

All the employed models were trained using 
an early stopping mechanism, starting with 50 
epochs. During training, the Early Stopping 
callback continuously monitored the validation 
loss (val_loss). If the validation loss did not 
improve for 15 consecutive epochs, the callback 
would stop the training early to prevent overfitting.

The batch size for the training was set to 4, and 
a Nvidia GeForce RTX 3090 GPU was used for 
computational resources.

These scenarios, regarding lung segmentation 
based on U-Net on datasets including lung 
X-rays acquired from various devices and with 
a variety of pathologies are relevant from the 
following perspectives:

Understanding limitations: When a model is 
created using data containing just one type of 
pathology its performance can be very good, but 
most of such models described in the literature 
do not discuss the performance obtained for a 
different data distribution/other pathology.

Improved Generalization: The variability of 
the input data enhances the model’s ability to 
generalize to new, unstructured images and 
perform effectively in real clinical environments, 
where images often come from different devices 
with a varying quality. 

Learning Diverse Features: By learning features 
associated with different conditions, the model 
becomes more adept at distinguishing between 
multiple types of lung lesions and healthy states. 
This is crucial in clinical applications, where 
an accurate and rapid identification of multiple 
overlapping or similar pathologies is required.

Enhanced Clinical Applicability: For a 
segmentation model to be effective in real-world 
scenarios, it must handle diverse radiological 
images across a broad spectrum of conditions. 
Training and validating on varied databases ensure 
that the model can be reliably deployed in clinical 
settings, delivering consistent lung segmentation 
results even if the organ can feature one of the 
many possible pathologies.
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5. Results

5.1 Performance Measures

The most common performance measures used 
for analysing the segmentation models’ efficiency 
are Binary Accuracy, the Dice coefficient and the 
Jaccard coefficient.

The Binary Accuracy expressed in equation 
(1) measures how well a model classifies each 
pixel in an image, such as an X-ray with lungs 
as the primary subject and the background as the 
negative space:

Binary Accuracy = 
TP TN

TP TN FP FN
+

+ + +
          (1)

where TP (True Positives) are pixels correctly 
classified as lung, TN (True Negatives are pixels 
correctly classified as background (non-lung), FP 
(False Positives) are background pixels incorrectly 
classified as lung and FN (False Negatives) are 
lung pixels incorrectly classified as background.

Binary accuracy (BA) is a metric used to evaluate 
the performance of a binary classification model. 
It measures the proportion of correctly predicted 
cases out of the total cases.    

The Dice coefficient is expressed in equation (2):

DC = 
2 | |
| | | |

A B
A B

∩
+

                                             (2)

where A represents the ground truth (reference) 
segmentation - pixels in the lung segmentation 
mask, B is the set of pixels in the automatic 
segmentation obtained by the algorithm and |A|∩|B| 
is the number of common pixels (overlapping 
pixels) between the two segmentations.

The Dice coefficient is an overlap metric 
employed for evaluating the performance of image 
segmentation algorithms, especially in the field of 
medical image processing.

To compute the Jaccard coefficient based on 
the Dice coefficient, one can use equation (3), 
which provides the Jaccard index (JI) based on 
the Dice index:

JI = 
2

DICE
DICE−

                                                 (3)

The Jaccard coefficient is used to measure how 
well the predicted and actual lung regions overlap. 
If there are unique elements (noise) in the data 

set, they will not overly influence this coefficient, 
because the Jaccard index relies on the ratio of 
intersection over union, making it more robust to 
insignificant variations.

5.2 U-Net Performance in Different 
Training-testing Scenarios

Table 1 summarizes the results achieved by 
testing the U-Net models obtained under 
different scenarios.

Table 1. Assessment of the U-Net architecture for 
different scenarios

Scenario
Assessment metrics

BA (%) DC (%) JI (%)

Scenario 1 – no filters 85.45 74.65 59.55
Scenario 1 - with CLAHE 
and Gaussian filters 85.03 72.86 57.31

Scenario 1 - with CLAHE, 
Gaussian & Laplace filters 84.88 74.26 59.06

Scenario 2 – without filters, 
the Montgomery test set 94.03 89.70 81.32

Scenario 2 – without filters, 
the Shenzhen test set 93.67 89.32 80.70

Scenario 2 – with CLAHE 
and Gaussian filters, the 
Montgomery test set 

94.05 89.80 81.49

Scenario 2 – with CLAHE 
and Gaussian filters, the 
Shenzhen test set

93.83 89.60 81.16

Scenario 2 – with CLAHE, 
Gaussian and Laplace filters, 
the Montgomery test set

93.68 89.20 80.51

Scenario 2 – with CLAHE, 
Gaussian and Laplace 
filters, the Shenzhen test set 

93.62 89.23 80.55

Scenario 3a – without filters 97.07 96.13 92.55
Scenario 3b – without filters 95.87 99.16 98.33

A. Results Obtained for Scenario 1

Scenario 1 shows that training the model on 
datasets with normal chest X-rays or tuberculosis 
diagnoses does not yield a very strong 
performance (DC under 80%) when tested on a 
dataset containing images of viral pneumonia or 
large lung opacities. 

By analysing Figure 2(a) one can observe that 
there are segmentation errors related to the shape 
and size of lung segmentation, and the model 
includes some areas that should not be part of the 
lungs. These differences suggest that the model 
needs improvement.
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In Figure 2(c), the training loss (blue) and 
validation loss (orange) decrease significantly 
in the early epochs, indicating that the model is 
learning quickly. The convergence of the training 
and validation curves indicates that the model is 
not overfitting. Although the curves are generally 
smooth, minor fluctuations in validation loss, 
particularly between epochs 20 and 30, likely result 
from variations within the validation data itself.

By applying CLAHE and Gaussian filters (Figure 
3), the generated mask is imprecise, containing 
artifacts and irregularities, particularly in areas 
where the lungs meet the rib cage. The boundaries 
are less sharp, with some misclassifications in 
areas where lung and non-lung regions are not 
clearly separated. 

By applying all three filters, namely the CLAHE, 
Gaussian and Laplace filters, the segmentation 
results are those depicted in Figure 4.

The original image is a processed and filtered 
version of a chest X-ray, likely highlighting edges 
or certain structural details through edge detection 
or similar filtering techniques. 

The lung segmentation performed by the employed 
model shows notable discrepancies from the 
radiologist’s mask, with irregular boundaries, 
missing sections near the edges, under-segmented 
regions, and inaccuracies in the upper and lower 
lobes, resulting in a less smooth and well-defined 
output with false segmentations and visible gaps.

B. Results Obtained for Scenario 2

Scenario 2 shows that the training and evaluation 
of two separate models on the two types of images 
leads to mediocre results: a DC under 90% (Table 
1) for lung segmentation either for lungs without 
lesions or for situations involving a diagnosis of 
viral pneumonia or tuberculosis.

(a)

(c)(b)
Figure 2. U-Net architecture segmentation results for scenario 1: (a) and (b) Two Chest X-rays - original 

image, binary mask provided by radiologist, the predicted mask; (c) Training and Validation Loss

(a) (b)
Figure 3. Two images containing the U-Net architecture segmentation results for scenario 1 with 2 filters 

(CLAHE and Gaussian)

(a) (b)
Figure 4. Two images containing the U-Net architecture segmentation results for scenario 1 with 3 filters
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Figures 5 (a) and 5(b) show the masks obtained 
with a model trained in scenario 2; they feature 
a few imperfections, such as the inclusion of an 
additional region (in the lower right region).

The images on the right side display the binary 
mask produced by the model (network scenario 
2). The model attempts to isolate the lungs in the 
X-ray image similarly to the radiologist’s mask, 
but there are some notable discrepancies: the mask 
generated by network scenario 2 captures the 
general lung shape, but its edges are less smooth 
and precise than in the case of the mask provided 
by the radiologists. Some areas of the lungs appear 
to be over-segmented or under-segmented. In the 
lower region of the right lung (the left side of 
the binary mask), there is a misclassified region 
where a non-lung area is falsely included in the 
mask. This artifact indicates that the network is 
struggling to correctly differentiate lung tissue 
from other areas. The overall structure of the lungs 
is present, but parts of the lungs, particularly near 
the bottom, are either missing or not as cleanly 
segmented as they should be.

The plot in Figure 5(c) shows us that after an 
initial drop, both curves stabilize, with the training 
loss gradually decreasing to about -0.95, while the 
validation loss hovers around -0.90.

The close alignment between the two curves 
suggests that the model is not overfitting, as 
the training and validation losses follow similar 
trends and remain relatively close throughout the 
training process.

From around epoch 10 onwards, the validation 
loss plateaus with some slight fluctuations. This 
is a common which suggests that the model’s 
performance on unseen data has stabilized. The 
validation loss has a minor upward trend in the 
later epochs (approximately between the epochs 
40 and 50).

Further on, in scenario 2, CLAHE and Gaussian 
filters were applied, as shown in Figure 6.

Figure 6 shows the results for a segmentation 
mask produced by the model (network scenario 
2 with CLAHE and Gaussian filters). The model-
generated mask accurately captures the general 
shape and boundaries of the lungs with minor 
curvature differences, particularly at the bottom 
edges, and is relatively smooth and clean with few 
artifacts; slight gaps are present at the lower right 
lung boundary but are minimal and unlikely to 
impact on clinical performance significantly.

By applying all three filters the results depicted in 
Figure 7 are obtained:

(a)

(c)(b)

Figure 5. U-Net architecture segmentation results for scenario 2: (a) and (b) Two Chest X-rays - original 
image, binary mask provided by radiologist, the predicted mask; (c) Training and Validation Loss

(a) (b)
Figure 6. Two images containing the U-Net architecture segmentation results for scenario 2 with 2 filters 

(Clahe and Gaussian)
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Figure 7 shows the binary mask generated by the 
model using scenario 2 with all filters applied. 
The model’s attempt at segmentation has the 
following characteristics: the general shape of 
the lungs is well captured, but some inaccuracies 
are present, particularly near the lower edges 
of the lungs, and the contours of the lungs are 
less smooth in comparison with the radiologist’s 
mask. Also, there are slight irregularities and 
gaps, especially in the lower and side areas, 
suggesting that the model struggles to perfectly 
capture the lung boundaries with all the filters 
applied, and there are small artifacts at the bottom 
of the right lung (the left side of the binary mask), 
where the network appears to have misclassified 
some regions. 

For the test datasets the performance of the pre-
processing strategies did not significantly increase 
either in Scenario 1 or Scenario 2 so in the next 
two scenarios they were no longer applied.

C. Results obtained for Scenario 3a

Scenario 3 includes the results of the training and 
evaluation across all three databases, with a DC 
of 96% (Table 1) which is in line with the state of 
the art results.

The model manages to segment the lungs 
reasonably well (Figures 8(a) and 8(b)), but there 
is room for improvement, particularly with regard 
to the contours and edge details. The model may 
benefit from fine-tuning or additional training to 
improve the segmentation accuracy.

Figure 8(c) shows that after approximately 5-10 
epochs, the validation loss stabilizes, indicating 
that the model has reached an equilibrium point 
where there is no significant improvement in its 
ability to generalize on the validation dataset.

D. Results obtained for Scenario 3b

Scenario 3b includes the results obtained by 
fine-tunned model from scenario 3a. Fine-
tunning lead to a higher segmentation accuracy 
(Table 1), with a DC of 99.16% (a 3% increase 
in DC in comparison with scenario 3a). The 
model size is unchanged, but its performance 
improves drastically, proving that the dataset 
labelling consistency is more critical than adding 
more parameters.

In Scenario 3b, the model was fine-tuned using 
pseudo-labels generated in Scenario 3a, while 
maintaining the original validation and test sets. 
This strategy aimed to reduce the inconsistencies 

(a) (b)
Figure 7. Two images containing the U-Net architecture segmentation results for scenario 2 – with 3 filters

(a)

(c)(b)
Figure 8. U-Net architecture segmentation results for scenario 3a: (a) and (b) Two Chest X-rays - original 

image, binary mask provided by radiologist, the predicted mask; (c) Training and Validation Loss
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caused by varying annotation styles across 
datasets. By learning from unified pseudo-
labels, the model adopted a more consistent 
segmentation approach, improving its alignment 
with general annotation patterns. As a result, it 
achieved higher Dice scores and reduced the 
uncertainty in ambiguous anatomical regions. 
These improvements reflect an enhanced 
generalization ability and robustness, confirming 
the effectiveness of pseudo-label-based fine-tuning 
for harmonizing the cross-dataset segmentation 
performance. The employed fine-tuning strategy 
in Scenario 3b inherently addresses the goal of 
ensemble learning by unifying diverse annotation 
styles into a single, consistent segmentation 
model. By leveraging pseudo-labels from the 
baseline model (Scenario 3a), this approach 
reconciles inter-dataset discrepancies without the 
computational cost of training multiple models. 
As a result, it achieves a robust and consistent 
performance, similar to what ensemble averaging 
would provide. Nonetheless, future work could 
consider further investigating model ensembles.

Figures 9 (a-c) depict well-segmented x-rays 
masks for different pathologies or normal chest 
X-rays. To that, the plot in Figure 9(d) shows that 
the model performance is good, with a robust 
generalization ability.

Also, in Figure 9(d) it can be observed that the 
training and validation losses stabilize at similar 
values, suggesting that the model is performing 
consistently and shows no obvious signs of over-
training. No major modifications are required, 
but a continuous monitoring is recommended to 
maintain this performance.

Table 2 features the Dice coefficient, which was 
computed for each type of disease, considering 
scenario 3b. It can be observed that a good 
performance is obtained for pneumonia chest 
X-rays, while in the case of tuberculosis an 
improvement is needed. The weight of tuberculosis 
cases in the dataset is 4.37%, which, most probably, 
leads to poorer results. However, for the images 
in the Shenzhen dataset the results are better than 
those obtained in the previous scenarios. 

Table 2. Assessment of the U-Net models form 
Scenario 3b for different diseases

Disease Dice Coefficient
Pneumonia 97.04%

Tuberculosis - the Montgomery dataset 82.98%
Tuberculosis – the Shenzhen dataset 91.51%

For a deeper understanding of how regularization 
affects model performance, this study evaluates 
the impact of different dropout rates on lung 

(a) Chest X-rays original image – normal; binary mask 
provided by radiologist; predicted mask

(b) Chest X-rays original image –interstitial 
pneumonia; binary mask provided by radiologist; 

predicted mask

(c) Chest X-rays original image – tuberculosis; binary 
mask provided by radiologist; predicted mask

(d) Training and validation loss

Figure 9. U-Net architecture segmentation results for scenario 3b
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segmentation performance. The U-Net models 
were trained with dropout rates of 0.1, 0.3, 0.5, 
and 0.7, and their segmentation accuracy was 
assessed using the Dice Coefficient (DC).

To estimate model uncertainty, Monte Carlo 
Dropout (using 30 forward passes per image) 
was applied, generating uncertainty maps which 
highlight the regions of inconsistent predictions. 
The results show that Scenario 3b exhibits a 
slightly lower mean uncertainty (0.003149) and 
standard deviation (0.000731) in comparison with 
Scenario 3 (mean uncertainty: 0.003471, standard 
deviation: 0.001214), indicating that the fine-
tuned model provides more stable and confident 
segmentation predictions across the test set.

As shown in Figure 10, the obtained results 
indicate that:

	- A low to moderate dropout rate (0.1–0.3) 
maintains a high segmentation accuracy and 
improves the generalization ability;

	- Excessive dropout (>0.5) significantly 
degrades the model’s performance, increasing 
the segmentation variability.

This analysis suggests that moderate dropout 
enhances the model’s robustness, while excessive 
dropout negatively impacts on the segmentation 
quality. The integration of uncertainty estimation 
techniques can improve model reliability in 
clinical applications.

Figure 10. Analysis of the dropout effect on the 
model’s performance

Figures 11 (a) and 11 (b) depict a segmentation 
analysis of a chest X-ray using the U-Net model 
trained with a Dropout of 0.1. In Figure 11(a), 
it can be observed that the model’s predicted 
segmentation closely aligns with the ground 
truth mask, with only minor discrepancies along 
the lung boundaries. The lung fields are clearly 
delineated, and the overall contour accuracy is 
high, indicating a strong model performance in 
this case. In Figure 11 (b), it can be observed 
that the predicted segmentation deviates more 
noticeably from the ground truth, particularly 
around the lung contours. The uncertainty 
map highlights an elevated uncertainty along 
the boundaries of both lungs, especially in the 
lower and upper regions, suggesting that the 
model struggles to produce consistent predictions 
in areas where structural variations or a lower 
contrast are present.

(a)

(b)

Figure 11. Segmentation analysis, including the original chest X-ray, the ground truth mask,  
the predicted mask, and the uncertainty map
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To gain insight into the regions where the model 
is less confident, the uncertainty maps generated 
through Monte Carlo Dropout were analysed, 
using 30 stochastic forward passes per image. 
These maps allowed to visualize and identify areas 
with a high prediction variability, typically located 
along lung boundaries or near regions featuring 
anatomical complexity or a low contrast.

Figures 11 (a) and (b) also highlight the regions 
of high uncertainty related to the segmentation. 
An increased uncertainty appears along the lung 
boundaries, particularly near the upper lung fields 
and costophrenic angles. This suggests the model 
is more confident in the central lung regions but 
less certain in areas with overlapping structures 
or a lower contrast.

To sum up, Scenario 1 revealed that CLAHE, 
Gaussian, and Laplacian filtering did not 
improve the segmentation performance. In 
fact, preprocessing resulted in comparable or 
slightly worse Dice scores (74.65% without 
filters vs. 72.86% with CLAHE and Gaussian 
filters). CLAHE filtering amplified noise in well-
exposed images, while Gaussian filtering blurred 
fine lung structures, and Laplacian filtering 
overemphasized artifacts in diseased lungs. Since 
convolutional layers can inherently learn these 
transformations, external preprocessing was 
largely redundant. Instead, data augmentation or 
transfer learning may be more effective than fixed 
preprocessing pipelines.

In Scenario 2, training on one dataset and testing 
on two other datasets (the Montgomery and the 
Shenzhen datasets) resulted in slight performance 
variations (a Dice score of 89.70% vs. 89.32% 
without filters, and of 89.20% vs. 89.23% with all 
filters, respectively). The differences in contrast, 
exposure, and noise levels between datasets affected 
segmentation accuracy more than preprocessing 
did. Additionally, anatomical differences and 
varying lung opacity patterns in tuberculosis cases 
likely contributed to a weaker generalization ability. 
These findings suggest that dataset variability, 
rather than preprocessing techniques, plays a 
greater role in the segmentation performance.

In Scenario 3, training on all the three datasets 
yielded a Dice score of 96.13%, but fine-tuning 
in Scenario 3b improved it to 99.16%. This 
suggests that while initial training captured broad 
variations, fine-tuning enhanced lung boundary 
detection, particularly in lung disease cases. 

Dataset diversity, not preprocessing, proved to be 
the key driver of performance gains.

6. Discussion 

A key finding of this study is that fine tuning 
with self-generated pseudo-labels significantly 
enhances a model’s generalization ability across 
datasets. Unlike conventional approaches that 
improve model performance by increasing model 
complexity or adding parameters, the proposed 
method addresses labelling inconsistencies 
without modifying the model architecture. The 
3% improvement in the Dice score (from 96.13% 
to 99.16%) demonstrates that harmonizing 
segmentation styles across datasets is as crucial 
- if not more so - as increasing model size. The 
obtained results suggest that ensuring consistency 
in training data can be a more effective strategy 
for improving segmentation accuracy than relying 
solely on larger, more complex networks.

With respect to model size, the one employed in 
this paper has 7.7 M parameters, while the ones 
in (Bombiński et al., 2024) and (Hryniewska-
Guzik et al., 2024), have 9M (due to attention 
mechanisms) and 10 M parameters, respectively. 
At time same time, the DC obtained by employing 
this model is slightly better than the one presented 
in (Bombiński et al., 2024), as the standard U-Net 
achieved an average accuracy of 92% in metrics 
like DSC, while more complex architectures such 
as U-Net++ and hybrid models (e.g. with Attention 
Mechanisms) reached a DSC of over 94%.

The findings of this study demonstrate the 
potential of the U-Net architecture for lung 
segmentation in medical imaging, particularly in 
chest X-rays (CXR) featuring various pathologies 
such as tuberculosis, pneumonia (both viral and 
bacterial), and COVID-19. However, several 
important observations and limitations emerged 
from the evaluation of the model across different 
datasets and training-testing scenarios.

6.1 Generalization of the Model 

One of the key objectives of this study was to assess 
the U-Net model’s ability to generalize across 
datasets featuring diverse lung pathologies and 
different segmentation styles. The results across 
different training-testing scenarios suggest that the 
model can generalize reasonably well when trained 
and validated on multiple datasets. For instance, 
in Scenario 3b, where the model was trained 
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on a combined dataset (including the Darwin, 
Montgomery, and Shenzhen datasets) and fine-
tuned, the model achieved a robust performance, 
with a Dice coefficient reaching 99.16%. This 
demonstrates that the U-Net architecture can 
handle a variety of lung conditions and achieve 
a high segmentation accuracy across different 
sources of data. The results are comparable to those 
obtained for larger and more complicated models. 

Scenarios 1 and 2 highlighted the limitations of the 
model when trained on a dataset containing only 
normal and tuberculosis cases and then tested on 
datasets featuring viral and bacterial pneumonia. 
The model performance was significantly lower 
(a Dice coefficient under 90%) in comparison 
with other scenarios, illustrating the challenge 
of achieving generalization when training on a 
limited spectrum of lung diseases. This suggests 
that training on a more diverse dataset is crucial for 
creating a model capable of effectively handling 
real-world cases where multiple and overlapping 
pathologies are present.

6.2 Effect of Image Preprocessing on 
Segmentation Performance 

Various image preprocessing techniques were 
applied to the employed datasets, such as CLAHE, 
Gaussian, and Laplace filters, to evaluate their 
impact on the segmentation performance. While 
the CLAHE filter significantly improved contrast 
in underexposed images, its benefits were marginal 
for images with an already good contrast. In 
some cases, excessive contrast enhancement 
introduced artifacts, making lung segmentation 
more challenging. And although Gaussian filtering 
effectively removed noise, excessive smoothing led 
to the loss of critical anatomical structures, such 
as small lesions or fine airway details. This was 
particularly problematic for images depicting lung 
diseases, where fine differences in lung opacities 
were crucial for segmentation. Further on, while 
Laplacian filtering helped enhance lung edges, 
it sometimes overemphasized certain structures, 
leading to false boundary detection. This was 
especially problematic in cases where lung opacity 
due to diseases (e.g. pneumonia) blurred the natural 
boundaries, causing the filter to highlight artifacts 
rather than meaningful structures.

Applying CLAHE, Gaussian filtering, and 
Laplacian filtering to each 256×256 image 
added an extra computational load. Although the 
resizing step reduced the dataset’s complexity, 

the additional preprocessing operations slightly 
increased the overall data pipeline runtime.

Future work should focus on augmentation 
techniques such as rotation, flipping, or synthetic 
data generation to enhance model generalization 
ability rather than relying solely on preprocessing.

While the filters slightly improved the model’s 
performance in some scenarios, the overall 
effect was marginal. Since convolutional layers 
inherently learn contrast and edge features, 
external preprocessing appears to be redundant 
when sufficient training data is available. These 
findings suggest that a more effective approach 
would be to focus on dataset diversity rather than 
on fixed preprocessing pipelines.

6.3 Performance Across  
Different Datasets

The model’s performance varied across datasets, 
particularly with tuberculosis cases. In Table 
2, it can be noticed that the Dice coefficient 
for tuberculosis cases was significantly lower 
(82.98% for the Montgomery dataset and 91.51% 
for the Shenzhen dataset) in comparison with other 
cases like normal lungs (98.48%) or pneumonia 
cases (97.04%). The lower model performance 
for tuberculosis cases is probably due to its 
underrepresentation among the training data. To 
improve model performance on underrepresented 
conditions, future work should consider applying 
data augmentation or oversampling techniques to 
balance the analysed dataset more effectively.

6.4 Potential for Clinical Application 

Despite the challenges mentioned above, this 
study demonstrates that the U-Net can be a 
powerful tool for clinical applications in lung 
segmentation. The model’s strong performance 
on diverse datasets, especially in Scenario 3b, 
shows promise for deploying such models in real-
world settings where radiological images vary 
with regard to resolution, quality, pathology and 
manual labelling styles. Accurate segmentation 
is critical for assisting radiologists in diagnosing 
conditions such as COVID-19, pneumonia, and 
tuberculosis, especially when faced with high 
volumes of radiological images that need a rapid 
and consistent interpretation.

However, further improvements are needed 
before deploying the model in clinical practice. 
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Fine-tuning the model’s architecture, addressing 
underrepresented diseases like tuberculosis, and 
validating the model on additional unseen datasets 
could enhance its robustness and reliability.

Several directions for future work arise from this 
study. Addressing the imbalance in the dataset, 
particularly for tuberculosis cases, could improve 
model performance across all disease types. 
Techniques such as synthetic data generation or 
oversampling of underrepresented classes may 
be necessary.  Also, while this study focused on 
X-ray images, expanding the model to handle 
CT scans or incorporate multi-modal inputs (e.g. 
combining X-rays and CTs) could enhance its 
diagnostic capabilities.  

As a future work direction, training an ensemble 
of models instead of a single network in Scenario 
3b could offer multiple advantages. Ensemble-
based pseudo-labelling may enhance the 
supervision level by averaging predictions across 
multiple models, thereby mitigating individual 
biases and improving the consistency of the fine-
tuning process. Additionally, analysing prediction 
variability within the model ensemble would 
enable a more reliable pixel-wise uncertainty 
estimation, offering deeper insights into model 
confidence. Finally, ensemble learning could 
further improve a model’s generalization ability, 
potentially leading to smoother and more robust 
segmentations, especially in anatomically complex 
or ambiguous regions.

Also, to improve consistency across diverse 
pathologies, a promising future direction is to train 
the model to focus on core anatomical structures 
of the lungs rather than on pathology-specific 
features, using augmentation techniques and 
adversarial training to promote robustness against 
disease-induced variability.

In conclusion, while the U-Net architecture shows 
strong potential for lung segmentation in various 
pathologies, further refinement is required to 
ensure a reliable performance across all disease 
types and in diverse clinical environments.

The key takeaways of the proposed approach are as 
follows: fine tuning with pseudo-labels improves 
model generalization (+3% DS) without increasing 
model complexity, dataset diversity is more 
impactful than preprocessing for achieving high 
segmentation accuracy and fixed preprocessing 
techniques (CLAHE, Gaussian, Laplacian) 
provided minimal improvements in some cases.

The findings of this study highlight the 
U-Net architecture’s strong potential for lung 
segmentation across diverse chest X-ray 
(CXR) datasets, particularly in cases involving 
tuberculosis, pneumonia, and COVID-19. 
However, the challenges related to the model`s 
generalization ability and performance observed in 
various training-testing scenarios underscore the 
importance of comparing this approach with other 
strategies aimed at improving the segmentation 
quality through a better label generation.

Self-training using model-generated pseudo-labels 
could improve model performance on unlabelled 
data and enhance a model`s ability to generalize 
for unseen data, potentially raising the Dice 
coefficients above 90%. The obtained fine-tuning 
results on harmonized datasets (the Darwin, 
Montgomery, and Shenzhen datasets) suggest 
that domain adaptation and further fine-tuning can 
mitigate model performance discrepancies across 
diverse datasets.

Additionally, employing advanced data 
augmentation and synthetic data generation (e.g. 
GANs, diffusion models) (Sundaram & Hulkund, 
2021) may address data variability. Although this 
was not the focus of this study, architectures such 
as Attention U-Net or transformer-based models 
(e.g. TransUNet) (Mahmud Auvy et al., 2024; Lin 
et al., 2022) can also be utilized for integrating 
clinical metadata or additional imaging modalities.

7. Conclusion

The obtained results challenge the common belief 
that improving segmentation models always 
requires larger models. Instead, this paper shows 
that fine-tuning on consistent pseudo-labels can 
significantly improve model performance results. 
The proposed approach is scalable, meaning it can 
be applied to new datasets without increasing the 
computational costs.

Future enhancements for a better model 
performance could include the implementation 
of data augmentation techniques (elastic 
deformations, adversarial augmentations) instead 
of static preprocessing, the use of transfer 
learning and domain adaptation to improve the 
model`s cross-dataset generalization ability and 
leveraging semi-supervised learning to reduce the 
dependence on large manually annotated datasets.
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