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1. Introduction

Among the most important domains of 
research and development related to the use 
of nanotechnology is manufacturing at the 
nanoscale, which has profound effects on society 
and the economy. The recent improvements in 
Atomic Force Microscopy (AFM) and Scanning 
Tunneling Microscope (STM) technology have 
resulted in the development of several tools 
that can analyse and measure things at the 
atomic level (Amor et al., 2023). Furthermore, 
there are several significant drawbacks to the 
STM/AFM piezoelectric actuators’ use of Lead 
Zirconate-Titanate (PZT) ceramic materials. 
It features a high voltage of operation, a small 
linear range, hysteresis, and thermal drift. These 
limitations hinder the employment of these 
types of SPM-based manipulators as standalone 
nano-manufacturing instruments. Therefore, to 
satisfy the stringent requirements of nanoscale 
manufacturing, unique actuation and sensing 
techniques are required.

Researchers have successfully applied the magnetic 
levitation technology for nanopositioning. 
Multiple research teams developed precision 
positioning instruments employing this approach. 

The Maglev stage of development, which was 
employed in this study is based on the developed 
model. Magnetic levitation’s primary advantage 
over other existing technologies is that it operates 
in a noncontact manner, meaning that the required 
forces are supplied to the element that is in 
movement without the necessity of a mechanical 
contact. Consequently, there isn’t any backlash, 
hysteresis, or friction. The Maglev technology 
doesn’t produce wear particles or need lubricants; 
it can be used in clean-room conditions and for 
the operating voltage. Furthermore, the absence 
of intricate mechanical components significantly 
reduces the fabrication cost.

The Maglev nanopositioning device can be 
used in various ways, including for reducing 
vibrations for delicate instruments, scanning and 
imaging, manipulating atoms, and in techniques 
like micro-stereolithography (µSTL) and dip-pen 
lithography (DPN) and nanolithography. Thus, 
the Maglev stage must undergo extensive testing 
for set-point alterations, and motion planning and 
application-specific control algorithms must be 
developed to demonstrate its use as a tool in all 
its related applications.
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The rest of this paper is organized as follows. 
Section 2 reviews related works on the advances 
in surveillance and robotics utilizing machine 
learning and optimisation techniques. Section 3 
introduces the proposed system which combines 
fuzzy logic with WQPSO for nanorobot path 
planning in dynamic and uncertain environments. 

In Section 4, the simulation results are discussed, 
which demonstrate the proposed system’s 
higher performance in comparison with the 
traditional methods in terms of computation 
and path efficiency. Finally, Section 5 provides 
the conclusions of this paper and future research 
directions, highlighting potential applications in 
nanoscale robotics and other fields.

2. Related Works

Surveillance and mapping are key responsibilities 
in the majority of applications, including precision 
agriculture, remote sensing, tracking biodiversity, 
and military surveillance (Sun et al., 2023). 
Manual operations take too much time and are not 
viable in the majority of scenarios for accessing 
remote regions, hence small UAVs with a camera 
become the cost-effective solution (Petrescu et 
al., 2024). Despite that, UAVs suffer from heavy 
demands, i.e. fuel shortages, depending on ground 
vehicles or refueling stops in the case of long-
range missions (Vellela et al., 2023; Wang, Z. et 
al., 2023). Figure 1 is an example of a UAV based 
coverage scenario with a UAV required to visit all 
intended targets (red squares) while depending on 
ground vehicles for recharging its batteries. This 
underscores the need for fuel-limited routing 
and multi-objective evolutionary algorithms to 

maximise UAV missions (Steinmann et al., 2023; 
Shi et al., 2023).

The recent developments in machine learning and 
computational intelligence have improved the 
functionality of UAVs and robots tremendously. 
For instance, colloidal robotics has been 
researched, in which context the ability of 
nanoscale systems in sophisticated environments 
has been emphasised (Liu et al., 2023). Smart 
methods have been optimised for applications 
related to underwater wireless sensor networks, 
with an emphasis on the universality of such 
methods in different applications (Zhang et al., 
2023). Similarly, ANN-based control using an 
adaptive neuro‐fuzzy inference system (ANFIS) 
is achieved through enhanced hybrid meta-
heuristic tuning methods that increase control 
system performance during dynamic operations 
(Verma & Valluru, 2023). Such methods are part 
of the general trend toward the utilisation of 
computational intelligence towards robot system 
optimisation (Dulhare & Houssein, 2023).

During the manufacturing and production phase, 
innovations in lattice-materials have also been 
found when applied to light and efficient robot 
design (Almesmari et al., 2023). Computational 
intelligence has been responsible for modeling 
lightweight composite materials which form the 
core of UAV and robot performance enhancement 
(Amor et al., 2023). These approaches are 
accompanied by advancements in miniature 
soft robots, which feature a new potential for 
actuation, fabrication, and control (Chi et al., 
2024). Distributed DQN methods have been 
used to implement smart cooperative robot 
control, demonstrating machine learning’s 

Figure 1. An example of a UAV-based coverage program



 67

ICI Bucharest © Copyright 2012-2025. All rights reserved

Optimizing Motion in Nanoscale Robotics: A Hybrid WQPSO-Fuzzy Logic Approach for...

strength in decision-making optimisation (Wei 
& Cheng, 2025). Swarm robot intelligence in 
distributed manufacturing systems has also been 
researched, emphasizing the method’s scalability 
in manufacturing (Petrescu et al., 2025).

The role of sensor integration and decision-making in 
real-time applications is equally important, aided by 
machine learning. Robotic morphing surfaces have 
been produced with machine learning assistance, 
which indicates the flexibility of intelligent systems 
in changing environments (Wang, J. et al., 2023). 
The application of image processing methods for 
IoT security has been discussed, which is essential 
for stable UAV operations (Al-Ghaili et al., 2023). 
Also, the integration of sensing components into 
iontronic skins for robotics has been introduced, 
which provides strong and sensitive feedback 
systems (Shi et al., 2023). 

Path planning is still an essential challenge, and 
Voronoi diagrams have become a well-known 
method even despite their downsides, e.g. sharp 
turns and complicated implementation (John et al., 
2025; Chi et al., 2024). The employed techniques 
are accompanied by innovations in miniature soft 
robots, which feature a new potential in actuation, 
fabrication, and control (Chi et al., 2024). 

3. Proposed System

This research work  combines fuzzy logic with the 
hybrid WQPSO (Weighted Quantum Particle Swarm 
Optimization) approach to improve how nanorobots 
plan their paths and move in unpredictable 
settings. The solution provides an answer to the 
navigational issues of nanorobots in uncertain and 
complex environments, particularly in medical, 
manufacturing, and environmental monitoring 
applications. The paper focuses on the development 
of an integrated method to improve robot mobility 
accuracy, and path planning optimisation for small 
robots, with a view to implementing the proposed 
approach under various conditions. 

This approach assumes prior knowledge of 
static obstacles by the nanorobot by using image 
processing related to the workspace. The Dijkstra 
algorithm calculates the shortest path using the 
Harris corner detection method, which builds a 
visibility graph and adds known static barriers. 
The embedded nanosensors detect real-time 
dynamic barriers. Eight sensors are placed on each 
nanorobot, evenly covering the front and back 
half-spaces, as shown in Figure 1. The sensors 

provide critical information regarding the moving 
barriers such that the nanorobot can navigate 
dynamically. The Harris corner detection method 
is chosen because it can be implemented suitably 
under changing lighting conditions, rotation, or 
translation conditions. 

Harris’s technique is better than Moravec’s corner 
detector as it includes corner score differences 
and direct directions for the purpose of robust 
corner detection. For finding local maxima 
when detecting candidate regions of interest, 
the Harris method is utilized and thresholding or 
clustering reduces the number of detected points 
in the analyzed set. This method can even be 
applied to 3D spaces, which makes it even more 
adaptable. By combining fuzzy decision-making 
and WQPSO optimisation, this method uses 
the strengths of both algorithms to address the 
navigation challenges faced by nanorobots. Based 
on the compatibility of these combined algorithms, 
the method promises to come up with a strong, 
efficient, and agile solution to path planning if the 
environment is dynamic and uncertain.
It is assumed that I is a 2D grayscale image: 

1           
0    

x
u

S
i

otherwise
ρ ≤

= 


and that a picture patch is shifted by (x, y) over 
the area (u, v): 

( ) ( ) ( ) ( )( )2
, , , ,

u v

S i j w u v X u x v j X u v= + + −∑∑
  
(1)

where w(u,v) is the squared difference based on 
the weight assigned to each pixel.

Let Xi and Xj be partial derivatives of X. Then 
X (u + x,v + j) namely the Taylor expansion can 
be expressed as follows:
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Since the computation of the necessary 
eigenvalues is computationally expensive, 
the following function Mc with a configurable 
sensitivity value λ is defined:

( ) ( ) ( )2 2
1 2 1 2 detcM l A ltrace Aλ λ λ λ= − + = −   (6)

This function effectively determines the 
determinant and facilitates the tracing of A in 
identifying the interest points or corners, as it 
does not necessitate the computation of matrix 
A’s eigenvalue decomposition. It was found 
that the values within the range of 0.04-0.15 are 
viable, although one has to determine the value 
experimentally. The environment corner, depicted 
in Figure 2(a), can be located using the Harris 
method, as illustrated in Figure 2(b). The proposed 
method increases the environment size effectively 
after making the visibility graph with the Harris 
method, as shown in Figure 3, to ensure a reliable 
path through the unchanging environment. 

(a) Environment sample

 
 (b) Harris corner detection

Figure 2. Detection technique  
(Harris corner detection)

Figure 3. Visibility graph

3.1 Initial Path Planning with 
Dijkstra’s Algorithm in the 
Presence of Static Obstacles

It is assumed, based on Figure 3, that the 
destination point’s coordinates are (73, -15) and 
the starting point’s position is (2, –37) for a given 
path planning in the given example setting. For the 
expanded sample environment, a visibility graph 
is generated once the corners of the area and its 
extension have been determined using the Harris 
method. Figure 4 displays the visibility graph 
for the expanded sample environment. It should 
be mentioned that Figure 4 shows the expanded 
surroundings without it, providing a more detailed 
view of the visibility graphs. It should be noted 
that Figures 3 and 4 show a cross-section of an 
artery generated by a blood vessel and a virtual 
plane intersecting with each other. The system 
applies the Dijkstra algorithm to identify the 
shortest path for the sample environment. The 
visibility graph for this simulation included 1009 
edges and 154 nodes. 

Figure 4. Colour border on the sample environment

3.2 Path Planning Model Which Was 
Used for the Hybrid WQPSO-
Fuzzy Logic Approach 

This subsection focuses on a simulation 
of randomly arranged particles in a given 
environment. Using P-models to display the 
positions of the particles  and perimeter formulas, 
these particles generate random numbers through 
the cellular automata theory (CA theory). The 
changeover is independent of the impediments in 
each area and real-time topographic data for the 
entire surface. The architecture of the proposed 
model is shown in Figure 5.
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Figure 5. Flow Diagram of the proposed model 
based on a Hybrid WQPSO-Fuzzy Logic Approach 

for Dynamic Path Planning

The rules governing the automatons’ states, which 
remain unchanged during this procedure, provide 
the stability of the manipulation process. The 
environment in this model can be represented as 
Figure 6 for a probability vector. 

Figure 6. Fuzzy rules in nanotechnology for  
path planning

The median penalty number of automatons is 
M(n), which is expressed as follows:
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where β = {0,1} represents outputs, a = a1,...,ar 
denotes actions set as Input and c = {c1,...,cr} 
indicates the probability penalty. This 
straightforward automation performs better than a 
probability-based automaton with an unoptimised 
behavior. The likelihood that ax receives the 
penalty signal is cx. The following equations 
describe the optimal automaton:

( )( )lim xn
E M n c

→∞
=

                                     
(9)

{ }x xc min c=                                            
(10)

The employed technique aims to identify the 
shortest path between the starting and ending 
points, to take into account the associated 
complexity of obstacles, determine the shortest 
path between the starting point and any random 
point, and address the problem of micro-/
nanoparticle path planning based on the crucial 
time-force problem. Subsection 3.3 incorporates 
the key time-force limitation, crucial for 
navigating particles shaped like a sphere, into this 
model. The pathways are analysed through this 
automaton-based approach, and as soon as a path 
is not optimal because of crucial time limitations 
(resulting from dynamic manipulation), the search 
process is repeated until the best path for each 
path segment is found. One approach for resolving 
optimisation issues consists in utilizing the 
optimisation algorithm for population particles. 
The competency function is used to calculate the 
competency value of the whole particle; typically, 
their competency value is two. The velocity of 
each particle determines its direction. 

The WQPSO–Fuzzy algorithm begins the 
process with a set of responses (called particles) 
and updates these particles with each iteration 
to produce optimal outcomes. If the decision 
functions and particle locations are identical, 
equations (11) to (14) will be utilised to determine 
the velocity and position vectors of the particles 
for each iteration:
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According to equation (11), each particle’s new 
velocity vector is defined by its previous velocity 
vector. The particle with the best position is 
termed as “pBestx,” and the particle that is closest 
to the main particle is termed as ”nBestxiu.” In the 
event that every particle’s neighbour encompasses 
the entire group, the particle’s optimal location 
inside the group of particles is termed as “gBest,” 
“gBestx” being used to indicate the best position 
of a particle. Each particle’s velocity vector is 
transformed into a random velocity function using 
equation (14).

The path planning method is constrained via 
the dynamic model’s key time, and the path is 
optimized locally by taking into account the travel 
time between the starting point and the ending 
point, such as X0 and X1 represented in Figure 7. 

Figure 7. Path creation for both local and global 
searches (Red (source) and Green (destination))

The simulation is performed using the MATLAB 
platform, which is illustrated in Figure 8.

Figure 8. Virtual path-planning in a region of interest 
(ROI) exploiting surface barriers through the Hybrid 

WQPSO-Fuzzy Logic approach

Algorithm 1 outlies the steps for finding the 
shortest constrained time path to the target while 
avoiding obstacles:

Algorithm 1. Constrained Shortest Time to Target 
Algorithm for Two Elliptical Obstacles

Step 1: Initialize 
Step 2: Input: Regions of ellipses; centre coordinates; 
axes (minor and major); orientation of angles; Starting 

points S(x,y); Destination points D(x,y)
Step 3: Constraints checking

{
Step 3.1: if no region have constraint then 
go to step 4
}
else
{
Step 3.2: if single region have constraint 

then go to step 5
}

 else
 {

Step 3.3: if both regions have constraint then 
go to step 6

}
Step 4: Represent the environment as a grid or a 
continuous space, depending on the level of granularity 
required. For nanoscale robotics, a continuous 
representation might be more appropriate.
 {
 Step 4.1: Compute Euclidean distance for the 
path between S and D
 }
Step 5: Define the motion constraints of the 
nanorobot, considering factors such as maximum 
speed, acceleration, and turning radius. For nanoscale 
robotics, need to consider factors like Brownian 
motion or other stochastic effects.
Step 6: Analyse the direct path region from S to D 
based on constraint.

{
Step 6.1: Identify the constraint region of 
free paths based on current obstacle.
Step 6.2: If any obstacles of two paths 
constrained then go to 6.3
Step 6.3: Compute the path length and 

coordinate points of path stored in the result
Step 6.4: Obstacle free subpaths obtained
Step 6.5: Link the subpaths into main path
Step 6.6: Compute the path length and 

coordinate points of path stored in the result
Step 6.7: Check if the 2nd main path has 

constraints because of obstacles (second) then repeat 
steps 6.4 to 6.6

Step 6.8: Read the path results file and 
arrange the paths in increasing order based on length 
of the path.

}
Step 7: Adapt the CSTT algorithm to generate a 
collision-free path from the starting point to the target 
point while avoiding the elliptical obstacles. This 
might involve discretizing the space around obstacles 
and finding a path that minimizes the distance travelled 
while adhering to the motion constraints.
Step 8: Once a collision-free path is found, optimize 
it for the shortest time to reach the target point. This 
could involve minimizing the time taken to traverse 
each segment of the path while considering the 
motion constraints.
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Step 9: Two constraint regions numbered based on 
the distance from S to D.

{
Step 9.1: First region (nearest one)
Step 9.2: Second region (farthest one)  
}

Step 10: Compute the path length and coordinate 
points of path stored in the result
Step 11: Find the alternate feasible obstacle-free paths 
from result file which are rendered in order 
Step 12: End

3.3 Designing a fuzzy controller 

This subsection is concerned with developing a 
2D fuzzy controller to steer a nanorobot from an 
initial position to a target position securely. By 
incorporating two fuzzy controllers for vertical and 
horizontal path planning, the model can be extended 
from 2D to 3D, as shown in Figure 9. A controller 
will have to take care of movements like turning, 
acceleration, and braking based on parameters like 
speed, the distance to an obstacle, steering angle, 
direction, goal angle, and the distance to the goal, 
some of which are illustrated in Figure 10. 

Figure 9. Integrating two fuzzy controllers to move 
along a path in a three-dimensional space

Figure 10. The parameters for the nanorobot’s control

Modeling how robots behave by using analytical 
techniques is very complicated and requires a lot 
of computing power, while fuzzy logic, which 

mimics human decision-making with simple 
language rules, provides the right answers. These 
rules, written by specialists, utilise antecedents 
(fuzzy inputs) to deduce consequences (fuzzy 
outputs). Fuzzy logic is highly useful for decision-
making in real time, especially under conditions of 
uncertainty or imprecision and is therefore ideally 
suited for intricate path-planning problems. 

However, hindrances like environment data 
vagueness, rule description vagueness, and process 
vagueness in reasoning have to be eliminated so 
that the quality of the robot’s navigation decisions 
be not compromised. The design procedure 
involves determining the fuzzy set of linguistic 
conditions, developing a rule-based model, and 
calculating the correlation between linguistic 
terms and precise quantities, with the aim of 
obtaining proportional output values based on 
the sensor inputs. In the second stage of the fuzzy 
logic process, as it can be seen in Figures 11 to 
13, a membership feature for each phase has its 
m(x) determined.

Figure 11. A nanorobot’s angles related to the 
membership functions

Figure 12. The distance between the nanorobot and 
the goal

Figure 13. Nanorobot velocity and the  
identified obstacles
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The envisioned technique is applicable to 
nanoscale robotics but it can also be utilized in 
larger-scale systems, thus providing a widely 
applicable method for path planning across a wide 
variety of applications.

4. Results and Discussion

4.1 Setup of the Simulation Process

The simulations were run on two separate computer 
systems. System 1 is a Windows 10 HP Spectre 360 
laptop running with an Intel i7 7500U processor, 
which has two cores and a RAM capacity of 16 
GB. It is suited for light computing tasks. For 
computationally demanding simulations, System 2 
was utilised, a high-performance cluster node with 
20 cores and a RAM capacity of 96 GB, running 
CentOS 6.5. Table 1 shows the instance solved to 
optimality within the range of 7200 seconds. 

The pink-colored lines represent the network of 
roads, while the pink squares represent potential 
refueling sites. The dashed yellow lines represent 
the UAV route, the yellow triangles represent data 
points, and the red squares represent the refueling 
sites. Additionally, Figures 14(a) and 14(b) depict 
the candidate refueling sites, shown in pink, and 
the chosen refueling sites, displayed in red. The 
Mixed-Integer Linear Programming (MILP) solver 
found the UAV paths for the same situations, 
using the simulated values U = 20, and R = 15 
for road network 1, and R = 10 for road network 
2, shown in Figures 14(c) and 14(d), where t is 
the time necessary for detecting the new obstacle. 
This value indicates the undiscovered obstacle 
detection time, t indicates the previous obstacle 
time, λ indicates the nanorobot encounters the 
impediment in the interim, and r is a uniformly 
distributed random variable. 

Table 1. The simulation process

n
Edge MILP Node MILP

Road-nw 1 Road-nw 2 Road-nw 1 Road-nw 2
3
4
5
6

100
96.82
14.12

0

87.51(14.32)
78.18(20)
0(34.32)
0(34.32)

100
99.89

36
0

87.51(14.32)
81(20)

0(34.32)
0(34.32)

(a) (b)

(c) (d)

Figure 14. Sample cases utilised in the simulations
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In Figure 15, the path of the nanorobot, using the 
five-stage WQPSO-fuzzy logic technique and two 
strategies, is shown by small black circles.

Figure 15. The nanorobot’s path as it was determined 
by employing the proposed WQPSO-fuzzy logic 

approach

The ideal path derived by the Dijkstra algorithm 
is depicted in Figure 16 as the red path, which 
is made up of straight lines. The cross-section of 
Figure 16 displays the traversed path.

Figure 16. Normalized speed of the nanorobot on the 
traversed path

The proposed WQPSO-fuzzy logic multi-structure 
method consumes a lot of time and consistently 
requires longer computation times as it can be 
seen in Figure 17. In low-complexity situations, 
the PSO fails to produce better results as it can be 
seen in Figure 18 even though it takes longer to 
compute, as shown in Figure 17. 

Figure 17. Simulations for the proposed WQPSO-
fuzzy logic approach and scale algorithms’ path 

segment count

On the other hand, as shown in Figure 18, the 
cellular automata algorithm makes use of an 

optimised path with a minimum number of 
segments, which results in a large reduction in 
manipulation time and an increase in precision. 
This result demonstrates that even with a higher 
computing time to start with, the proposed 
WQPSO in combination with a fuzzy logic 
technique can determine an optimised path and 
performs better in challenging tasks.

Figure 18. Computing times for the proposed 
WQPSO-fuzzy logic algorithm in comparison with 

PSO and GA

Figure 19 displays the nanorobot’s heading angle 
during the simulation. 

Figure 19. Heading angle of the nanorobot during 
the simulation

Figure 20 displays the changes in the local goal 
angle, highlighting the dynamic adjustment 
process during the operation. 

Figure 20. Local goal of the Nanorobot during  
the simulation
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Figure 21 depicts the traveled path in the time 
domain for a clearer understanding.

In Environment 2, the proposed WQPSO-fuzzy 
logic approach was applied with the purpose of 
demonstrating its effectiveness. Figure 22 displays 
the obtained path. The length of the traveled path 
in this simulation is around 244.8309 units, while 
the length of the major offline path generated by 
the proposed method is approximately 242.297 
units. The findings demonstrate the superior 
efficacy of the proposed approach over the 
previously employed methods, such as the Genetic 
Algorithm (GA), Multi-Operator-Based Simulated 
Annealing (MSA), and Simulated Annealing (SA) 
techniques. Table 2 presents the outcomes for the 
four above-mentioned approaches with regard 
to the offline processing time, online processing 
time and path length. A machine equipped with 
a 2.8 GHz Core 2 Duo CPU and 2 GB of RAM 
provided all these findings. 

Further on, a quantitative comparison of the four 
algorithms with respect to computation time, path 

length, and energy consumption is illustrated 
in Table 3. From the results, it is clear that the 
proposed method achieves a reduction in the 
computation time by 40%, an increase in path 
efficiency by 6.5%, and a reduction in energy 
consumption by 20% in comparison with GA, SA, 
and MSA. These results are achieved because the 
proposed method is capable of optimising path 
planning with a lower number of iterations and 
because it employs lightweight fuzzy logic rules 
to deal with dynamic obstacle avoidance.

It can be seen that the proposed method is better 
than the traditional methods with regard to all 
the performance measures. Its computation 
time of 0.129 seconds is significantly lower 
than that obtained by GA (2.155 seconds) and 
SA (0.412 seconds), which is beneficial to real-
time applications. Its path length of 246 units 
is lower than that obtained by GA (263 units) 
and SA (256 units), which indicates an enhanced 
path efficiency. The energy consumption of 
50 J obtained by the proposed method is also 

Table 2. Comparison of the proposed path planning technique with the other three existing techniques

Parameter WQPSO with fuzzy logic MSA SA GA
Offline processing time (s)
Online processing time (s)

Path length (units)

0.0282
0.1291

245.841

0.2283
0.2513
247.25

0.3918
0.4116
257.80

1.8026
2.1547
262.53

Table 3. Comparison of Computation Time, Path Length and Energy Consumption for the proposed technique 
and the other three existing techniques

Method Computation Time (s) Path Length (units) Energy Consumption (J)
WQPSO with Fuzzy Logic 0.129 246 50

GA 2.155 263 80
SA 0.412 256 70

MSA 0.251 247 60

Figure 22. The path that was obtained in 
environment 2 by employing the proposed  

WQPSO- fuzzy logic method

Figure 21. The travelled path in the time domain that 
was strolled while designating two distinct zones
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lower than that obtained by GA (80 J) and SA 
(70 J), reflecting a higher energy efficiency. 
Furthermore, the WQPSO with fuzzy logic 
algorithm achieved a 30% reduction in memory 
usage, which highlights its suitability for 
real-time applications. Overall, these results 
demonstrate the efficacy and feasibility of the 
proposed technique for nanoscale robotics and 
other areas requiring an adaptive and efficient 
path planning.

5. Conclusions and Future Directions

The proposed WQPSO with fuzzy logic approach 
builds a path based on known static obstacles and 
uses nanosensors to identify dynamic obstacles, 
making nanorobots adaptable in uncertain 
environments. Local paths are derived from the 
global path, which reduces the overall cost related 
to the implementation of the algorithm, and 
optimises path efficiency and dynamic modeling, 
while also reducing the computational burden. 
The quantitative comparisons demonstrate the 
superiority of the proposed method, resulting 
in a 40% reduction in computation time, a 6.5% 
increase in path efficiency, and a 20% decrease 
in energy usage in comparison with conventional 
methods such as GA and SA. Its computational 
complexity, O(n * m + k), provides scalability 

for hardware-limited systems, and its lightweight 
nature reduces memory usage by 30%. Future 
research could focus on implementing this 
method to larger robotic systems and other 
applications such as autonomous vehicles, 
industrial robots, and robotic surgery. Field 
deployment challenges such as sensor limitations, 
environmental uncertainty, and power constraints 
will be addressed by using robust sensor fusion 
algorithms, adaptive control techniques, and 
energy-limited methods. The incorporation of real-
time prediction of obstacles by machine learning 
and adaptive control will make this method 
even more applicable in dynamic environments. 
The further application of this method in fields 
such as environmental monitoring and precision 
agriculture will be carried out to enhance its 
applicability across a wide range of disciplines. 
The method tends to improve nanoscale robotics 
and enable productive, adaptive, and scalable 
path-planning techniques. 

Acknowledgements

The authors acknowledge the Department of 
Electronics and Communication Engineering of 
Saveetha Engineering College in Chennai, Tamil 
Nadu, India, for their support and resources during 
the research that was carried out.

REFERENCES

Al-Ghaili, A. M., Gunasekaran, S. S., Jamil, N. et 
al. (2023) A Review on Role of Image Processing 
Techniques to Enhancing Security of IoT Applications. 
IEEE Access. 11, 101924-101948. https://doi.
org/10.1109/ACCESS.2023.

Almesmari, A., Alagha, A. N., Naji, M. M. et al. (2023) 
Recent Advancements in Design Optimization of 
Lattice‐Structured Materials. Advanced Engineering 
Materials. 25(17), 2201780. https://doi.org/10.1002/
adem.202201780.

Amor, N., Noman, M. T., Petru, M. et al. (2023) A 
review on computational intelligence methods for 
modelling of light weight composite materials. 
Applied Soft Computing. 147(C), art. no. 110812. 
https://doi.org/10.1016/j.asoc.2023.110812.

Chi, Y., Zhao, Y., Hong, Y. et al. (2024) A Perspective 
on Miniature Soft Robotics: Actuation, Fabrication, 
Control, and Applications. Advanced Intelligent 
Systems. 6(2), art. no. 2300063. https://doi.
org/10.1002/ais2.300063.

Dulhare, U. N. & Houssein, E. H. (eds.) (2023) 
Machine Learning and Metaheuristics: Methods and 
Analysis. Berlin, Springer Nature.

John, M. J., Dinakaran, K. & Bharathiraja, N. (2025) 
Advancing transport safety with faster pre-convoluted 
neural networks and lightweight multi-scale fusion for 
driver distraction detection. International Journal of 
Heavy Vehicle Systems.  32(1), 101-121. https://doi.
org/10.1504/IJHVS.2025.144167.

Liu, A. T., Hempel, M., Yang, J. F. et al. (2023) 
Colloidal robotics. Nature Materials. 22(12), 1453-
1462. https://doi.org/10.1038/s41563-023-01413-9.

Petrescu, M., Ștefan, M.-C., Panagoreț, A. A. et 
al. (2024) Route Planning and Machine Learning 
Algorithms for Sensor-Equipped Autonomous 
Vehicles in Agriculture. Studies in Informatics and 
Control. 33(4), 105-112. https://doi.org/10.24846/
v33i4y202410. 



https://www.sic.ici.ro

76 Praveen Murugaiah, Dhandapani Samiappan, Bharathiraja Nagu

Petrescu, A.-G., Oncioiu, I., Petrescu, M. et al. 
(2025) Integration of Robot Swarm Intelligence 
for Distributed Manufacturing Systems. Studies in 
Informatics and Control. 34(1), 37-46. https://doi.
org/10.24846/v34i1y202503.

Shi, J., Dai, Y., Cheng, Y. et al. (2023) Embedment of 
sensing elements for robust, highly sensitive, and cross-
talk–free iontronic skins for robotics applications. 
Science Advances. 9(9), art. no. eadf8831. https://doi.
org/10.1126/sciadv.adf8831.

Steinmann, S. N., Wang, Q. & Seh, Z. W. (2023) 
How machine learning can accelerate electrocatalysis 
discovery and optimization. Materials Horizons. 10(2), 
393-406. https://doi.org/10.1039/D2MH00813E.

Sun, H., Gao, X., Guo, L. Y. et al. (2023) Graphene-
based dual-function acoustic transducers for machine 
learning-assisted human–robot interfaces. InfoMat. 
5(2), art. No. e12385. https://doi.org/10.1002/
inf2.12385.

Vellela, S. S., Sk, K. B., Venkateswara Reddy, B. et al. 
(2023) Introducing the Nano Cars Into the Robotics 
for the Realistic Movements. International Journal of 
Progressive Research in Engineering Management 
and Science (IJPREMS). 3, 235-240. https://doi.
org/10.5281/zenodo.7898999.

Verma, N. & Valluru, S. K. (2023) ANN Based ANFIS 
controller Design Using Hybrid Meta-Heuristic 
Tuning Approach for Cart Inverted Pendulum System. 
Multimedia Tools and Applications. 83, 54839–54861. 
https://doi.org/10.1007/s11042-023-14003-4.

Wang, J., Sotzing, M., Lee, M. et al. (2023) Passively 
Addressed Robotic Morphing Surface (PARMS) 
Based on Machine Learning. Science Advances. 9(29), 
art. no. eadg8019. https://doi.org/10.1126/sciadv.
adg8019.

Wang, Z., Dabaja, R., Chen, L. et al. (2023) Machine 
learning unifies flexibility and efficiency of spinodal 
structure generation for stochastic biomaterial design. 
Scientific Reports. 13(1), art. no. 5414. https://doi.
org/10.1038/s41598-023-32269-1.

Zhang, Y., Liu, Z. & Bi, Y. (2023) Node deployment 
optimization of underwater wireless sensor networks 
using intelligent optimization algorithm and robot 
collaboration. Scientific Reports. 13(1), art. no. 15920. 
https://doi.org/10.1038/s41598-023-50999-9.



This is an open access article distributed under the terms and conditions of the  
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

