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1. Introduction

Collaborative control theory (CCT) aims to 
support the effective design of collaborative 
e-Work, e-Business, and e-Service systems (Nof, 
2007). While CCT improves the effective outcome 
of collaborative efforts, it must also overcome 
conflicts and errors, which disrupt performance 
and lead to ineffectiveness in the system (Nof, 
2009). CCT has been developed, validated and 
implemented by researchers and engineers 
worldwide, for instance, in the field of decision 
support system (Filip et al., 2017; Nof, 2017; 
Zhong et al., 2016), agricultural cyber-physical 
system (Dusadeerungsikul, Nof, et al., 2019), 
components-service integration (Moghaddam 
& Nof, 2018), and the decentralization of 
manufacturing and service systems (Moghaddam 
et al., 2016). CCT operates with protocols 
in order to provide an efficient and effective 
platform for autonomous agents to interact and 
attain its objectives. With CCT, agents are able 
the automate and integrate a set of heterogeneous 
activities, components, and tasks in a network 
(Bruno & Antonelli, 2018; Nof, 2009). 

In agriculture, a variety of collaborating agents 
enable the emergence of smart, automated system 
of precision agriculture. It becomes a farming 
management concept which observes, measures, and 
responds to inter and intra-field variability in crops. 
The system collects data from a heterogeneous 
network of devices, with formats and semantics of 
these data defined by a range of factors, including 

sensor types and configurations of data loggers 
(Mcbratney et al., 2005). The automation within 
the agricultural system has increased agricultural 
productivity over the years (Zhang, 2013).The 
benefit of smart systems with automation and 
robotic applications has been tested in a controlled 
agricultural environment system (Xia et al., 2015), 
real-time monitored greenhouse (Baille et al., 2001), 
and a greenhouse system with a mobile multi-
sensor platform (Bautista-Gallego et al., 2011). 
Furthermore, most agricultural-related production 
tasks, such as harvesting, sorting and packaging, are 
still performed manually by human labor as a fully 
automated agricultural system is more expensive 
(Bechar & Eben-Chaime, 2014). The complex and 
highly variable agricultural environments require 
advanced automation and robotics in order to be 
effective (Hiremath et al., 2014).

Agricultural robotic system (ARS) is proposed 
as a middle ground between a fully automated 
agricultural system and conventional farming. The 
system equips human operators with the necessary 
semi-automated analytical tools and machinery to 
perform agricultural tasks (Bechar & Vigneault, 
2016; Bloch et al., 2017). Equipped with IoT 
wearables, human operators are able to track 
positions and viewpoints (Okayama & Miyawaki, 
2013), promote working motion templates (Morio 
et al., 2016), and knowledge transfer between 
agricultural experts and trainees (Sharma et al., 
2015). Furthermore, human operators are better 
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equipped with personal environmental sensors, 
capable of conducting real-time and in-situ 
electrochemical analysis (Zhao et al., 2020), 
tracking crops’ transpiration and field humidity 
(Lan et al., 2020). This collaboration of IoT 
wearables on human agent and robotic sensors 
enables ARS as a Cyber-Physical Structure to 
perform better in terms of Monitoring, Detection, 
and Responding (MDR-CPS), specifically in 
terms of emergency response (Guo et al., 2018).

Research in precision agriculture has proven that 
mobile robots are capable of various agricultural 
tasks, e.g., vision-based harvesting (van Henten 
et al., 2002), pursuing a trajectory path as either 
a cooperating group or an individual entity (Li 
et al., 2015), and performing various complex 
tasks (Haibo et al., 2015). Only limited research, 
however, has addressed potential errors and 
conflicts originated from such agricultural tasks. 
ARS mobile robots may fail to follow and fulfill 
its designated inspection route. Furthermore, 
it may also present measurements which are in 
contradiction to those of human operators, which 
leads to inconclusive decision-making. Based on 
the definitions provided by Nof (2009), the former 
is classified as error and the latter is classified as 
conflict. Prevention of error and conflict is crucial 
for any collaborative framework of agents where 
multiple participants interact. 

Protocols regarding error and conflict prevention 
have been established in complex systems with 
distributed agents (Chen & Nof, 2012b, Chen & 
Nof, 2012c), and centralized system (Chen & Nof, 
2012a). A learning algorithm to minimize fault 
in the ARS has also been developed (Ajidarma, 
2017). Specific error and conflict prevention 
protocols for collaborating agents within the 
ARS, however, have not been yet developed. This 
research aims to design a collaborative detection 
and prevention of errors and conflicts (CDPEC) in 
an ARS which consists of sensors-mounted robots, 
human, and computer as collaborating agents.

The remainder of this article is organized as 
follows: The research methodology, including the 
framework, models, and algorithms, is presented 
in Section 2. The design of experiments and their 
simulation results are explained in Section 3. 
The algorithms’ performance as observed in the 
experiments is analyzed in Section 4, and it is 
further discussed in Section 5. Lastly, a summary 
of the study and observations, and open challenges 
for future research are outlined in Section 6.

2. Methodology

The methodology to design collaborative 
detection and prevention of errors and conflicts 
(CDPEC) algorithms is developed in four steps. 
First, the architecture of ARS is presented, 
including assumptions, technical constraints, 
and limitations of the system, in accordance 
with previous research (Bechar & Vigneault, 
2016; Dusadeerungsikul, Nof, et al., 2019; Guo 
et al., 2018). Second, a mathematical model of 
optimal location sampling is developed, which 
complements the previously developed ARS 
routing algorithm (Dusadeerungsikul & Nof, 
2019). The model is further developed into 
two CDPEC algorithms. Third, the design of 
experiments is outlined and simulated to illustrate 
and validate the proposed algorithms. Lastly, 
the results are analyzed and tested to infer and 
compare the algorithms’ performance.

2.1 Architecture of the ARS

This research focuses on the Agricultural 
Robotic System (ARS) that combines sensors, 
robots, humans, and agricultural greenhouses as 
integrated elements of CPS. They operate under 
a HUB-CI, hub of collaborative intelligence 
“brain model” with cyber collaborative protocols 
and algorithms (Nair et al., 2019; Sreeram & 
Nof, 2021) such as outer space, underwater, 
telesurgery, manufacturing, and production. In 
precision agricultural robotics, target monitoring, 
recognition, and detection is a complex task, 
requiring expertise. Hence, they can be more 
efficiently performed by collaborative human-
robot systems. A HUB is an online portal, a 
platform to create and share scientific and 
advanced computing tools. Multiple HUBs have 
been developed recently for scientific research 
objectives. HUB-CI is a tool developed by PRISM 
Center at Purdue University to enable cyber-
augmented collaborative interactions over cyber-
supported complex systems. The research reported 
here, sponsored in part by BARD, implements 
the HUB-CI model to improve the Collaborative 
Intelligence (CI). There are heterogeneous 
crop plants and a variety of sensors involved in 
the ARS. This research considers an ARS of i 
heterogeneous plants, indexed by 1, 2,...,i I= ,  
also considered as objects. The crop plants are 
monitored by j different sensor types, denoted 
by 1,2,...,j J= . A concept of timeframe is 
introduced, with each timeframe of data collection 
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phase in the ARS defined as k, identified by 
1,2,...,k K= . 

There are two different agents operating during 
each period k: ARS robot, and human operator. 
The ARS robot is defined as an autonomous 
mobile agent, augmented with GPS, gyroscope, 
and guidance camera, based on an agricultural 
robotic platform developed by Bak & Jakobsen 
(2004). The human operator is defined as a manual 
mobile agent that collects the data using static 
sensors, as proposed in the research conducted 
by Bloch et al. (2017). The data gathered by 
autonomous observation is denoted as ijkY  while 
the one collected by manual observations referred 
to as ijkZ . The indices of both variables indicate 
the observation conducted of plant region i I∈ , 
using a sensor type j J∈ , at time k K∈ .

Each time period ijkY  begins when the ARS robot 
is initialized and mobilized into the ARS field. The 
time period ends when the robot finishes gathering 

ijkY  data. Once the robot stops collecting data, 
human operator begins operation by sampling a 
portion of the locations previously visited by the 
robot, and collects the data manually, which results 
in ijkZ  data. This second data collection aims to 
verify certain unusual/vague data provided by the 
robot’s sensors. Manual observation data ijkZ  are 
assumed to be more accurate and precise compared 
to ijkY , due to the static measurement process that 
is conducted by human operator. Furthermore, the 
robot in ARS can only be equipped by a limited 
quantity of sensors to maintain its mobility. Due 
to this restriction, ijkY  data observed by the robot 
will have a higher risk of deviating from the actual 
state of object i, compared to the ijkZ  data. 

In the ARS framework, human agent and robot 
agent have the same set of sensor types with 
different degrees of accuracy. Human operators 
are capable of recording highly accurate crops data 
due to spatial image digitizer (Bloch et al., 2017) 
and other IoT wearables (Lan et al., 2020; Zhao 
et al., 2020) we developed a smart plant-wearable 
biosensor, which can be applied for in-situ analysis 
of organophosphorus pesticide on crop surfaces. 
Herein, the serpentine three-electrode system was 
prepared via the laser-induced graphene (LIG). 
Meanwhile, robot agents are mounted with single 
camera, which provides multi-spectral images. 
Human observation is more time-consuming than 
robot observation, and thus, the number of human 
observation instances is significantly lower than 

the number of robot observation instances for each 
period.

In addressing errors and conflicts within ARS, 
two variables are introduced: sensor observation 
data  and actual state of the agricultural object ma .  
Both ijkY  and ijkZ  are considered as elements of 
sensor observation data ms . Error is defined as the 
difference between the observation data ms  and 
actual state of the object ma . The ratio of error  
(δ ) is expressed as follows:

1

1 M
m m

m m

s a
M s

δ
=

−
= ∑ (1)

Furthermore, conflict is defined as the way in 
which each observation data generated by each 
sensor sm varies with one another. It can also 
be expressed as the deviation of each sensor’s 
observation value from the mean of sensor 
observation data for a certain j J∈ . The conflict 
(ε ) is expressed as follows:

( )2

1

1
1

M

m m
m

s s
M

ε
=

= −
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There are two instances of sensor observation 
data based on the agents. Instances of observation 
conducted by robot agent, or robot observation 
(RO), is denoted by YI , while instances of 
observation done by human agent, or human 
observation (HO), is denoted by ZI . The 
observation data for both ijkY  and ijkZ  are 
measured in terms of absolute deviation with 
regard to the ideal state of the object i I∈ as 
measured by sensor type j J∈ . Raw numerical 
data ijks  from the sensors are processed with 
Equation 3 and 4.

min ,1 ;ijk ij Y
ijk ijkUB LB

ij ij

s s
Y s I

s s

 − = ∈ −  
(3)

min ,1 ;ijk ij Z
ijk ijkUB LB

ij ij

s s
Z s I

s s

 − = ∈ −  
(4)

where UB
ijs  and LB

ijs  are the known upper bound 
and lower bound observation data for every 
object i I∈ , measured by sensor type j J∈ . 
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Furthermore, ijs  is the median between UB
ijs  and

LB
ijs , and ijks  is the raw numerical observation 

data of object i I∈ , measured by sensor type 
j J∈  at time period k K∈ .

2.2 Mathematical Model of  
Crop Sampling

For every Yijk data, a corresponding weight wjk is 
assigned as a real value between zero and one. 
The weight indicates the level of accuracy and 
reliability of each sensor. In a multi-sensor ARS, 
the inference regarding the system’s state is made 
based on the integrated information of all sensors. 
Sensors which are not capable of detecting a 
disease, are to be penalized by lowering the 
corresponding weight jkw . The objective criterion 
of the system can be expressed as maximizing the 
detection of diseased crops, which is formulated 
as a Mixed-Integer Linear Programming (MILP) 
of crop sampling:

( 1)max
ijkx j k ijk ijk

i I j J
w Y x−

∈ ∈
∑∑ (5)

,ijk ijk k
i I j J

t x T k K
∈ ∈

≤ ∀ ∈∑∑ (6)

1, ,ijk
i I

x j J k K
∈

≥ ∀ ∈ ∈∑ (7)

{ }0,1 , , ,ijkx i I j J k K∈ ∀ ∈ ∈ ∈ (8)

where ijkY  is the robot observation data, jkw  
is the weight of each sensor type j J∈  at time 
period k K∈ , and ijkx  is a binary decision 
variable denoting whether further observation 
is to be conducted at object i I∈ , using sensor 
type j J∈  at period k K∈ . If an observation 
is collected, value of ijkx  equals one, otherwise 
zero. For each time period k K∈ , the objective 
criterion incorporates weight ( 1)j kw −  from the 
previous time period, or period 1k − (Equation 5).

Human observations (HO) and robot observations 
(RO) are modeled sequentially. The time required 
by the robot to collect Yijk data is unbounded 
by any constraint as the robots are capable of 
operating continuously. Meanwhile, data gathered 
by human operator, denoted by ijkZ . is limited by 
the data collection duration. The time required 
to manually collect data is defined as tijk. Manual 
agents are presumed to be less efficient and slower 
in gathering the ijkZ  data and thus, bounded by 

Tk (Equation 6), which is the available duration to 
gather ijkZ  for each period k K∈ . Lastly, every 
sensor type is to be used at least once to measure 
any crops (Equation 7).

After the sampling is conducted, the decision 
variables ijkx  route the human agent to visit a 
partial subset of locations that robot agent has 
visited previously, as follows:

, if 1
0, otherwise

ijk ijkZ x
HO

=
= 


(9)

The learning nature of the model is represented 
by updating the jkw  value for each time period. 
At the first period, all weights for each RO are 
assumed to be 1.

2.3 Mathematical Model of Sensor 
Weight Update

In the ARS, multiple agents and sensors are 
utilized. The first agent is the less accurate, 
sensor-mounted ARS robot, and the second agent 
is human operator, which conducts the observation 
manually with a highly-accurate static sensor. 
According to the principle of CCT, a system of 
collaborating agents is prone to error and conflict. 
In this subsection, a sensor weight update model, 
which aims to minimize both error and conflict, 
is presented. The weight wjk is updated such that 
the weighted RO has minimum difference when 
compared with the weighted HO. A vector f



 is 
defined for each weight wjk as follows:

{ }1 2( ) ( ), ( ),..., ( ) ;

,
jk jk jk i jkf w f w f w f w

j J k K

=

∀ ∈ ∈



(10)

Using the previous definitions of RO and HO, the 
function if  equals:

( ) ;i jk jk ijk ijk ijkf w w Y Z x i I= − ∀ ∈ (11)

Therefore, decision regarding the optimal value 
of jkw  can be formulated as a least square 
optimization problem. The optimum weight jkw  
from least square fitting obtained for each sensor 
j J∈ at time period k is to be used for the optimal 

sampling problem in 1k + . The first weight update 
formulation is expressed as follows:
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2 2

2
min ( ) min ( )w jk w i jk

i I
f w f w

∈

= ∑
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(12)
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J K
jkw ×∈ (13)

1( )
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jk
I
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I jk

f w
f w j J k K

f w

 
 
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 
 



  (14)

( ) ;i jk jk ijk ijk ijkf w w Y Z x i I= − ∀ ∈ (15)

Another sensor weight update model is formulated. 
In the second formulation of optimal weighting, 
f


is modelled as a temporary memory to store 
the RO and HO data from only one-step iteration 
behind; unlike the first optimal weighting where 
RO and HO data are cumulatively added into f



 
over time K .

Therefore, in this second formulation, the size 
of vector f



 remains constant with regard to the 
number of sensors, or in other words, the weight 
matrix in Equation 13 is now one dimensional:

I
jkw ∈ (16)

2.4 Proposed Algorithms

Two algorithms are developed based on the 
problem formulation. Figure 1 depicts the 
conceptual model of the collaborative detection 
and prevention of errors and conflicts (CDPEC) 

in the ARS. The algorithm works in a sequence 
of stepwise functions. The model’s input is the 
scaled observational data, which was transformed 
from raw sensor data using Equations 3 and 4. 
The conceptual model is developed into two 
collaborative detection and prevention of errors 
and conflicts algorithms. 

The two algorithms differ in terms of number of 
calls and memory requirements. The pseudocode 
for the first algorithm is presented in Table 1. 

Table 1. Collaborative Detection and Prevention of 
Errors and Conflict Algorithm 1

CDPEC Algorithm 1

initialize the values of , , , , , ,I J K t T δ ε

generate ijkY , ijkt , 0jw
	 for k:=1 to K do
		  call crop sampling

		  generate  ( )Z
ijk ijkZ I x=

for j:=1 to J do

	 call weight update kf


end for
		  calculate MSE, CEPR of each time k

		  reset kf


	 end for
calculate CEPR of the ARS
end 

The algorithm requires initial parameter value, 
such as the number of ARS objects, different types 
of sensor, and the stopping criteria, or the length 
of iteration. Further, it progresses by executing 

Figure 1. Logical Model of the Algorithms
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the steps based on the models explained in 
subsections 2.2 and 2.3. In CDPEC 1, the sensor 
weight update uses only the human observation 
and robot observation data from 1k − period. 
When iteration k begins, the observation data from 
the ARS sensors are gathered in a database vector
f


, containing the data from time 1k − . Before 
progressing into the next iteration, the algorithm 
automatically resets f



. Therefore, the size of f


 
remains constant as the number of collected data 
from each iteration is also constant. 

Table 2. Collaborative Detection and Prevention of 
Errors and Conflict Algorithm 2

CDPEC Algorithm 2

initialize the values of , , , , , ,I J K t T δ ε

generate set [0]k J Kf ×=


	 for k:=1 to K do
		  call crop sampling

		  generate ( )Z
ijk ijkZ I x=

for j:=1 to J do

	 call weight update kf


end for
		  calculate MSE, CEPR of each time k
	 end for

	 set 1[ , ]k kkf f f−=
  

calculate CEPR of the ARS
end 

The pseudocode of the second algorithm is 
presented in Table 2. In the case of CDPEC 2, the 
algorithm accumulates HO and RO data since k = 1,  
and unlike CDPEC 1, f



 entry is not emptied after 
each iteration. 

As iterations progress, the dimension of f


 
expands with the accumulated values of jkw .  
Consequently, the increasing size of f



 in CDPEC 
2 demands a relatively larger memory. It may 
be prohibitive with many sensors and agents, 
as collaborative interactions and data exchange 
increase exponentially. 

3. Design of Experiments

3.1 Performance Metrics and  
Baseline Scenario

Performance metrics help determine the 
algorithms’ effectiveness, and are measured by 

comparing the baseline case with the cases when 
CDPEC 1 or CDPEC 2 are executed in ARS. In 
the baseline scenario, every sensor has a uniform 
weight, 1jkw = . With CDPEC 1 or CDPEC 2, the 
weights vary between zero and one.

The algorithms’ effectiveness is measured in 
terms of Mean Squared Error for each object 
and each sensor ijMSE  (Equation 17), which 
measures the mean sum of squares of the 
deviation between the RO data ( ijkY ) and HO 
data ( ijkZ ). The Mean Squared Error can be 
aggregated and measured for each sensor jMSE ,  
as stated in Equation 18.

21 ( )ij jk ijk ijk
k K

MSE w Y Z
K ∈

= −∑ (17)

1
j ij

i I
MSE MSE

I ∈

= ∑ (18)

Another performance metric is Conflict and 
Error Prevention Rate (CEPR). It measures the 
effectiveness of the collaborative protocols in 
detecting and preventing both error and conflict. 
As stated in Equation 19, the metric calculates the 
ratio of MSE between the cases when an algorithm 
is implemented and the cases when the sensors 
are not weighted (baseline scenario). CEPR is 
measured for each sensor type (Equation 19). The 
efficacy of the algorithms on the entire ARS is 
also calculated by averaging jCEPR for all sensor 
type j J∈ (Equation 20).

1 j
j

j

MSE for weighted sensor scenario
CEPR

MSE for baseline scenario
= − (19)

1
ARS j

j J
CEPR CEPR

J ∈

= ∑ (20)

Statistical significance test, pairwise t-test, 
is used to compare a sample from the MSE of 
the algorithm with a sample of the MSE of the 
baseline, uniform-weighted sensor observations. 
Rejecting the null hypothesis means that the 
algorithms can produce relative weights such 
that the weighted sensor data has a reduced MSE 
compared to the one of the baseline scenario, with 
a valid statistical significance.



	 25

ICI Bucharest © Copyright 2012-2021. All rights reserved

Collaborative Detection and Prevention of Errors and Conflicts in an Agricultural Robotic System

3.2 Parameters of the Experiments

The algorithm is validated through a series 
of simulations. The simulated scenarios are 
formulated with the following notation:

{ , , }S nη δ ε= (21)

Each scenario ( Sη ) has a specified parameter set 
(Table 3): number of sensors ( n ), inherent error 
(δ ) between RO and HO, and inherent conflict 
between sensors (ε ). 

Table 3. Parameters of the Experiment Design

Parameters Value

Number of 
sensors (n)

Small: 2 sensors
Medium: 5 sensors
Large: 10 sensors
Very Large: 20 sensors

Inherent sensor 
error rate (δ)

Small: 10% deviation with HO data
Large: 30% deviation with HO data

Conflict rate 
between sensors 

(ε)

Small: 5% deviation between sensors
Large: 10% deviation between sensors

3.3 Simulation Results

Sixteen scenarios are generated based on the 
level of relevant factors. For every scenario, the 
algorithm is replicated 20 times. In each iteration, 
the MSE of weighted-sensor and baseline cases 
are recorded, and used to calculate CEPR. 

 
Figure 2. CDPEC 1 Results on Sensor 1

Results are plotted to visually demonstrate the 
weighted sensor data’s ability to match actual data 
better than raw, non-weighted sensor data (Figure 2).  
Weighted sensor data, non-weighted sensor data, 
and the actual data for the case when CDPEC 2  
is implemented are compared (Figure 3).  
The quantitative results of the experiments, in 
terms of CEPR, are presented in Table 4.

 
Figure 3. CDPEC 2 Results on Sensor 1 

Table 4. Experiment Results of CDPEC 1 and CDPEC 2 Algorithms

Scenario CEPR for CDPEC 1 CEPR for CDPEC 2

Mean Std.Dev Mean Std.Dev

S1 = {2,0.1,0.05} 47.92% 11.91% 76.94% 7.38%

S2 = {2,0.1,0.1} -27.57% 31.58% 50.75% 13.63%

S3 ={2,0.3,0.05} 84.12% 2.53% 90.05% 0.99%

S4 ={2,0.3,0.1} 65.03% 9.28% 85.59% 2.08%

S5 ={5,0.1,0.05} 50.57% 25.52% 83.64% 3.24%

S6 = {5,0.1,0.1} -16.50% 57.74% 61.50% 11.07%

S7 = {5,0.3,0.05} 84.47% 2.95% 96.82% 0.49%

S8 = {5,0.3,0.1} 74.27% 6.12% 92.50% 1.60%

S9 = {10,0.1,0.05} 39.33% 14.86% 89.10% 1.51%

S10 = {10,0.1,0.1} -16.98% 41.50% 68.39% 3.57%

S11 = {10,0.3,0.05} 88.69% 2.98% 97.13% 0.81%

S12 = {10,0.3,0.1} 77.78% 5.27% 93.21% 1.08%

S13 = {20,0.1,0.05} 31.57% 17.16% 87.18% 2.22%

S14 = {20,0.1,0.1} -32.77% 27.23% 58.46% 5.79%

S15 = {20,0.3,0.05} 85.33% 5.35% 98.37% 0.47%

S16= {20,0.3,0.1} 68.35% 5.60% 94.03% 0.88%
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4. Analysis

Statistical test is conducted between the MSE of 
the algorithm’s results and the one of the baseline 
scenario. To maintain the consistency of the 
distribution, the t-test uses only the MSE measured 
by one sensor on one object for every scenario, 
which is randomly selected. The null hypothesis is 
that the mean of MSE values of algorithm results 
equals the mean of MSE values of the baseline 
case. The t-test results are presented in Table 5.

Based on the results, CDPEC 1 performs well in 
most scenarios, except the ones when the conflict 
rate is relatively high and the error rate is relatively 
low. In these cases, the means of CEPR of CDPEC 
1 are negative, which means that the algorithm 
results have higher MSE values compared to the 
ones of the baseline scenario.

Table 5. Statistical Significance Test

Scenario
{ , , }S nη δ ε=

P-value of independent t-test 

( 0.05α = )
CDPEC 1 CDPEC 2

S1 0.0046* 7.43 × 10-5*
S2 0.064 0.072
S3 7.6 × 10-15* 4.31 × 10-12*
S4 3.41 × 10-7* 1.88 × 10-11*
S5 0.023* 1.09 × 10-6*
S6 0.977 0.12
S7 3.01 × 10-15* 3.55 × 10-16*
S8 1.18 × 10-8* 3.12 × 10-12*
S9 5.32 × 10-5* 1.49 × 10-5*
S10 0.336 0.042
S11 1.36 × 10-22* 3.54 × 10-14*
S12 8.05 × 10-5* 1.52 × 10-11*
S13 1.29 × 10-4* 1.2 × 10-4*
S14 0.426 0.051
S15 1.80 × 10-12* 2.07 × 10-12*
S16 3.04 × 10-7* 2.76 × 10-8*

* Statistically significant at ( 0.05α = )

Upon further analysis, it is found that the 
combination of small error rate and high conflict 
rate marginally inflated the difference between the 
observations and actual data, such that it has a 
random pattern. The algorithm often failed to find 
local optima in these cases as the data mining of 
the previous iteration is practically inaccurate to 
predict a random pattern. 

The results indicate that CDPEC 2 can reduce 
a significant portion of errors and conflicts in 
every scenario. In most cases, the reductions are 
statistically significant, with the null hypothesis 
being rejected. In some cases, however, where 
the conflict rate is high and the error rate is low, 
the results are not statistically significant. Even in 
these cases, CDPEC 2 still maintains a relatively 
acceptable level of CEPR, whereas CDPEC 1 fails.

5. Discussions

Experimental results demonstrate the validity of 
these algorithms to a certain extent, as both CDPEC 
1 and CDPEC 2 can significantly reduce faults by 
improving the conflict and error prevention rate 
(CEPR) within ARS for a given greenhouse.

It is again evident that a collaborative “brain 
model,” such as HUB-CI, is needed for improved 
cyber-physical interactions. It is also evident that 
different protocols and algorithms, with their 
relative trade-offs, can impact differently the 
extent and value of the gained benefits.

The first sub-model of the algorithms focuses 
on sampling HO data, modelled as a MILP 
problem. It applies, as the data are normalized 
and expressed on a scale relative to the known 
deviation of the sensor data. In more general 
cases, however, where input data are neither 
scaled nor normalized, MILP may not be as 
effective. Then, metaheuristic optimization by 
evolutionary or swarm algorithms appears to be 
potentially useful. Second, recent developments 
in industrial internet and wearables may lead to 
high volume and variety of agricultural crops’ 
data. While this research models human operator 
as a relatively more accurate yet slower agent, 
advances of industrial internet wearables may 
speed up data collection by human agents. 
To accommodate such data exchange, novel 
protocols and extension of ARS architecture will 
be necessary.

6. Conclusion

This research aims to detect early and prevent 
potential errors and conflicts within an agricultural 
robotic system (ARS) with collaborating agents. 
HUB-CI/ARS, a cyber hub for collaborative 
intelligence gathering and exchange among ARS 
agents, was designed to operate under various 
cyber-collaborative protocols and algorithms: 
Collaborative Control Protocol in Cyber-
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Physical System (CCP-CPS) (Dusadeerungsikul, 
Sreeram et al., 2019), CCP-CPS with routing and 
searching algorithms (Dusadeerungsikul, Nof et 
al., 2019) and a Human-in-the-Loop integrated 
ARS (Sreeram & Nof, 2021). Two collaborative 
detection and prevention of errors and conflicts 
(CDPEC) algorithms are proposed, developed, 
and validated. On average, for the same scenarios, 
CDPEC 1 reduces potential faults to 66.4% 
compared to the baseline; CDPEC 2 reduces 
potential faults to 86.9%. CDPEC 2 enables 
30.9% higher effectiveness relative to CDPEC 1. 

Future researchers can extend this study by 
developing a data pre-processing procedure, 
capable of processing a variety of non-standardized 
input data. Furthermore, in order to improve its 
monitoring and detection capabilities, ARS robots 

could be modelled with a variety of novel types 
of sensors, which enable a better data acquisition.  
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