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1. Introduction

Distillation columns are widely used in chemical 
and petroleum processing, serving as a crucial unit 
operation for separating liquid mixtures into their 
components. This separation process is fundamental 
in various industries, facilitating the purification and 
isolation of components from mixtures containing 
two or more substances (Fard et al., 2016).

Vertical cylindrical columns offer a compact and 
space-efficient design, enabling numerous stages 
of vaporisation and condensation within a limited 
footprint. However, controlling the distillation 
column processes poses significant challenges. 
These challenges stem from the system’s inherent 
nonlinearities, its complex multi-input multi-
output (MIMO) structure and the unavoidable 
presence of operational disturbances. Furthermore, 
the inherent uncertainties within the chemical 
process complicate modelling and control efforts 
(Bhattacharjee & Medhi, 2012). 

Distillation columns are energy-intensive, 
consuming roughly one-third of the total energy 
used in chemical plants. Moreover, various studies 

indicate that 40-50% of the energy consumed by 
the petroleum and chemical industries is dedicated 
to distillation processes (Tan & Cong, 2023). 
Enhancing the efficiency of these processes is crucial 
for conserving energy and reducing emissions in 
the chemical industry (Tan & Cong, 2023; Carrasco 
et al., 2021). However, achieving this requires 
effective modelling and control methods.

To mitigate control interactions, decoupling 
strategies are implemented (Haji Haji & Monje, 
2019). Achieving an optimal system performance 
requires the precise tuning of controller gains. 
In this study, a genetic algorithm (GA) is 
employed to identify the optimal gain set for 
these controllers. The optimization process is 
guided by objective functions such as the Integral 
Absolute Error with Control Signal (IAEU) and 
the Integral Time-weighted Absolute Error with 
Control Signal (ITAEU), which are employed 
to select the most effective controller gains. The 
performance of the controllers within the proposed 
system is evaluated based on their steady-state 
and transient-state responses, with a particular 
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emphasis on their capabilities in setpoint tracking 
and disturbance rejection.

Numerous research papers have explored 
distillation column control systems, employing 
diverse tuning and optimisation algorithms. As 
distillation columns are inherently MIMO systems 
with interconnected parameters, their control 
is often affected by sluggish responses due to 
parameter interactions. Decoupling techniques 
are essential for mitigating these interactions and 
improving the controller performance. 

In (Das et al., 2023), the authors proposed a novel 
two-degree-of-freedom PID controller structure 
designed explicitly for processes with integration 
characteristics, ensuring an effective control 
performance for both the step- and ramp-type 
input signals. 

Govinda & Arunshankar (2022) studied the control 
of two-input and two-output systems utilising a 
sliding mode controller. The controller’s parameters 
are optimised using the Nelder–Mead algorithm to 
minimise the integral time absolute error criterion.

Nourelhouda & Abdelmadjid (2022) propose a 
fractional-order PID controller for distillation 
columns, tuned by using the most significant log 
modulus method in conjunction with a multi-
objective particle swarm optimisation algorithm, 
aiming to achieve an optimal control performance. 

In (Ye et al., 2023), which presents an intelligent 
optimisation approach for distillation columns, 
surrogate models were developed using a 
combination of GA and backpropagation neural 
networks to enhance design efficiency. 

This paper provides a general review of the 
performance of controllers designed by using a 
range of optimisation strategies. While the existing 
control methods demonstrate a satisfactory 
performance across various environments, they 
are often affected by process dependencies 
and an increased number of tuning parameters 
in comparison with the conventional PID 
controllers. In this sense, this paper introduces a 
novel nonlinear PID controller that incorporates 
a nonlinear gain element in combination with the 
integral action of a standard PID structure. To 
optimise the tracking performance for step setpoint 
changes, the controller parameters are determined 
based on a process model and a genetic algorithm, 
while minimising two performance indices. 
The effectiveness of the proposed controller is 
validated through simulations of two representative 

processes, its performance being compared with 
that of a conventional linear PID controller.

This paper is organized as follows. Section 2 
provides an overview of the modelling of a 
distillation column with a decoupler. Section 3 
describes the enhanced nonlinear PID controller, 
while Section 4 presents the simulation results 
and discusses them. Finally, Section 5 includes 
the conclusion of this paper and refers to possible 
future research directions.

2. Modelling of a Distillation Column

2.1 Distillation Column and Model

Distillation columns are essentially tall towers. 
Inside, trays are evenly spaced along the column’s 
height. Each tray incorporates a bubble cap, a 
crucial component for facilitating mass transfer 
between the rising vapour and descending liquid. 
The feed, a mixture of chemicals (specifically two 
components in the case of fractional distillation), 
is introduced into the column. The separation 
process relies on exploiting the differing 
temperature profiles within the tower to achieve 
the desired separation of the components.

A distillation column has at least four feedback 
control loops to govern the distillate concentration, 
bottom concentration, reboiler level, and reflux 
rate (Acharya et al., 2016). The control challenge 
is classified as a MIMO system. This study 
presents a controller designed to manage distillate 
and bottom concentrations. A common approach 
to MIMO control involves the implementation of 
two separate controllers, each targeting a specific 
output. Figure 1 illustrates the detailed process 
related to the distillation column.

Figure 1. Schematic diagram of the conventional 
two-point distillation column process (Li et al., 2015)
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A simplified mathematical model proposed by 
Wood and Berry (1973) can be expressed as:

( ) ( ) ( ) ( ) ( )p ds s s s D s= +Y G U G ,                  (1a)

where Y = [Y1 Y2]
T is the output vector, U = [U1 U2]

T 
is the control input vector, and D is the disturbance 
of the unmeasured flow rate (lb/min). Y1 and Y2 
are distilled methanol (mol%) and water (mol%), 
respectively, and U1 and U2 represent the reflux 
flow rate (lb/min) and steam flow rate (lb/min), 
respectively. The system and disturbance transfer 
function matrices are given by:
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2.2 Design of a Decoupler

For a MIMO system, the system’s gain matrix 
includes columns representing input variables 
and rows representing output variables. This 
arrangement allows for the analysis of relative 
gains in the context of input-output pairs, 
enabling the identification of the optimal pairings 
that prioritize the desired interactions and 
mitigate unwanted cross-coupling. The relative 
gain array (RGA) analysis is used to determine 
the best input–output pairings for multivariable 
process control systems (Pawar & Jadhav, 2018). 
The RGA can be computed directly from the 
square gain matrix K as:

1( )TRGA −= ⊗K K ,                                     (2)

where ⊗ is the element-wise multiplication of 
the two matrices. From equations 1(a-e), without 
considering the disturbances, K is calculated as:
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Applying the results of equations 3(a-e) to 
equation (2), the RGA is obtained as follows:

2.0094 1.0094
1.0094 2.0094

RGA
− 

=  −                          
(4)

In accordance with the pairing selection rule 
outlined in (Nevetha & Suresh, 2016), the (u1, 
y1) and (u2, y2) pairings characterised by positive 
elements are selected, while discarding the (u1, y2) 
and (u2, y1) pairings containing negative elements. 
The following decoupling matrix with a simple 
structure is considered:
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The block diagram of the distillation column (DC) 
process with the decoupler is shown in Figure 2.

Figure 2. DC process with a decoupler

To exclude the (u1, y2) and (u2, y1) pairings with 
the choice M11=M22=1 in Figure 2, the following 
is obtained:

12 11 22 12 22

21 22 11 21 11

0
0

p p

p p

M G U G U
M G U G U

+ =

+ =                              
(6)



https://www.sic.ici.ro

100 Tewodros Asfaw Gebretsadik, Gang-Gyoo Jin, Jaesung Kwon, Jongkap Ahn

Then, M12 and M21 can be calculated from 
equation (6):
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Finally, the input–output relationship between the 
DC process and the decoupler yields:

( ) ( ) ( ) ( ) ( ) ( )p ds s s s s D s= +Y G M U G              (8)

To examine the system’s characteristics in the 
frequency domain, Bode diagrams were drawn, 
which are shown in Figures 3 and 4.
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Figure 3. Bode diagram of the open-loop system 
with the decoupler (from u1 to y1)
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Figure 4. Bode diagram of the open-loop system 
with the decoupler (from u2 to y2)

The transfer function from input u1 to output y1 
exhibits a gain margin (GM) of 1.36dB, a phase 
margin (PM) of 19.25° and a bandwidth (BW) of 
0.08rad/s, while the transfer function from input 
u2 to output y2 features a GM of 0.77dB, a PM of 
-51.16° and a BW of 0.1rad/s.

2.3 Steady-state Analysis of the DC 
With the Decoupler

By applying the final value theorem to equation 
(8) in the absence of disturbances, the steady-state 
input-output relationship is derived, yielding the 
following result:
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where y0 = [y10 y20]
T and u0 = [u10 u20]

T. From 
equation (9), u0 can be rendered as:
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0 0.1038
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u y
                          

(10)

As expected, using the decoupler shows that u10 
affects only y10, and similarly u20 affects only y20.

3. Design of a Nonlinear  
PID Controller

The fixed-parameter PID controller, as discussed 
in subsection 4.1, exhibits satisfactory response 
characteristics within a nominal operating range. 
However, its performance can be adversely 
affected, potentially leading to instability when 
operating beyond this range. To address the 
limitations of the traditional PID controller, 
various nonlinear PID (NPID) controllers have 
been proposed (Jin & Son, 2019).

3.1 The Existing Nonlinear  
PID Controller

Linear PID controllers excel when operating 
within their designed operating range. However, 
their performance can deteriorate significantly 
when process dynamics deviates from the 
expected range, like in the case of unexpected 
changes. NPID controllers provide advantages for 
nonlinear processes, such as a smoother operation 
and an improved resilience to unforeseen 
disturbances. NPID controllers are harder to 
design and implement than linear PID controllers 
due to their increased number of tuning parameters 
(Jin & Son, 2019; Son & Jin, 2019). This work 
proposed a novel NPID controller for addressing 
this problem, enhancing the conventional PID 
framework. This NPID controller requires only 
three tuning parameters (Hamdy & Ramadan, 
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2017). To mitigate the limitations of traditional 
PID controllers, specifically the integral action’s 
susceptibility to overshoot, oscillations, and 
integral windup under dynamic conditions, the 
NPID controller incorporates a nonlinear gain. 
This nonlinear gain dynamically adjusts the 
error signal fed to the integrator, improving the 
controller performance during sudden setpoint 
changes and disturbances. The time-domain 
representation of this controller is given by:
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where up, ui, and ud are the proportional, integral, 
and derivative actions, respectively. Kp, Ki, and 
Kd are the proportional gain, integral gain, and 

derivative gain, respectively. Td is given by d

p

K
K

. 

Meanwhile, v(t) is the scaled error expressed as:

( ) ( ) ( )v t k e e t= ,                                               (12)

where k(e) is a function of e represented by:
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where σ(≠ 0) denotes the biggest change in the 
setpoint value between steps. Noise sensitivity 
is a key limitation of the ideal derivative action. 
A low-pass filter is thus used to mitigate the 
risk of instability from high-frequency noise 
amplification. N, a user-defined parameter, is 
selected based on the noise environment, its 
typical values ranging from 5 to 20. For this study, 
N was chosen to be 10 (O’Dwyer, 2009). Figure 5 
depicts the structure of the NPID controller.

Figure 5. Structure of the NPID controller

3.2 The Enhanced Nonlinear  
PID Controller

The integral action of the above NPID controller 
nonlinearly scales down the error signal. This 
minimises the offset for small errors and prevents 
the excessive increase of the accumulated error 
and overshoot for large errors. This study employs 
an integral function to refine the nonlinear function 
defined in equation (13):
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where a is a positive constant. This nonlinear gain 
slightly increases the error to reduce the offset by 
increasing the accumulated error when the error 
is small. Substituting equation (14) in equation 
(12) yields:
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The constant a is chosen such that v(t) assumes the 
value of e(t) when e(t) equals σ. By applying this 
to equation (15), a can be expressed as:
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1exp
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From equation (14):
2
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In this paper, σ is utilised, with a value that 
represents one-third of the biggest setpoint value 
difference. Figure 6 shows v(t) obtained using 
k(e) from equations (13) and (17) together with a 
typical value of σ = 1.

Figure 6. Scaled error plots of the two  
nonlinear functions
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As it can be seen in Figure 6, the integral action of 
the conventional PID controller uses e(t) as it is, 
but the enhanced k(e) reaches a value greater than 
that of e(t) while e(t) < σ, then it decreases rapidly 
and converges to 0 if e(t) becomes bigger.

3.3 Tuning of the NPID controller

The tuning of the NPID controller covered 
in the previous subsection revealed the 
optimal parameters P = [Kp,Ki,Kd]

T∈ S, where 
S = {P | P (L)≤ P ≤ P (U)} is the search space, 
and P (L) and P (U) are the lower and upper  
bounds, respectively. 

3.3.1 Performance Metrics

Adjusting a controller’s settings impacts both its 
responsiveness to the desired setpoint and its ability 
to manage disturbances. These two settings are 
often in conflict. However, since the disturbances 
are commonly unmeasurable and unpredictable, 
the controller is tuned so as to have a good 
tracking performance. Optimising this problem 
requires defining a performance metric and using 
an algorithm to find the setting that minimises 
it. In the tuning of controller parameters, three 
commonly employed performance measures are 
the integral of absolute error (IAE), the integral 
of time-weighted absolute error (ITAE), and 
the integral of squared error (ISE) (Haji Haji & 
Monje, 2019). These measures are fundamentally 
based on error evaluation. In this study, to avoid 
a high control effort, two performance measures 
are used, namely the integral absolute error with 
control signal (IAEU) and integral time-weighted 
absolute error with control signal (ITAEU) defined 
as follows:
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k k k
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IAEU w e t u t dt
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(18b)

where ek(t) represents the error signal, defined 
as the difference between the output yk(t) and its 
corresponding setpoint, Δuk(t)=uk(t)−uk0 is the 
deviation of the control input where uk0 is the 
steady-state value of uk(t) in equation (10), wk is 
a weighting factor (k=1,2), and tf is a sufficiently 
long simulation time. By adjusting the weighting 
factor, one can fine-tune how much each component 
contributes to the overall performance score.

3.3.2 Genetic Algorithms

To solve the optimisation problem, a genetic 
algorithm (GA) is utilised. The GA incorporates 
three key operations: selection, crossover, and 
mutation (Isayed & Hawwa, 2007)minimizing 
the overshoot and improving the required control 
effort during the functions of the read/write (R/W. 
The pseudocode for the GA is presented below:

Algorithm.
Set t = 0;
Create an initial population of individuals of 

length L;
Evaluate the function value fi(t) of each 

individual;
while (termination is not met) do the 
following steps:

Set t = t + 1;
Apply selection;
Apply the crossover and mutation;
Evaluate the function value fi(t) of each 

individual;
end while

4. Simulation and Discussion

4.1 Gain Tuning for the NPID and  
PID Controllers

Step changes for the setpoint in the top 
composition ys1 from 83 to 93 and the bottom 
composition ys2 from 5 to 7 were introduced to 
take place at time 0 (min). The MATLAB GA 
function was employed to systematically search 
for the gain values that minimise IAEU or ITEAU. 
The weighting factors w1 and w2 in equations 18(a-
b) were set at 0.2. The search bounds for the two 
controller gains for the top composition were 
constrained to the interval [0, 1], while the search 
bounds for the bottom composition were set to 
[-0.5, 1]. The outcomes of this tuning process are 
included in Table 1 and Table 2.

Table 1. Tuned controller gains using IAEU

Controller
Top composition Bottom composition

Kp Ki Kd Kp Ki Kd

NPID 0.339 0.019 0.124 -0.130 -0.024 -0.137

PID 0.317 0.027 0.064 -0.129 -0.016 -0.085

Table 2. Tuned controller gains using ITAEU

Controller
Top composition Bottom composition

Kp Ki Kd Kp Ki Kd

NPID 0.374 0.123 0.418 -0.147 -0.039 -0.228

PID 0.354 0.178 0.418 -0.139 -0.052 -0.216



	 103

ICI Bucharest © Copyright 2012-2025. All rights reserved

Nonlinear Proportional-Integral-Derivative Control of a Multi-input Multi-output Distillation...

4.2 Controller Performance Assessment

This subsection evaluates the performance of 
the two controllers using time-domain metrics, 
focusing on setpoint tracking and disturbance 
rejection. For setpoint tracking, the overshoot 
(Mp), settling time (ts), and integral of absolute 
error (IAE) are assessed. IAE is defined as follows:

0
( )ft

kIAE e t dt= ∫ ,
                                     

(19)

where ek (t) = ysk − yk (k=1,2). For disturbance 
rejection, the perturbance peak (Mpeak), recovery 
time (trcy), and IAE are evaluated. Mpeak denotes 
the maximum deviation from the setpoint during 
a disturbance, while trcy represents the time 
required to return within 5% of the setpoint after 
a disturbance occurs. 

4.2.1 Tracking Performance

A series of simulations were conducted to 
evaluate the effectiveness of the proposed NPID 
controller which was tuned by using a GA. 
Figures 7 and 8 show the tracking responses 
for the top and bottom compositions and the 
control input responses, respectively, for the 
two methods, each of them tuned for minimizing 
the IAEU from equation (18a). Meanwhile, 
Figures 9 and 10 depict the disturbance rejection 
responses and the control input responses for 
the same methods, each of them optimized for 
minimizing the ITAEU from equation (18b). 
Table 3 and Table 4 show the values of the 
performance indices for both approaches for 
both the top and bottom compositions. As it can 
be seen in Table 3, which shows the performance 
of the two controllers tuned based on the IAEU 
performance index, the Mp of the NPID controller 
has a slightly greater value in comparison with 
that obtained by the PID controller for the top 
composition whereas the values of the other 
two performance measures are lower than those 
obtained by the PID controller. Table 4, which 
shows the performance of the two controllers 
tuned based on the ITAEU, reveals that the 
NPID controller obtained lower values for 
almost all the performance metrics for both the 
top and bottom compositions. The overshoot 
Mp for the bottom composition is 60.38% for 
the PID controller. The settling time ts for the 
top composition is 17.12 (min) for the NPID 
controller and 16.07 (min) for the PID controller, 
while for the bottom composition the ts is 20.64 

(min) for the NPID controller and 23.83 (min) 
for the PID controller.

Figure 7. Tracking responses: (a) Top composition; 
(b) Bottom composition

Figure 8. Control inputs: (a) Reflux flow rate; (b) 
Steam flow rate

Table 3. Setpoint tracking performance for IAEU

Controller
Top composition Bottom composition

Mp ts IAE Mp ts IAE

NPID 0.51 28.09 60.21 13.57 26.85 11.84

PID 0.44 28.81 60.69 2.58 36.98 14.79

Table 4. Setpoint tracking performance for ITAEU

Controller
Top composition Bottom composition

Mp ts IAE Mp ts IAE

NPID 30.00 17.12 30.58 36.98 20.64 11.13

PID 35.73 16.07 32.63 60.38 23.83 17.29
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4.2.2 Disturbance Rejection

To verify the disturbance rejection performance of 
the proposed method, a simulation was conducted 
in which a step change of the input feed rate of 
magnitude d = 0.4 was applied at 0 (min), while 
the outputs remained steady at the nominal state 
of y1 (t) = 93 and y2 (t) = 7. Figure 11 shows 
the disturbance rejection responses of the two 
methods tuned based on IAEU for the top and 

bottom compositions, and Figure 12 shows the 
control input responses.

As it can be seen in Figures 11 and 12, the proposed 
controller recovers from the disturbance faster 
than the PID controller. A quantitative comparison 
of the two methods tuned based on both IAEU and 
ITAEU was conducted by calculating the Mpeak, 
trcy, and IAE, the results of which are included in 
Table 5 and Table 6.

Figure 9. Tracking responses: (a) Top product composition; (b) Bottom product composition 

Figure 10. Control inputs: (a) Reflux flow rate; (b) Steam flow rate

Figure 11. Disturbance rejection responses: (a) Top product composition; (b) Bottom product composition

Figure 12. Control inputs: (a) Reflux flow rate; (b) Steam flow rate
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5. Conclusion

This study presents an NPID-based control 
method for a two-input, two-output DC 
process. The primary challenge in controlling 
a DC lies in the strong interactions between 
inputs and outputs. The appropriate decoupling 
techniques were applied to address this problem, 
effectively transforming the MIMO process into 
two independent single-input, single-output 
systems. Two enhanced NPID controllers were 
subsequently designed to control the distillate 
top and bottom compositions independently. A GA 
optimised the controller parameters by minimising 
the IAEU and ITAEU performance indices. In 
order to compare the proposed controller with 
the PID controller quantitatively, setpoint tracking 

and disturbance rejection were evaluated using 
performance indices like Mp, ts, Mpeak, trcy, and 
IAE. The simulation results demonstrated that the 
proposed method featured a superior performance 
in comparison with the alternative method for 
controlling both the top and bottom compositions 
of the DC.

Anyhow, further research is required to apply the 
proposed control method in a real process and 
assess its effectiveness.

Acknowledgements

This research was supported by Korea Institute 
of Marine Science & Technology Promotion 
(KIMST) funded by the Ministry of Oceans and 
Fisheries (RS-2021-KS211489).

Table 5. Disturbance rejection performance  
using IAEU

Controller
Top composition Bottom composition

Mpeak trcy IAE Mpeak trcy IAE

NPID 0.26 63.65 7.61 0.53 25.61 5.51

PID 0.29 69.71 8.95 0.56 49.07 12.64

Table 6. Disturbance rejection performance  
using ITAEU

Controller
Top composition Bottom composition

Mpeak trcy IAE Mpeak trcy IAE

NPID 0.17 26.75 1.19 0.48 27.28 3.86

PID 0.18 28.25 1.36 0.48 18.01 3.99
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