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1. Introduction

Colorectal cancer (CRC) is a prevalent malignancy 
globally (Morgan et al., 2023), however, its 
incidence can be mitigated through risk factor 
modification and the removal of precancerous 
lesions (Morrow & Greenwald, 2022; Wilhelmi 
et al., 2021; Sullivan et al., 2022). Incorporating 
Artificial Intelligence (AI), especially deep learning, 
into the digestive endoscopy significantly advances 
early CRC diagnosis and treatment, particularly 
with regard to polyp detection. AI systems enhance 
diagnostic capabilities by analyzing large datasets 
of annotated images using deep neural networks 
(Ahmad et al., 2019).

High adenoma miss rates during endoscopy remain 
critical, as various studies indicate that many polyps 

are overlooked even by skilled endoscopists. While 
additional colonoscopies might reduce miss rates, 
conducting repeated procedures is impractical due to 
patient risks, discomfort, and the strain on healthcare 
resources (Jiang et al., 2023; Herszényi, 2019) AI-
assisted colonoscopy has shown its potential to 
enhance polyp detection rates by compensating 
for human error and variability (Barua et al., 2021; 
Shao et al., 2022). However, the development of 
these AI tools involves challenges such as ethical 
considerations regarding patient privacy, consent, 
and adherence to data protection laws when using 
clinical data (Williamson & Prybutok, 2024).

In training recent AI image recognition algorithms 
(Ronneberger, Fischer & Brox, 2015) real clinical 
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Abstract: Colorectal cancer (CRC) incidence can be reduced through the early detection and removal of precancerous 
polyps. Artificial intelligence (AI), especially deep learning, enhances polyp detection during colonoscopy but it often 
faces limitations from small medical imaging datasets. This study investigates whether synthetic and pseudosynthetic 
data-augmented images derived from original datasets can improve AI accuracy in polyp detection. Pseudosynthetic data, 
uniquely derived through augmentation techniques such as flipping, rotation, and contrast adjustment, simulates multiple 
endoscopic examinations of the same patients without subjecting them to repeated invasive procedures, while enabling 
the traceability of the original clinical data. A modified U-Net was trained on various combinations of real, synthetic 
(CycleGAN and diffusion-based), and pseudosynthetic datasets across ten experimental setups and externally validated on 
the CVC-Colon-DB dataset (including 612 images). The combination of real and pseudosynthetic data provided the highest 
model performance (a Dice coefficient of 0.7638, a precision of 0.8979, a recall of 0.7535, and a F1 score of 0. 0.7797). To 
that, when the proposed model employed diffusion-based synthetic data it performed better than when using CycleGAN-
generated data, which demonstrated its superior generalization capability in the former case (with a precision of 0.7488, 
a recall of 0.6695 and a F1 score of 0.8987). The obtained results show that pseudosynthetic data alone can significantly 
improve the generalization capability of the employed model in comparison with simply real data. These findings confirm 
that the augmented and synthetic datasets are valuable tools for enhancing a model’s performance and addressing ethical 
concerns in AI-assisted diagnostics.
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datasets as well as synthetic datasets generated 
through advanced techniques were utilized, 
including GANs (Zhu et al., 2017; Isola et al., 
2017) and diffusion models (Dorjsembe, Pao, & 
Xiao, 2024). Furthermore, an innovative concept 
termed pseudosynthetic data was introduced. 
Although traditional data augmentation 
techniques such as rotations, flips, and contrast 
adjustments are commonly used to enhance 
dataset variability, pseudosynthetic data extends 
beyond these methods by introducing clinically 
meaningful simulations. Specifically, it simulates 
realistic clinical scenarios by presenting the same 
polyp from multiple perspectives under varying 
conditions such as lighting, angle, and focus, 
mimicking repeated endoscopic examinations. 
Pseudosynthetic data maintains traceability to its 
original clinical source, allowing direct linkage 
between the augmented images and real patient 
data. This explicit connection supports validation, 
transparency, and reproducibility, distinguishing 
pseudosynthetic data-based methods clearly 
from conventional augmentation methods, where 
augmented images often lack clinical relevance or 
identifiable connections to the original data.

By augmenting the existing datasets in this 
clinically relevant manner, pseudosynthetic 
data simulates repeated endoscopic procedures 
without subjecting patients to multiple invasive 
colonoscopies within a short timeframe - a 
practice generally not recommended (van Liere 
et al., 2023; Chen et al., 2022). This approach 
addresses ethical and practical concerns associated 
with repetitive clinical procedures, enhances 
data complexity and diversity, and significantly 
improves model generalization. Additionally, 
pseudosynthetic data can be extended to other 
endoscopic procedures and various medical data 
types, including numerical datasets.

While deep learning in medical imaging is well-
studied, the specific role of augmented and 
synthetic data in enhancing diagnostic accuracy 
for colon polyps remains underexplored. This 
study evaluates the impact of synthetic data 
and pseudosynthetic data – a term for data 
that simulates image variability as if obtained 
from multiple endoscopies – on enhancing the 
diagnostic accuracy of deep learning models for 
colon polyp detection. Specifically, this paper 
investigates whether pseudosynthetic and synthetic 
data effectively address challenges related to data 
scarcity, lack of diversity in real-world datasets, 

and ethical concerns regarding patient privacy in 
AI-assisted diagnostics. Furthermore, it is assessed 
whether synthetic data generated via diffusion 
algorithms demonstrates a superior performance 
in comparison with  GAN-generated data.

The remainder of the paper is as follows. Section 
2 describes the utilised datasets, it outlines the 
training of a U-Net, and presents the experiments 
which were carried out using different mixes of 
real, pseudosynthetic and synthetic data. Section 
3 presents the quantitative outcomes of seven 
distinct training experiments. Further on, Section 
4 addresses the challenge posed by limited, 
ethically obtainable colonoscopy images and 
evaluates how data augmentation and synthesis 
mitigate that constraint. Finally, Section 5 
synthesizes the insights of this paper, namely that 
enlarged, diversity-rich training datasets resolve 
data-scarcity and privacy constraints, the models 
trained with pseudosynthetic images achieve 
the highest improvements and diffusion-based 
synthesis surpasses GAN-derived datasets.

2. Materials and Methods

2.1 Data Sources, Preprocessing  
and Augmentation

Experiments were conducted using real 
and synthetic polyp datasets, along with 
pseudosynthetic datasets as detailed below.

The Kvasir-SEG dataset contains 1,000 polyp 
images with the corresponding ground truth 
masks, with resolutions ranging from 332×487 to 
1920×1072 pixels (Jha et al., 2019) The PolypGen 
dataset includes colonoscopy images from six 
centers, involving over 300 patients, totaling 
3,762 annotated polyp labels verified by six senior 
gastroenterologists, and features both single-frame 
and sequential data (Ali et al., 2023).

Synth-Colon was employed, too, a synthetic 
dataset comprising 20,017 realistic images 
generated using CycleGAN in conjunction 
with the Kvasir dataset (Zhu et al., 2017; Isola 
et al., 2017) Additionally, synthetic datasets of 
20,000 polyp images were generated using a 
diffusion-based semantic polyp synthesis method 
- Denoising Diffusion Probabilistic Models 
(DDPM) guided by 5,000 masks. These synthetic 
images augment both the volume and diversity 
of the training data, aiding in the development 
of robust and generalizable models (Dorjsembe, 
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Pao & Xiao, 2024; Ho, Jain & Abbeel, 2020) 
A flowchart representing the synthetic image 
generation is displayed in Figure 1.

Figure 1. Generation of synthetic data

Before training the U-Net model, several pre-
processing steps were implemented. To maintain 
consistency in input dimensions, all images were 
resized to 256×256. The images were normalized 
by dividing the pixel values by 255.0, thereby 

scaling the pixel values to the range of [0, 1]. 
All masks were converted to single-channel 
grayscale images so that pixel values above 127 
are considered as belonging to the polyp class and 
values below 127 are considered as belonging 
to the background. Since this is known to lead 
to class imbalance and to enhance the model’s 
generalizability and robustness, the image-mask 
pairs in the real datasets (Jha et al., 2019; Ali et al., 
2023) were subject to the augmentation techniques 
presented in Table 1 below.

Seed synchronization was implemented so that 
the image and the mask undergo the same spatial 
transformations by resetting the random seed. 
This, in turn, preserves the alignment between the 
polyp region in the mask and its corresponding 
region in the image.

This augmented dataset, called pseudosynthetic 
data, provides a more comprehensive 
representation of possible variations in the input 
data. Finally, both images and masks are converted 
into tensors to match the input requirements of the 
deep learning framework. This step preserves the 
alignment and dimensions needed by the U-Net 
model. Below in Figure 2 are depicted the possible 
transformations of an image.

Figure 2. Generation of pseudosynthetic data – sample transformations

Table 1. Data augmentation – types of transformations



https://www.sic.ici.ro

80 Ioanovici A.-C., Mărușteri M.-Ș., Feier A. M., Popescu V. F., Ioanovici I., Dobru D.-E.

2.2 Model Training and Evaluation

This study adheres to the reporting standards 
outlined in the Checklist for Artificial 
Intelligence in Medical Imaging (CLAIM) to 
ensure transparency and reproducibility in the 
development and evaluation of the proposed 
polyp segmentation model. Methodological 
choices, including data preprocessing, model 
training, and performance assessment, align with 
the established practices in medical imaging deep 
learning, as recommended by CLAIM and the 
related guidelines (Tejani, Klontzas & Gatti, 2024; 
Bossuyt et al., 2015)

The data was split into training (70%), validation 
(15%), and test (15%) sets to ensure a thorough 
evaluation of the model’s performance (Anon, 
n.d.) The split was performed by setting a specific 
random seed for every experiment, making it easier 
to compare results and reproduce experiments. A 
modified U-Net architecture designed for 256×256 
RGB inputs was employed, which is composed of 
an encoder, a bottleneck layer, and a symmetric 
decoder with skip connections. In the encoder, 
each level consists of two 3×3 convolutional 
layers, each followed by a batch normalization 
layer - a modification in comparison with the 
original U-Net that stabilizes and accelerates 
training by normalizing the activations within each 
batch (Ronnenberger, Fischer & Brox, 2015) The 
model was compiled using the Adam optimizer 
(Kingma & Ba, 2014), with binary cross-entropy 
as the loss function (Ruby et al., 2020). Metrics 
including accuracy, precision, recall, the Dice 
coefficient, Intersection over Union (IoU), and the 
F1 score were employed to evaluate the model’s 
performance (Anon, n.d.).

Callbacks for model checkpointing, early stopping, 
and Tensor Board logging were implemented 
to monitor and enhance the training process 
(Anon, n.d.). The trained model’s performance 
was evaluated on the test set to assess its 
generalizability and effectiveness in segmenting 
unseen data.

This study places particular emphasis on the 
importance of precision-recall as a key metric in 
model evaluation, in addition to more traditional 
metrics. Given the clinical significance of 
accurately detecting polyps while minimizing 

false positives and false negatives, precision-
recall offers a valuable insight into the model’s 
performance, particularly in scenarios with 
imbalanced data, where accuracy alone may not 
provide a comprehensive assessment of the model’s 
effectiveness (Erickson & Kitamura, 2021).

2.3 Qualitative Evaluation

In addition to quantitative metrics, the model’s 
segmentation accuracy was qualitatively assessed 
by a team of gastroenterologists to ensure its 
clinical relevance. The evaluation involved 
three independent reviewers: a practicing 
gastroenterologist (the primary author), a 
senior gastroenterologist with over 15 years of 
experience, and a resident gastroenterologist in 
training. For this assessment, 20 randomly selected 
test images from the dataset were processed 
to generate binary polyp masks. The model’s 
predicted outputs were thresholded to create 
these masks, which were then visually compared 
side-by-side with the corresponding ground truth 
masks and the original endoscopic images. 

Each reviewer independently evaluated the 20 
cases, focusing on the model’s ability to accurately 
delineate polyp boundaries and distinguish 
polyps from surrounding mucosal tissue. The 
segmentation accuracy, as determined by the 
overlap between the predicted and ground truth 
masks, was consistently high, with a mean Dice 
coefficient of 0.91 across the evaluated samples 
(range: 0.89–0.94). The inter-rater agreement 
was assessed using Cohen’s kappa coefficient, 
yielding a value of 0.87, which indicates a strong 
concordance among the reviewers. Discrepancies, 
observed in approximately 10% of cases, were 
primarily attributed to subtle differences in 
interpreting polyp edges in regions with a low 
contrast or irregular mucosal patterns. These 
cases were resolved through discussion, with the 
consensus reached on the model’s performance 
being clinically satisfactory.

Visualizations were generated for five 
representative test images, each displaying the 
original endoscopic image, the ground truth 
mask, and the model’s predicted mask. These 
visualizations, reviewed by the gastroenterologists, 
further confirmed the model’s capability to 
produce precise and clinically interpretable 
segmentations. This qualitative evaluation 
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shows the model`s potential as a reliable tool for 
assisting gastroenterologists in polyp detection 
during endoscopic procedures, as it can be seen 
in Figures 4-7. A flowchart depicting the proposed 
method is displayed in Figure 3.

Figure 3. Flowchart of the proposed method

2.4 Experiments

All experiments were performed using Python 
as a programming language, Google Colab 
environment for implementation. The training 
was performed on a Nvidia A100 High-RAM 
GPU. After training, all the resulting models were 
submitted to external validation using the CVC-
Colon-DB dataset comprising 612 image-mask 
pairs (Bernal, Sánchez & Vilarino, 2012). The 
dataset`s real-world applicability and diagnostic 
utility was validated using several performance 
metrics (precision, recall, the Dice coefficient, 
IoU, and the F1 score) and through external 
validation on the CVC-Colon-DB dataset (612 
image-mask pairs). A gastroenterologist visually 
assessed the segmentation accuracy to ensure 
the clinical relevance of the proposed method. 
Pseudosynthetic data preserved traceability to 
the original clinical source through controlled 
augmentations, while synthetic data underwent 
visual checks for anatomical plausibility.

2.4.1 Real Data (Baseline)

The aim was to establish a baseline performance 
using real-world data, which would serve as 
a foundation for comparison with subsequent 
experimental setups. This experiment included a 
total of 4,762 real images, combining 1000 images 
from the Kvasir-SEG dataset and 3762 images 
from the PolypGen dataset. 

2.4.2 Pseudosynthetic Data

The objective was to assess the model’s ability to 
generalize from an augmented dataset reflecting 
a broader spectrum of conditions than the original 
dataset. Six augmentations were applied to each 
image from the combined Kvasir-SEG and 
PolypGen datasets, resulting in 28,572 images. 
Spatial transformations - flips, rotations, and 
resized crops - were applied to both images and 
masks to mimic variations in polyp appearance. 
Color transformations, brightness, contrast, 
saturation, and hue adjustment were applied only 
to images to simulate different lighting conditions. 
A custom data generator managed image loading, 
preprocessing (resizing and normalization), and 
batch creation for model training.

2.4.3 Synthetic Data (CycleGAN and 
Polyp-DDPM)

The aim was to assess the model’s performance 
when trained exclusively on synthetic data, 
exploring whether it can supplement or replace 
real data when it is scarce or incomplete. The 
Synth-Colon dataset was used, comprising 20,017 
synthetic images generated using the CycleGAN 
model based on the Kvasir dataset. Afterwards, 
one evaluated the U-Net model trained exclusively 
on synthetic data generated using Polyp-DDPM, a 
diffusion-based semantic polyp synthesis method, 
by training on the Kvasir dataset of 1,000 image-
mask pairs for 25,000, 50,000, and 100,000 
epochs. Using 5,000 masks, 20,000 new image-
mask pairs were generated, which were then used 
to train the U-Net model.

2.4.4 Experiments Using Combinations  
of Datasets

a.	 Real and pseudosynthetic data

To assess the expected improvement from adding 
pseudosynthetic data to real data, the U-Net model 
was trained using a total of 33,334 image-mask 
pairs - comprising 4,762 real pairs and 28,572 
pseudosynthetic pairs.

b.	 Real and synthetic data (cGan)

In this experiment the U-Net model was trained 
using the real image dataset and the cGan 
synthetic dataset, for a total of 24,779 pairs of 
images and masks.
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c.	 Real and synthetic data (Polyp-DDPM)

Two experiments were conducted using both real 
and Polyp-DDPM generated datasets. In the first 
experiment, the real dataset was combined with 
synthetic data generated by a model trained for 
25,000 epochs. In the second experiment, the 
real dataset was used along with synthetic data 
from a model trained for 50,000 epochs. In both 
experiments, the datasets consisted of 4,762 real 
images and 20,000 synthetic images.

d.	 Real, pseudosynthetic and synthetic data 
(cGan)

The model’s performance was evaluated when it 
was trained on a dataset consisting of 4,762 real 
images, 28,572 pseudosynthetic Images and 20,017 
synthetic images generated using CycleGAN.

e.	 Real, pseudosynthetic and synthetic data 
(Polyp-DDPM)

In this experiment, the Polyp-DDPM generated 
dataset (image generation model trained for 
25000 epochs) was used along with real and 
pseudosynthetic datasets.

f.	 Real, pseudosynthetic and all synthetic data 
(cGan + Polyp-DDPM)

Finally, the real dataset was combined with 
pseudosynthetic images and synthetic data 
generated by both the CycleGAN and Polyp-
DDPM models (the latter trained for 25,000 
epochs). This resulted in a total of 73,351 image-
mask pairs, which were used for training the 
U-Net segmentation model.

3. Results

3.1 Training on Real Data

The model was set for training for 40 epochs, with 
early stopping activated at epoch 24 to prevent 
overfitting. The final test metrics included a loss 
of 0.1289, an accuracy of 0.9709, a precision of 
0.9003, a recall of 0.7307, a Dice coefficient of 
0.7911, a IoU of 0.6593, and a F1 score of 0.7903.

Figure 4. Qualitative assessment of segmentation 
accuracy – true vs predicted mask (real data)

3.2 Training on Pseudosynthetic Data

When training on pseudosynthetic data, early 
stopping was activated at epoch 24 during the 
training. The model’s evaluation results show 
a test loss of 0.1045, a test accuracy of 0.9787, 
a precision of 0.9212, a recall of 0.8672, a dice 
coefficient of 0.8847, a IoU of 0.7948, and a F1 
score of 0.8950.

Figure 5. Qualitative assessment of segmentation 
accuracy – true vs. predicted mask  

(pseudosynthetic data)

3.3 Training on Synthetic Data (cGan)

The third experiment focused on training the 
model exclusively on synthetic data over 20 
epochs. On the test set, the model achieved a loss 
of 0.0045, an accuracy of 0.9950, a precision of 
0.9954, a recall of 0.9631, a Dice coefficient of 
0.9809, and a IoU of 0.9625.

Figure 6. Qualitative assessment of segmentation 
accuracy – true vs. predicted mask  

(synthetic data – cGan).

3.4 Training on Synthetic Data  
(Polyp-DDPM)

A model was trained to generate synthetic images 
using three different settings and then the U-Net 
model was trained based on each generated dataset 
by the aforementioned generation model. The 
results are as follows:

Test metrics (for 25,000 epochs): a loss of 0.0259, 
an accuracy of 0.9915, a precision of 0.9301, a 
recall of 0.9218, a Dice coefficient of 0.9061, a 
IoU of 0.8289, and a F1 score of 0.9253.

Test metrics (for 50,000 epochs): a loss of 0.0158, 
an accuracy of 0.9952, a precision of 0.9675, a 
recall of 0.9496, a Dice coefficient of 0.9521, a 
IoU of 0.9087, and a F1 score of 0.9589.
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Test metrics (for 100,000 epochs): a loss of 
0.0112, an accuracy of 0.9962, a precision of 
0.9714, a recall of 0.9633, a Dice coefficient of 
0.9607, a IoU of 0.9245, and a F1 score of 0.9672.

Figure 7. Qualitative assessment of segmentation 
accuracy – true vs. predicted mask  

(synthetic data – Polyp-DDPM)

3.5 Real and Pseudosynthetic Images

For real and pseudosynthetic images, the test 
metrics included a loss of 0.1078, an accuracy of 
0.9783, a precision of 0.9349, a recall of 0.8480, 
a Dice coefficient of 0.8799, a IoU of 0.7875, and 
a F1 score of 0.8832.

3.6 Real and Synthetic Data  
(cGan, Polyp-DDPM )

For the experiment using real and cGan generated 
datasets, the test metrics are as follows: a loss of 
0.0518, an accuracy of 0.9807, a precision of 
0.9305, a recall of 0.7284, a Dice coefficient of 
0.7312, a IoU of 0.6559, and a F1 score of 0.7745.

For real and synthetic data (Polyp-DDPM), the 
model was trained using two different settings:

Test metrics (for the model trained for 25,000 
epochs): a loss of 0.0593, an accuracy of 0.9863, 

a precision of 0.9249, a recall of 0.8546, a Dice 
coefficient of 0.8739, a IoU of 0.7778, and a F1 
score of 0.8908.

Test metrics (for the model trained for 50,000 
epochs): a loss of 0.0415, an accuracy of 0.9899, 
a precision of 0.9503, a recall of 0.8888, a Dice 
coefficient of 0.9075, a IoU of 0.8326, and a F1 
score of 0.9142.

3.7 Real, Pseudosynthetic,  
Synthetic Data

For the combination of real, pseudosynthetic, 
and cGan data, the values of the test metrics 
were as follows: a loss of 0.0589, accuracy of 
0.9869, precision of 0.9509, recall of 0.8918, Dice 
coefficient of 0.9114, IoU of 0.8386, and F1 score 
of 0.9197.

For the experiment using real, pseudosynthetic, 
and Polyp-DDPM data, the test metrics included: a 
loss of 0.0776, an accuracy of 0.9811, a precision 
of 0.9243, a recall of 0.8450, a Dice coefficient of 
0.8667, a IoU of 0.7681, and a F1 score of 0.8850.

For real, pseudosynthetic, and synthetic (cGan + 
Polyp-DDPM) data, test metrics included: a loss 
of 0.0508, an accuracy of 0.9872, a precision of 
0.9389, a recall of 0.8904, a Dice coefficient of 
0.9018, a IoU of 0.8228, and a F1 score of 0.9116.

The external validation data for all experiments 
is included in Table 2 below. A color gradient is 
employed to visually represent the results of the 
experiments carried out for different metrics.

Table 2. External validation metrics for all experiments. Color map: red indicates a lower performance,  
green a higher performance

Experiment Avg. Dice Score Avg. IoU Precision Recall F1 Score
1. Real Data 0.5824 0.4951 0.8536 0.5792 0.6369

2. Pseudosynthetic Data 0.7429 0.6463 0.8911 0.6481 0.7501
3. Synthetic Data (cGan) 0.1091 0.0828 0.7246 0.0898 0.4944

4a. Synthetic Data (Polyp-DDPM, 25k epochs) 0.6226 0.5243 0.7697 0.6435 0.715
4b. Synthetic Data (Polyp-DDPM, 50k epochs) 0.5219 0.4479 0.7226 0.5119 0.7675
4c. Synthetic Data (Polyp-DDPM, 100k epochs) 0.5623 0.4802 0.8007 0.5469 0.7289

5. Real + Pseudosynthetic Images 0.7638 0.6774 0.8979 0.7535 0.7797
6. Real + Synthetic Data (cGan) 0.6548 0.576 0.8909 0.6393 0.6929

7a. Real + Synthetic Data (Polyp-DDPM, 25k epochs) 0.6593 0.5763 0.8776 0.6506 0.6882
7b. Real + Synthetic Data (Polyp-DDPM, 50k epochs) 0.6314 0.5589 0.9069 0.6133 0.6681

8. Real + Pseudosynthetic + cGan Data 0.7488 0.6695 0.8987 0.7299 0.7774
9. Real + Pseudosynthetic + Polyp-DDPM Data 0.7319 0.6465 0.8963 0.7227 0.7511

10. Real + Pseudosynthetic + cGan + Polyp-DDPM Data 0.7499 0.6687 0.8949 0.7344 0.7675
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4. Discussion

Performing multiple colonoscopies on the same 
patient within short intervals is impractical 
due to ethical concerns, patient safety, and the 
invasive nature of the procedure. Frequent 
colonoscopies carry risks like bowel perforation, 
infection, and patient discomfort. Moreover, 
there’s limited clinical need for short interval 
repeat colonoscopies, as significant pathological 
changes, such as polyp growth or morphological 
alterations, typically occur over longer periods 
(Rognstad et al., 2024; Zhang et al., 2021). While 
back-to-back colonoscopies are occasionally 
performed for immediate reassessment, 
images from successive procedures often show 
minimal differences, leading to a limited dataset 
variability. Since the polyp morphology and 
surrounding mucosa remain largely unchanged 
over short periods of time, this redundancy can 
hinder the development of machine learning 
models, which require diverse and representative 
datasets to perform accurately. Pseudosynthetic 
data, derived from the augmentation of real-
world colonoscopy images, provides a solution 
to this challenge. By applying augmentation 
techniques, pseudosynthetic data introduces 
controlled variations to the original images while 
preserving the clinical characteristics of the source 
data. This process enhances the diversity of the 
dataset, simulating conditions that could occur in 
future colonoscopies without requiring additional 
invasive procedures to be performed on patients. 
Consequently, pseudosynthetic data allows for 
the creation of robust models that are trained to 
recognize a broader range of polyp appearances, 
while maintaining the traceability and clinical 
relevance of the original images. Synthetic data 
generated using GANs or diffusion models, though 
effective in increasing the diversity of datasets, 
lacks this traceability. Such models are trained on 
real data but produce entirely novel images that 
cannot be traced back to specific instances in the 
original dataset. This decoupling from the source 
data raises concerns about the interpretability 
and validation of the generated data, as it cannot 
be directly attributed to any real-world image 
or clinical case. Pseudosynthetic data offers a 
distinct advantage over purely synthetic data due 
to the traceability which allows a direct reference 
to original clinical images. Optimal traceability 
facilitates regulatory approval, transparency with 
regard to data origin, reproducibility of results, and 

accountability with regard to model validation. It 
also supports clinical adoption by improving trust 
in AI outputs, as the models trained with traceable 
data can be validated against real-world scenarios,  
thereby addressing key compliance and ethical 
concerns in AI assisted diagnostics.

The choice between pseudosynthetic and synthetic 
data depends largely on the designed application. 
If traceability, clinical relevance, and regulatory 
approval are priorities, then pseudosynthetic data 
is preferable due to its verifiable connection to 
real-world images. It’s safer and more reliable 
when clinical decision-making is at stake because 
one can always refer back to the original patient 
data. On the other hand, if the goal is to build 
robust machine learning models that can handle 
a wide variety of cases, including rare or extreme 
examples, synthetic data can be very valuable. 
It allows for a broader generalization and better 
model training, but with the risk that some of 
the generated data may not be clinically relevant 
or reliable. There are multiple models that can 
be trained to detect polyps from colonoscopy 
images. In this paper the U-Net was analysed as 
it was specifically designed for medical image 
segmentation. Its architecture, with a contracting 
path for context capture and a symmetric 
expanding path for precise localization, makes it 
well-suited for tasks like polyp detection, where 
both the global context and local details are very 
important. U-Net-based models produce high-
quality results even when trained on relatively 
small datasets, an important advantage in medical 
imaging, such as digestive endoscopy, where 
annotated data can be scarce and expensive to 
obtain. Its effectiveness has been widely validated 
across numerous studies. (Moreu, McGuinness & 
O’Connor, 2022; Kundu et al., 2022; Yousef et 
al., 2023). 

In the field of medical diagnostics, synthetic 
data generation has become a pivotal strategy 
for enhancing machine learning model training, 
particularly when real-world data is limited. For 
example, Matei et al. (2023) developed a method 
for creating synthetic datasets using computational 
fluid dynamics (CFD) simulations to estimate 
blood pressure drops in aortic stenosis cases. By 
customizing a generic aortic valve model across 
various anatomical parameters, they generated 
diverse yet physiologically plausible valve shapes, 
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enabling the training of ML models for an accurate 
pressure drop estimation without relying on actual 
patient data. Similarly, Nawroly et al. (2024) 
addressed data scarcity in dysarthric speech 
recognition by employing a two-stage transfer 
learning approach that combines category-specific 
noise augmentation with speaker-specific data 
augmentation. This method effectively increased 
the volume and diversity of training data, leading 
to a notable reduction in the Word Error Rate, 
particularly among the severely affected dysarthric 
speakers.  This study on colon polyp detection 
used diffusion-based models (Polyp-DDPM) 
to generate synthetic polyp images, expanding 
the training dataset and addressing limitations 
associated with data scarcity and diversity. This 
approach aligns with the principles demonstrated 
by Matei et al. (2023) and Nawroly et al. (2024) 
underscoring the efficacy of synthetic data in 
developing robust, generalizable ML models in 
medical diagnostics.

Overfitting is a concern in deep learning, 
especially when dealing with limited datasets 
typical in the medical imaging domain. It occurs 
when a model learns the details and noise in the 
training data to such an extent that it negatively 
impacts on the performance of the model on 
new data. This is particularly problematic for 
tasks like polyp detection from colonoscopy 
images, where the model’s ability to generalize 
to unseen data is required for its clinical utility. 
Pseudosynthetic and synthetic data were used 
to combat overfitting by introducing additional 
variability that mimicked real-world conditions. 
This variability prevented the model from 
memorizing specific image patterns, which led to 
promoting the learning of more general features 
that are indicative of polyps. The implementation 
of early stopping mechanisms was another way 
to limit overfitting. By monitoring the validation 
loss and halting the training process when no 
improvement was observed for 10 epochs, the 
model was protected from the risk of becoming 
overly attuned to the training data and reached the 
right balance between learning from the data and 
maintaining the ability to perform well on new, 
unseen data.

The model trained on pseudosynthetic data 
showed good generalization capabilities and 
was able to capture the essential features of the 

polyps effectively, even on unseen data. Training 
solely on CycleGAN-generated synthetic data 
leads to high test performance, but the poor 
generalization to external validation data indicates 
a severe overfitting issue. The model apparently 
learns artifacts specific to synthetic images and 
struggles to translate this knowledge into real-
world data. The diffusion-based synthetic data 
led to a better generalization capability than 
CycleGAN, but it still underperforms with regard 
to external validation in comparison with real 
or augmented data. This suggests that diffusion 
models create higher-quality synthetic images, but 
further tuning might be needed to ensure that the 
synthetic data mimics real-world variability more 
accurately. The inclusion of synthetic data allows 
for a significant improvement in both training and 
generalization in comparison with  baseline data, 
whereas combining real and pseudosynthetic data 
leads to better results than the ones obtained in the 
other training experiments. Synthetic data helps to 
enhance model performance, but it cannot replace 
real data alone. While synthetic data is useful for 
improving model training results, care must be 
taken to avoid overfitting to synthetic features, 
as it was the case with the external validation 
results for the CycleGAN-only training. Further 
research should explore how to refine synthetic 
data generation techniques to better reflect real-
world variability.

Mode collapse is a common issue in Generative 
Adversarial Networks (GANs) where the 
generator, instead of producing diverse outputs, 
repeatedly generates limited variations of a 
few specific outputs. This occurs because the 
generator learns to focus on producing examples 
that repeatedly fool the discriminator, but these 
examples represent only a small portion of the 
overall data distribution. As a result, the generator 
fails to capture the full diversity of the target data, 
leading to outputs that lack variety. This problem 
can be particularly detrimental for tasks where 
diversity is essential, such as image generation 
or data synthesis. When mode collapse happens, 
the model essentially “cheats” by sticking to a 
few types of data points that consistently trick the 
discriminator, rather than learning the complete 
distribution of the dataset. Several techniques, 
such as improving the training dynamics 
between the generator and discriminator, by 
using regularization, or employing different 
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loss functions, have been proposed to mitigate 
mode collapse, but it remains a challenge in 
GAN development (Su et al., 2021). Based on 
the analysis carried out, CycleGAN-generated 
data faced challenges related to mode collapse, 
producing limited variations that reduced dataset 
diversity and led to overfitting. This lack of 
variability caused the model to learn synthetic 
artifacts and not clinically relevant features, 
which weakened its generalization ability for 
external datasets. In contrast, diffusion-based 
models generated more diverse and anatomically 
realistic samples and better mimicked real-
world variability. These improvements enhanced 
model robustness and supported a more reliable 
performance in external validation. The recent 
progress in diffusion-based models has overcome 
the mode collapse issue, producing diverse, high-
quality images that outperform GANs. However, 
despite its effectiveness in generating varied 
images, this method incurs high computational 
costs for training and inference (Durall et al., 
2021). Diffusion based data generation required 
approximately 2 times more computational 
resources (determined time-wise) than GANs due 
to the iterative denoising steps involved in sample 
generation. To scale this method in resource-
constrained environments, it is recommendable 
to make use of pre-trained diffusion models for 
transfer learning, a reduced resolution training, 
and distributed computing frameworks. These 
approaches can lower the computational costs 
while preserving model performance. The external 
validation dataset CVC-Colon-DB was selected 
due to its widespread use in polyp segmentation 
research and its inclusion of diverse polyp 
shapes, sizes, and textures. However, it may 
not fully capture the heterogeneity observed in 
clinical settings, particularly variations related 
to patient demographics, endoscopy equipment, 
or imaging protocols. This limitation highlights 
the need for future studies to validate models 
using multicenter datasets to ensure a broader 
generalizability and clinical applicability. In 
this paper a modified U-Net architecture was 
employed, which was chosen for its proven 
efficacy in medical image segmentation. Although 
suitable as a baseline model, other architectures 
(e.g. transformers or attention-based models – 
attention-based U-Nets) might achieve a better 
performance or show different responses to 

synthetic and pseudosynthetic data. Comparing 
multiple architectures would be a valuable step 
toward more complex conclusions, which are 
architecture-neutral.

Moreover, in recent years, several studies have 
explored the use of synthetic data to enhance 
polyp detection and segmentation in colonoscopy 
images. For instance, Shin et al. (2018) used 
conditional adversarial networks to generate 
synthetic polyp images from normal colonoscopy 
images, improving polyp detection performance 
by augmenting the training datasets with realistic 
polyp appearances. Similarly, Haugland et al. 
(2023) utilized a CycleGAN-based framework to 
translate white-light imaging (WLI) to synthetic 
narrow-band imaging (SNBI), enhancing polyp 
detection by leveraging the improved visibility 
of polyps in NBI. These approaches highlight 
the potential of synthetic data in addressing data 
scarcity and improving model performance in 
medical image analysis. 

Future research should focus on integrating 
additional capabilities into U-Net models, 
such as real-time pathology detection when 
incorporated into endoscopy systems. This 
would enable endoscopists to receive immediate 
feedback or alerts for the polyps detected during 
live procedures, significantly enhancing the 
clinical workflow. Beyond polyp detection, 
there is a substantial opportunity to extend 
the application of AI models to post-detection 
tasks, including polyp classification (e.g as 
benign vs. malignant), size estimation, and even 
recommending optimal treatment pathways 
based on the detected abnormalities. 

5. Conclusion

This study is among the first to systematically 
evaluate the impact of synthetic data and 
pseudosynthetic data—a term referring to data 
that simulates image variability as if obtained 
from multiple endoscopies—on enhancing the 
diagnostic accuracy of deep learning models for 
colon polyp detection. This paper investigated and 
confirmed the potential of pseudosynthetic and 
synthetic data as effective tools for addressing the 
scarcity and lack of diversity typical of real-world 
datasets, for enhancing model generalization 
through data augmentation, and addressing ethical 
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issues related to patient privacy in AI-assisted 
diagnostic environments. The experiments 
carried out demonstrated that the U-Net model 
performs better when trained on synthetic and 
pseudosynthetic data than when trained solely 
on real data, highlighting the importance of 
extensive and diverse training datasets in the 
field of digestive endoscopy. Notably, models 
trained exclusively on pseudosynthetic data 

outperformed those trained on a mix of synthetic 
and pseudosynthetic sources.

Furthermore, in alignment with the findings from 
other studies, the models trained on synthetic data 
generated using diffusion algorithms showed a 
superior performance in comparison with those 
trained on data produced by GANs.
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