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Abstract: In recent years, cloud computing has been widely adopted over the Internet due to the numerous advantages and
services it offers to users. The resources in cloud computing are based on virtualization, which makes them dynamic and
prone to frequent changes. These resources are utilized by cloud services or user applications in order to respond to user
requests. The smallest unit of a user application, known as a job, requires exclusive access to certain resources which would
enable its execution. Assigning jobs to cloud nodes (a set of computational resources) is a NP-complete problem, commonly
referred to as job scheduling in the cloud. The aim of this paper is to propose an integer programming model for cloud job
scheduling and to find an optimal or near-optimal solution by using two algorithms, namely a genetic algorithm called
GAIJSC, and a particle swarm optimization (PSO) algorithm. This study concludes with a comparison of the performance
of these two approaches against certain traditional baseline algorithms, including the First-Come-First-Serve (FCFS) and
Shortest Job First (SJF) algorithms in terms of the obtained makespan and their scalability.
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1. Introduction

Job scheduling in cloud computing refers to
selecting the most suitable available resources for
executing tasks or allocating computing machines
in a way that minimizes the completion time as
much as possible (Keivani & Tapamo, 2019).
Cloud computing resources rely on virtualization,
which makes them highly dynamic, and the set
of available resources can change frequently. The
cloud provides functionalities to clients as services
and is characterized by three service models:
Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS).
On the other hand, users request services from
the cloud to access these resources, where each
service consists of a set of operations or jobs.
Therefore, to ensure a good cloud performance,
efficient job scheduling is essential.

Cloud computing is a model for enabling the
ubiquitous, convenient, on-demand network
access to a shared pool of configurable
computing resources (e.g. networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with a minimal
management effort or service provider interaction.
This cloud model is composed of five essential
characteristics, three service models, and four
deployment models (Mell & Grance, 2011). On-
demand self-service is a key characteristic of
cloud computing, through which the users can
independently provision computing resources -

such as processing power, storage, or applications
- whenever they need them, without requiring
human interaction with the service provider.
This gives clients the expectation of immediate
responsiveness and availability whenever a
request is made.

In addition to this, cloud service providers must be
capable of serving multiple clients simultaneously
in a manner that gives each user the impression of
exclusive access to resources, similarly to using
local services. This is enabled through resource
pooling, where physical and virtual resources
are dynamically allocated and reassigned
according to demand. Furthermore, the cloud
must accommodate varying workloads and scale
rapidly in response to fluctuating user demands,
a feature which is known as rapid elasticity. This
means that the cloud service providers must
respond efficiently to any number of requests,
regardless of how many users are involved or
how much computing power is required. These
characteristics place great demands on the
underlying infrastructure, making job scheduling
a critical task in cloud computing. Effective job
scheduling ensures that resources are allocated
fairly, efficiently, and in a timely manner, directly
influencing the cloud’s ability to meet user
expectations as responsiveness, scalability, and
seamless performance are concerned.
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The job scheduling algorithms are classified into
two classes (Santhosh et al., 2016). The first
class includes batch mode heuristic scheduling
(BMHA) algorithms, which wait a fixed period
of time for job to arrive. Each newly arrived job
is pushed into a queue to maintain the order of
arrival, then the scheduling process is started.
The second class includes online mode heuristic
scheduling (OMHS) algorithms, here the jobs
are scheduled when they arrive, and there is no
awaiting time, this mode is more appropriate for
the cloud environment.

The objective of this research is to propose two
novel approaches for job scheduling in cloud
environments: one approach is based on a genetic
algorithm, and the other employs the well-known
PSO optimization technique, both aiming to achieve
results that surpass the current state of the art.

The remainder of this paper is organized as
follows. The related works about job scheduling
in cloud computing are presented in Section 2,
while Section 3 is dedicated to formulating the
analysed problem in a suitable way, by means of
an integer programming-based model. Further on,
Section 4 sets forth the proposed job scheduling
solutions (one based on a genetic algorithm and
the other on the PSO technique) and Section 5
discusses the experiments which were carried
out and the obtained results. Finally, Section 6
concludes this paper and outlines possible future
research directions.

2. Related Work

The goal of a scheduler in a cloud computing
environment is to utilize the resources efficiently
and minimize the job execution time (Wei et al.,
2018). A job scheduling problem is considered
NP-hard if there is no exact algorithm that can
guarantee an optimal solution in a reasonable
amount of time. To address this challenge and
achieve the desired objectives, many researchers
have proposed a variety of methods and
algorithms, most of which are heuristic-based
ones, as heuristics is well-suited for solving
complex problems where an exhaustive search
is impractical. In this sense, the works of
Sanjalawe et al. (2025), Houssein et al. (2021)
and Murad et al. (2022) can enable a more

detailed understanding and in-depth discussion
of this subject.

The work of Lipsa et al. (2023) introduces
an innovative priority-based job scheduling
approach for an efficient task scheduling in cloud
computing environments. This method combines
several advanced techniques for optimizing both
the task prioritization and resource utilization,
addressing key challenges in cloud workload
management. Its core innovation lies in a
novel priority assignment mechanism using a
specialized matrix that considers both the task
size and the estimated execution time. This
intelligent prioritization system works in tandem
with a Fibonacci heap data structure, enabling
rapid task insertion and retrieval operations while
maintaining an optimal priority ordering. The
scheduling architecture employs a hybrid parallel
processing model that strategically blends non-
preemptive and preemptive strategies. To prevent
task starvation, the system implements a dynamic
priority escalation mechanism that gradually
increases the priority of pending tasks. The
theoretical foundation uses the M/M/n queuing
model to minimize the waiting times, processing
times, and transmission delays. The experimental
results demonstrate significant improvements
over the existing solutions like BATS and IDEA,
particularly in handling large-scale workloads
(up to 10,000 tasks). For more details about
priority-based job scheduling in the cloud, the
reader is invited to consult the works of Murad
et al. (2022, 2024).

The study of Sutar et al. (2024) introduces an
innovative approach to cloud job scheduling that
simultaneously addresses energy efficiency and
cost reduction - two often competing priorities in
data centre management. The authors developed a
dual-objective optimization model using NSGA-
II, an advanced evolutionary algorithm, to
intelligently allocate jobs across virtual machines
(VMs) while minimizing both power consumption
and operational expenses. This framework
incorporates dynamic energy measurement
through the Dynamic Voltage and Frequency
Scaling (DVFS) technology and comprehensive
cost modeling, providing a more realistic solution
than the traditional single-objective methods.
Rigorous testing using CloudSim simulations
demonstrates significant improvements, as this

https://www.sic.ici.ro



A Comparative Study of Job Scheduling in Cloud Computing 83

model achieved energy savings of up to 40%
and a cost reduction of 30% in comparison with
the existing algorithms like the PSO and ABC
optimization algorithms. And, although the results
are promising, the authors acknowledge there are
limitations related to the current simulations and
propose relevant future directions, including the
real-time adaptation of job scheduling. This work
represents a meaningful step towards sustainable
cloud computing, proving that the environmental
and economic objectives can be successfully
balanced through an intelligent system design.

Sridhar & Babu (2015) claim that the PSO
algorithm works well for a global search but
not so well for a local search, unlike the Tabu
Search (TS) algorithm, which outperforms PSO
in the context of the local search, therefore they
proposed a Hybrid Particle Swarm Optimization
algorithm for job Scheduling in Cloud Computing,
taking into account how the weakness of the PSO
algorithm 1in the local search is complemented by
the Tabu search in order to increase the probability
of finding an optimal solution. The algorithm starts
by initializing a random population of particles,
then the fitness of each particle is calculated
using a fitness function. Further on, the algorithm
divides the population randomly into two halves,
one of which is explored by the PSO algorithm,
and the other one by the Tabu Search algorithm,
to finally combine the two halves, and update the
“pbest”, the “gbest” particles and the Tabu list.
These steps were repeated until the termination
condition was verified.

The objective of the work of Zhu et al. (2021)
is to develop and evaluate an efficient task
scheduling method for multi-cloud environments
that optimizes both the makespan and total cost
while satisfying the security and reliability
constraints. The proposed scheduling algorithm
is called Matching and Multi-round Allocation
(MMA) and it includes three steps:

1. Matching phase: For each task, the algorithm
finds virtual machines (VMs) that meet its
security, reliability, and performance needs.
It picks the VM that best matches each task;

2. Initial allocation: Tasks are sorted by priority
and size, and then assigned to their best
matching VMs. This helps balance the load
across similar VMs;

3. Multi-round allocation: Tasks are reallocated
in several rounds to reduce the differences
in completion time among VMs, which
improves the efficiency of the process and
reduces the total execution time.

A Cloud Manager monitors the availability
of virtual machines (VMs) and coordinates
the scheduling process. As a centralized
management centre, it has access to multiple
cloud environments.

Researchers have tried many ways to improve
cloud scheduling - some focus on task order,
others on combining different algorithms, and
a few on trying to save energy and costs. While
these methods work well in specific cases, none
of them can handle all situations perfectly. This
paper aims to create a more flexible scheduler that
works efficiently in different cloud environments.

3. Problem Definition

As shown in Figure 1, the cloud-based job
scheduling framework has three main parts: the
User Portal, Job Scheduler and Management
Module. The job scheduler is the brain of the
system, it decides where and when to run each
job by assigning it to the right VM (Santhosh et
al., 2016).

Application users
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Public cloud platform
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Figure 1. Cloud-based job scheduling framework
(Santhosh et al., 2016)

In general, the users connect to the cloud to execute
their requests by exploiting a set of cloud resources,
and the requests are considered as a set of jobs (or
tasks) 7= {¢,, .. . . .t }, such that each job is a
pairz, = {/, p }, where [, represents the job duration
measured by the number of cycles, and p, is the
priority of the job. The cloud resources are denoted
by CR = {CR, CR. .. CR },and each cloud
resource is characterized by a computing capacity
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measured by the number of cycles per unit of time
and a cost representing the total resource usage
cost incurred when tasks are assigned to a cloud
resource in a cloud computing environment CR, =
{S, C.}. It means that each job t, has a processing
time in a cloud resource CR_]_ equal to PT,= ll./S/.. In
order to simplify the model, the setup and transfer
times are ignored. The job scheduling consists in
mapping 7= {¢, t,.. .t} to CR={CR, CR,. ..
CR |} so as to minimize the job completion time.

The objective of the problem of job scheduling
in the cloud environment is to minimize the
makespan which can be defined as the maximum
cost of any machine (Feldman et al., 2025).

Task assignment to cloud resources can be
performed in various ways, and the effectiveness
of each method can be evaluated by calculating
the makespan (the total time required to complete
all tasks). For example, a set of cloud resources
CR={CR2,3), CR (4, 2), CR(3, 1)} and a set of
tasks 7= {£,(9, 2), £,(8, 3), £,(2, 1), £,(6, 5), £,(8, 3),
t(2, 2)} are given. Table 1 illustrates two different
job assignment strategies: the former is based on a
random assignment with a makespan of 8.5, while
the latter is based on an optimal assignment with
a reduced makespan of 4.

Table 1. Example of job scheduling in the cloud

Random allocation makespan = 8.5
CR(2,3) | t,(9,2) =>PT,, =45 | t,(8,3)=>PT, =4 | 85
CR (4,2) | t,(2, 1)=>PT, =0.5 | t,(6,5) =>PT, =1.5 2
CR,3,1) | t,(8,3)=>PT,,=2.33 | t(2,2)=>PT,,=0.66 | 2.99
Optimized allocation makespan = 4
CR/(2,3) [ t,(2, ) =>PT, =1 t,(6, 5) =>PT, =3 4
CR,(4,2) | ,(8,3)=>PT, =2 | 1,8,3)=>PT, =2 4
CR,(3,1) [ t,9,2)=>PT,=3 | t(2,2)=>PT,=0.66 | 3.66

Integer Programming (IP) is a mathematical
optimization technique employed for solving
problems in which some or all decision variables
must take integer values. It is particularly
well-suited for modeling decision-making
problems involving discrete choices, such as
job assignment, job scheduling, or resource
allocation. Further on, an IP formulation for the
analysed job scheduling problem is presented,
using binary variables to represent the assignment
of jobs to virtual machines.

The core component of this model is the
assignment matrix 4, where rows represent the
available virtual machines (CRs) and columns
represent jobs. Each element at the intersection
of row (i) and column (j) indicates whether job j
is assigned to CR, and is defined as:

i (M

Lif't; is assigned to CR ;
a,= J
0 otherwise

According to the IP specification, a, must take an
integer value. In addition, and in order to ensure
that each job is assigned to one and only one cloud
resource, the following statement must be verified:
|CR]-1

Da,=1Vi=0.]T| 2)
j=0

The function which represents the value of the
makespan is given by equation (3):
|7]-1

MS = max, o cri-i Zolaij *F, (3)

Further on, the total cost of the current job
scheduling is given by equation (4):

|CR[-1|7]-1
Cost=2, 2.a,*F*C, (4)
j=0 =0

The objective function will be a weighted sum
function, the aim is to minimize the sum of the
makespan and the total cost, each multiplied by
a corresponding weight factor that reflects its
relative importance in the optimization process
as expressed in equation (5):

Minimize(w, * MS + w, * Cost) (5)

where w, represents the importance of minimizing
the job execution time. and w, the importance of
minimizing the total cost.

If one chooses to ignore the cost in the scheduling
process, the objective function will only minimize
the makespan, and vice versa - if the makespan
is ignored, it will only minimize the cost. In this
paper, the focus is on minimizing the makespan,
which is the total time required to complete all
the assigned jobs. This objective is critical for
improving the resource utilization and reducing
the overall execution time in cloud environments.
Other important objectives, such as minimizing
the total cost or considering a multi-objective
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approach that balances both the overall execution
time and cost, are beyond the scope of this work
and shall be left for future research.

4. The Proposed Method

Based on the previously described model, this
section presents two solutions as methods for the
job scheduling problem. One method is based
on a genetic algorithm, and it is referred to as
the Genetic Algorithm of Job scheduling in the
Cloud (GAJSC), and the other is an adaptation of
PSO algorithm tailored for addressing the same
scheduling problem. Both approaches use the
problem representation described earlier to find
efficient job-to-VM assignments.

4.1. Genetic Algorithm of Job
Scheduling in the Cloud (GAJSC)

This section presents the first proposed algorithm,
which is a genetic algorithm for job scheduling,
based on the problem definition provided in the
previous section. The complete steps of Algorithm
1 are illustrated below:

Algorithm 1. Genetic algorithm for job scheduling

Input: crList, jobList, POP SIZE,
MAX GENERATIONS, CROSSOVER RATE,
MUTATION RATE
Output: best-Solution
« Initialize population with random assignments.
* Evaluate initial population and set random best-
Solution.
for i — 1 to MAX GENERATIONS do
forj < 1 to POP SIZE do
* Calculate fitness for individuall[j]
» Update best-Solution if individual[j] better
than old best-Solution.
end
* Select parents using tournament selection.
* Perform crossover and mutation to create new population.
* Replace the current population with the new population.
end

In addition to the standard inputs of the
algorithm, such as the population size and the
maximum number of generations, the algorithm
also takes three problem-specific inputs: the set
of cloud resources, the set of jobs, and an initial
(random) assignment.

By encoding the solutions as mentioned above,
the problem is modeled by using an assignment
matrix where rows represent virtual machines
(VMs) and columns represent jobs. A value

of 1 at the intersection of a row and a column
means that a job is assigned to a VM. In the
framework of the genetic algorithm, and in order
to encode the solution, this matrix is converted
into a one-dimensional array. The size of the array
corresponds to the number of jobs. Each element
in the array represents a job, where its index is the
job ID and the value of an element is the ID of the
VM assigned to it (see Figure 2). This encoding
was chosen because it makes genetic algorithm
operations easier. For example, in the crossover
step, a random point was picked and parts of two
parent solutions were swapped to create two
children - each child getting part of its data from
each parent. In the mutation step, a position was
randomly selected in the array and its value was
changed within the allowed range.

—
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o
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—
—
)
—
)
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—
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4 5 6

VM | 0 1 0 0 0 0 0 1 0 0
VM: | 0 0 0 1 0 0 0 0 0 1
VMs | 1 0 1 0 0 0 0 0 0 0
VM4 | 0 0 0 0 1 0 1 0 0 0
VMs | 0 0 0 0 0 1 0 0 1 0

Assignment matrix

I J2 I3 Ja Js Js Iz Jg
[3]1[3[2]4[5]471

Assignment array

Jo o
[ 5 [2]

Figure 2. Solution encoding for GAJSC

Table 2 includes the key parameters of the
proposed GAJSC, which were used in the
experimental phase. Among these parameters,
the maximum number of generations is fixed for
experiments with the real dataset, while for the
synthetic dataset it is variable for evaluating the
algorithm under varying conditions.

Table 2. GAJSC’s parameters

Parameter Value
Population size 50
Maximum number of 500

generations

Selection method Tournament selection

Crossover probability 0.8
Mutation probability 0.02
Crossover operator Four points
Mutation operator Randomly change
Encoding scheme Integer
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4.2. Particle Swarm Optimization for
Job Scheduling

For the PSO-based method, the same solution
encoding is used as for the previous algorithm
because it is easier to implement and maintain
during the programming phase. It is also important
to note that the proposed PSO algorithm (Algorithm
2), is a discrete version, adapted to match the
discrete nature of the job scheduling problem.

Algorithm 2. PSO for job scheduling

Input: crList, jobList, swarm size, max iter, w, ¢, ¢
Output: gBest: Optimal job-to-resource assignmen
for i < 0 to swarm size do
for j < 0 to jobList.lenght do
* position[i][j] = crList[random(0,crList.length)]
« velocity[i][j] = random (0, 1)
» makespan = compute makespan(crList, jobList,
position)
« fitness[i][j] = 1 / (makespan + 1)
end
if pBest[i] is worse than position[i] then
* pBest[i] = position][i]
* pBest fitness[i] = fitness[i]
end
end
/* Initialize global best */
for i < 0 to swarm size do
if gBest is worse than position[i] then
* gBest = position][i]
* gBest fitness = pBest fitness|[i]
end
end
/* PSO Main Loop */
for i — 0 to max iter do
for j < 0 to swarm size do
for k < 0 to jobList.lenght do
ror = random(0, 1)
e coghiitive = ¢ * r *(pBest[j|[k]! = position[j][k])
e social =c x 1 (gBest[/]! = position[j][k])
. velocity[i]z[k] Loy velocity[j1[k] + cognitive +
social
« velocity[j1[k] = clamp(velocity[j][k], O, 1)
if random(0, 1) < 0.5 then
* position[j][k] = pBest[j][k]
else
* position[j] = gBest;
end
/* Evaluate new position */
* new makespan = compute makespan(jobs,
resources, position)
* new fitness = 1 / (new makespan + 1)
/* Update personal best
if new fitness > pBest fitness[i] then
* pBest[j] = position[j]
* pBest fitness[j] = new fitness
end
/* Update global best */
if new fitness > gBest fitness then
* gBest = position|j]
* gBest fitness = new fitness
end
end
end

return gBest

Table 3 presents the key parameters of the
proposed PSO. The maximum number of
iterations is fixed at 500 for experiments with the
real dataset, whereas for the synthetic dataset this
parameter is adjusted to assess the algorithm’s
performance under varying conditions.

Table 3. PSO’s parameters

Parameter Value
Population size 50
Max. number of iterations 500
Inertia weight (w) 0.7
Cognitive coefficient (c,) 1.4
Social coefficient (c,) 1.4
Velocity limits (V) Random

5. Experiments and Analysis

The simulation was conducted on a machine
running the Windows operating system
and powered by a 10th-generation Intel i5
processor, and all the algorithms in this study
were implemented using Java as a programming
language based on the CloudSim plus framework
(Silva Filho et al., 2017). With regard to
experimental data, two types of datasets were
used, namely a synthetic dataset and a real-
world dataset.

5.1. Synthetic Dataset

In order to test the set of algorithms presented in
this paper, a synthetic dataset was initially used
for evaluating their performance before applying
them to a real-world dataset. The synthetic
dataset was generated for simulations using the
CloudSim Plus framework. It consists of a set of
configurations (problems P, P, and P,), each of
them including two files: one for virtual machines
(VMs) and one for jobs (cloudlets). Table 4
includes a summary of the three problems used
in this paper.

Table 4. The three problems used in this paper

Problem files
P, VMs =5 Cloudlets = 100
P, VMs =10 Cloudlets = 500
P, VMs =200 Cloudlets = 10000

For the VM configuration file, each virtual
machine is defined by two parameters: a sequential
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ID and its processing power, measured in tab
(MIPS). The cloudlet configuration file contains
job specifications, where each job is characterized
by its length and a priority value.

Figures 3 to 5 illustrate the convergence behavior
of both PSO and GA for the cloud job scheduling
problem (Figure 3 for problem P, Figure 4 for P,
and Figure 5 for P,). As expected, both algorithms
exhibit a decreasing makespan with an increasing
number of iterations, indicating that an increasing
number of iterations allows the algorithms to
converge toward better solutions.
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Figure 3. The convergence behavior of both PSO

=@=PSO == GA

300 \‘

Makespan(seconds)

10 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Number of Iterations

Figure 4. The convergence behavior of both PSO and
GA for the problem P,
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Figure 5. The convergence behavior of both PSO and
GA for the problem P,

This behavior is consistently observed across
all the three versions of the analysed problem.
However, for Problem 3 (P,), which represents
the largest and most complex scenario, the
GA demonstrates a slight advantage over PSO
in terms of minimizing the makespan. Table 5
represents the best solution found by the GA for
the problem P,.

Table 5. The solution of the problem P,

found by GAJSC
Virtual machine Assigned cloudlets

VM 3,6,12,13,15, 18, 23, 29, 37, 38, 40, 44,
1 45, 46,49, 51, 55, 61, 65,72, 73,76

VM 0,1,8,10, 11, 17, 34, 36, 48, 53, 56, 58,
2 63, 85, 89, 91, 95, 96, 98

VM 2,4,20,22,26,31, 33,41, 43, 57, 64, 70,
3 77, 80, 90, 93, 94

VM 14, 16, 25, 27, 28, 32, 35, 47, 50, 59, 60,
4 69, 74,78, 82, 86, 92, 99

VM 5,7,9,19,21, 24, 30, 39, 42, 52, 54, 62,
5 66, 67, 68,71, 75,79, 81, 83, 84, 87, 88, 97

The plot in Figure 6 compares the execution time
for PSO and the Genetic Algorithm (GAJSC) across
various numbers of iterations. It clearly shows
that both algorithms experience an increase in the
execution time as the number of iterations grows,
which is expected. However, PSO demonstrates a
significantly steeper increase in the execution time
in comparison with GA. At every iteration level,
the GA consistently requires less time than PSO.

25000 pso

—o—GA
20000

15000
10000

5000 /
0

10 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Time in milliseconds

Number of Iterations

Figure 6. Comparison of the execution time for PSO
and the Genetic Algorithm (GAJSC)

5.2. Real-world Dataset

The Google Cloud Jobs (GoClJ) Dataset is a public
dataset made available to help researchers and
practitioners understand and simulate large-scale
job scheduling workloads in cloud computing
environments. It is designed to reflect the
behavior of real jobs running on Google’s data
centers, offering insights into production-level job
scheduling, resource usage, and task execution
(Hussain & Aleem, 2018).

The line chart in Figure 7 illustrates the
makespan performance (in seconds) of four
scheduling algorithms - PSO, the FCFS (First-
Come-First-Serve) algorithm, the SJF (Shortest
Job First) algorithm, and the genetic algorithm
(GAJSC) which were evaluated across different
configurations of the GoCJ (Google Cloud
Jobs) dataset. Each dataset configuration (e.g.
“100-5”) represents a unique combination of
jobs and virtual machines, plotted along the
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horizontal axis, while the vertical axis indicates
the corresponding makespan.

At a glance, both the GA and PSO demonstrate a
superior performance, achieving significantly lower
makespan values in comparison with the SJF and
FCFS algorithms. Their trend lines appear very close
throughout the entire range of datasets, which may
obscure a key insight: GA consistently performs
slightly better than PSO, a finding that aligns with
the previous simulations. Despite their close values,
GA’s makespan is marginally lower than PSO’s
makespan across nearly all datasets, underscoring its
higher optimization capability, which is particularly
important for complex or evolving cloud workloads.

In contrast, FCFS shows the poorest performance,
with the highest makespan values throughout all
datastes. This result highlights FCFS’s inefficiency
in dynamic scheduling environments, where it fails
to adapt to workload complexity. SJF performs
moderately, offering better outcomes than FCFS
but falling short of the optimization achieved by
GA and PSO. Table 6 presents the detailed results
corresponding to the visual summary shown in
Figure 7.

Table 6. Makespan-based comparison of the
scheduling algorithms

Dataset FCFS SJF PSO GAJSC
100-5 3344.00 | 3033.33 | 2512.78 | 2507.08
150-7 5280.63 | 4506.25 3381.88 | 3383.75

200-10 4885.63 3667.50 | 2360.36 | 2352.50

250-12 3711.25 3135.63 | 2325.56 | 2319.17

300-15 4589.50 | 3257.22 | 2605.00 | 2481.67

350-17 4202.00 | 3879.38 | 2847.92 | 2682.27

400-20 4668.33 3390.56 | 2547.14 | 2460.50

450-22 3776.67 | 3162.78 | 2398.64 | 2359.09

500-25 5862.50 | 3370.00 | 2752.78 | 2687.31

550-27 4165.00 | 3500.63 | 2774.00 | 2692.86

600-30 4075.00 | 3724.38 | 3045.00 | 2862.92

650-32 4863.13 3416.67 | 3036.92 | 2868.57

700-35 4118.13 3772.50 | 2821.25 | 2675.00

750-37 3994.50 | 3796.25 3042.92 | 2953.00

800-40 3930.00 | 3725.00 | 2630.00 | 2571.25

850-42 4025.00 | 3382.22 | 2683.50 | 2623.64

900-45 5212.22 | 3816.25 3170.50 | 3003.93

950-47 4939.38 | 3576.88 | 3059.44 | 2757.00

1000-50 | 5262.50 | 3793.75 | 2981.50 | 2870.00
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Figure 7. Comparison of the four employed Scheduling
Algorithms applied to the Google cloud dataset

Table 7 summarizes the characteristics of the four
proposed scheduling algorithms, namely the First-
Come-First-Served (FCFS) and the Shortest Job
First (SJF) algorithms in comparison with the
proposed Particle Swarm Optimization (PSO) and
Genetic Algorithm for Job Scheduling in Cloud
(GAJSC). The comparison is based on key criteria
such as the average makespan, consistency,
scalability, and the most appropriate use cases
for each approach. This qualitative assessment
highlights the strengths and limitations of each
algorithm, offering insights into their applicability
under different workload and system conditions.

In order to benchmark the proposed methods
against the related approaches, the Average
Resource Utilization Ratio (ARUR) was used as
the primary metric for comparison. The ARUR
is defined as the average resource utilization by
each method during the complete execution of all
the cloudlets on the available VMs as given in
equation (6) (Ibrahim et al., 2020):

ARUR - avg(makespan) ©6)
max(makespan)

Table 8 presents the efficiency of the proposed
approaches in comparison with two other related
methods in terms of ARUR. All the approaches
considered in this comparison were evaluated
using the GoCJ dataset for job scheduling, along
with synthetic data.

Table 7. Comparison of the Scheduling Algorithms Across Multiple Metrics

Algorithm | Average Makespan | Consistency | Scalability Best Use Cases
PSO Lowest High Excellent Real-time cases
GAJSC Very Low High Excellent | Complex, evolving workloads
FCFS Highest Low Low Simplicity over efficiency
SJF Moderate Moderate Moderate Small job workloads
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Table 8. Comparison of the Scheduling Algorithms

in term of ARUR
Method Synthetic data | GoCJ dataset
MOABCQ _FCFS 0.742 0.796
MOABCQ_LJF 0.801 0.792
PSO 0.900 0.824
GAJSC 0.896 0.794

The method MOABCQ is a multi-objectives
method for solving the problem of job scheduling
in cloud computing based on the artificial
bee colony algorithm adopted along with the
implementation of the Q-learning algorithm. To
extend this approach, the First-Come-First-Serve
heuristic is incorporated to create MOABCQ
FCFS, while the Largest-Job-First heuristic is
applied to derive the MOABCQ _LJF algorithm
(Kruekaew & Kimpan, 2022).

The results show that the proposed methods
significantly outperform the related approaches
in terms of ARUR. While GAJSC exhibits strong
results for synthetic data, its performance on
the GoClJ dataset is comparable with that of the
existing methods. In contrast, PSO consistently
achieves the highest ARUR across both datasets,
demonstrating its effectiveness and robustness
in resource utilization. Although GAJSC a
consistently achieves a better makespan than
PSO algorithm, the ARUR results indicate that
PSO utilizes resources more efficiently. This
suggests that GA prioritizes the reduction of the
job completion time, possibly at the expense
of leaving some resources idle, whereas PSO
distributes the workload more evenly, leading to
a higher resource utilization but slightly longer job
completion times.

6. Conclusion

Cloud computing makes it possible to access
shared resources like servers, storage, and
applications over the Internet whenever needed.
A key part of this is virtualization, which lets one
physical server run multiple virtual machines
(VMs), thereby using hardware more efficiently.
Thanks to this, organizations can set up and
manage their I'T systems more flexibly through

models such as IaaS, PaaS, and SaaS. The main
advantages include lower upfront costs, the ability
to quickly adjust resources as needed, and better
options for disaster recovery. Leading companies
like AWS, Microsoft Azure, and Google Cloud use
virtualization in order to deliver these services on
a global scale.

In highly dynamic cloud environments where
the amount of resources changes every second,
there is a critical need for efficient job scheduling
strategies. This paper addresses the task
scheduling problem in such environments by
proposing two novel algorithms. One of them is a
genetic algorithm-based approach, referred to as
GAJSC (Genetic Algorithm for Job Scheduling in
Cloud), and the other is a meta-heuristic algorithm
based on Particle Swarm Optimization (PSO).
Both algorithms were evaluated using synthetic
and real-world datasets and compared against two
traditional baseline algorithms, namely FCFS and
SJF. The experimental results demonstrate that the
PSO algorithm has a higher resource utilization,
resulting in higher ARUR values.

However, it does not consistently achieve the
lowest makespan, while GAJSC features a
balanced performance, combining a competitive
makespan with a high ARUR which makes it a
particularly effective solution for scheduling in
highly dynamic cloud infrastructures.

As a continuation of this research, future
work could focus on extending the current job
scheduling framework for supporting a multi-
objective optimization. In real-world cloud
environments, job scheduling decisions often
involve trade-offs between multiple conflicting
objectives such as the execution time, resource
utilization, energy consumption, and cost
efficiency. The aim of future work will be to
integrate dynamic priority adjustment mechanisms
for adapting to real-time workload changes and
service-level agreements (SLAs). This extension
will enable a more comprehensive and practical
scheduling strategy that better aligns with the
complex and heterogeneous nature of modern
cloud computing infrastructures.
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