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1. Introduction

Job scheduling in cloud computing refers to 
selecting the most suitable available resources for 
executing tasks or allocating computing machines 
in a way that minimizes the completion time as 
much as possible (Keivani & Tapamo, 2019). 
Cloud computing resources rely on virtualization, 
which makes them highly dynamic, and the set 
of available resources can change frequently. The 
cloud provides functionalities to clients as services 
and is characterized by three service models: 
Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS), and Software as a Service (SaaS). 
On the other hand, users request services from 
the cloud to access these resources, where each 
service consists of a set of operations or jobs. 
Therefore, to ensure a good cloud performance, 
efficient job scheduling is essential.

Cloud computing is a model for enabling the 
ubiquitous, convenient, on-demand network 
access to a shared pool of configurable 
computing resources (e.g. networks, servers, 
storage, applications, and services) that can be 
rapidly provisioned and released with a minimal 
management effort or service provider interaction. 
This cloud model is composed of five essential 
characteristics, three service models, and four 
deployment models (Mell & Grance, 2011). On-
demand self-service is a key characteristic of 
cloud computing, through which the users can 
independently provision computing resources - 

such as processing power, storage, or applications 
- whenever they need them, without requiring 
human interaction with the service provider. 
This gives clients the expectation of immediate 
responsiveness and availability whenever a 
request is made.

In addition to this, cloud service providers must be 
capable of serving multiple clients simultaneously 
in a manner that gives each user the impression of 
exclusive access to resources, similarly to using 
local services. This is enabled through resource 
pooling, where physical and virtual resources 
are dynamically allocated and reassigned 
according to demand. Furthermore, the cloud 
must accommodate varying workloads and scale 
rapidly in response to fluctuating user demands, 
a feature which is known as rapid elasticity. This 
means that the cloud service providers must 
respond efficiently to any number of requests, 
regardless of how many users are involved or 
how much computing power is required. These 
characteristics place great demands on the 
underlying infrastructure, making job scheduling 
a critical task in cloud computing. Effective job 
scheduling ensures that resources are allocated 
fairly, efficiently, and in a timely manner, directly 
influencing the cloud’s ability to meet user 
expectations as responsiveness, scalability, and 
seamless performance are concerned.
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The job scheduling algorithms are classified into 
two classes (Santhosh et al., 2016). The first 
class includes batch mode heuristic scheduling 
(BMHA) algorithms, which wait a fixed period 
of time for job to arrive. Each newly arrived job 
is pushed into a queue to maintain the order of 
arrival, then the scheduling process is started. 
The second class includes online mode heuristic 
scheduling (OMHS) algorithms, here the jobs 
are scheduled when they arrive, and there is no 
awaiting time, this mode is more appropriate for 
the cloud environment.

The objective of this research is to propose two 
novel approaches for job scheduling in cloud 
environments: one approach is based on a genetic 
algorithm, and the other employs the well-known 
PSO optimization technique, both aiming to achieve 
results that surpass the current state of the art.

The remainder of this paper is organized as 
follows. The related works about job scheduling 
in cloud computing are presented in Section 2, 
while Section 3 is dedicated to formulating the 
analysed problem in a suitable way, by means of 
an integer programming-based model. Further on, 
Section 4 sets forth the proposed job scheduling 
solutions (one based on a genetic algorithm and 
the other on the PSO technique) and Section 5 
discusses the experiments which were carried 
out and the obtained results. Finally, Section 6 
concludes this paper and outlines possible future 
research directions. 

2. Related Work

The goal of a scheduler in a cloud computing 
environment is to utilize the resources efficiently 
and minimize the job execution time (Wei et al., 
2018). A job scheduling problem is considered 
NP-hard if there is no exact algorithm that can 
guarantee an optimal solution in a reasonable 
amount of time. To address this challenge and 
achieve the desired objectives, many researchers 
have proposed a variety of methods and 
algorithms, most of which are heuristic-based 
ones, as heuristics is well-suited for solving 
complex problems where an exhaustive search 
is impractical. In this sense, the works of 
Sanjalawe et al. (2025), Houssein et al. (2021) 
and Murad et al. (2022) can enable a more 

detailed understanding and in-depth discussion 
of this subject.

The work of Lipsa et al. (2023) introduces 
an innovative priority-based job scheduling 
approach for an efficient task scheduling in cloud 
computing environments. This method combines 
several advanced techniques for optimizing both 
the task prioritization and resource utilization, 
addressing key challenges in cloud workload 
management. Its core innovation lies in a 
novel priority assignment mechanism using a 
specialized matrix that considers both the task 
size and the estimated execution time. This 
intelligent prioritization system works in tandem 
with a Fibonacci heap data structure, enabling 
rapid task insertion and retrieval operations while 
maintaining an optimal priority ordering. The 
scheduling architecture employs a hybrid parallel 
processing model that strategically blends non-
preemptive and preemptive strategies. To prevent 
task starvation, the system implements a dynamic 
priority escalation mechanism that gradually 
increases the priority of pending tasks. The 
theoretical foundation uses the M/M/n queuing 
model to minimize the waiting times, processing 
times, and transmission delays. The experimental 
results demonstrate significant improvements 
over the existing solutions like BATS and IDEA, 
particularly in handling large-scale workloads 
(up to 10,000 tasks). For more details about 
priority-based job scheduling in the cloud, the 
reader is invited to consult the works of Murad 
et al. (2022, 2024).

The study of Sutar et al. (2024) introduces an 
innovative approach to cloud job scheduling that 
simultaneously addresses energy efficiency and 
cost reduction - two often competing priorities in 
data centre management. The authors developed a 
dual-objective optimization model using NSGA-
II, an advanced evolutionary algorithm, to 
intelligently allocate jobs across virtual machines 
(VMs) while minimizing both power consumption 
and operational expenses. This framework 
incorporates dynamic energy measurement 
through the Dynamic Voltage and Frequency 
Scaling (DVFS) technology and comprehensive 
cost modeling, providing a more realistic solution 
than the traditional single-objective methods. 
Rigorous testing using CloudSim simulations 
demonstrates significant improvements, as this 
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model achieved energy savings of up to 40% 
and a cost reduction of 30% in comparison with 
the existing algorithms like the PSO and ABC 
optimization algorithms. And, although the results 
are promising, the authors acknowledge there are 
limitations related to the current simulations and 
propose relevant future directions, including the 
real-time adaptation of job scheduling. This work 
represents a meaningful step towards sustainable 
cloud computing, proving that the environmental 
and economic objectives can be successfully 
balanced through an intelligent system design.

Sridhar & Babu (2015) claim that the PSO 
algorithm works well for a global search but 
not so well for a local search, unlike the Tabu 
Search (TS) algorithm, which outperforms PSO 
in the context of the local search, therefore they 
proposed a Hybrid Particle Swarm Optimization 
algorithm for job Scheduling in Cloud Computing, 
taking into account how the weakness of the PSO 
algorithm  in the local search is complemented by 
the Tabu search in order to increase the probability 
of finding an optimal solution. The algorithm starts 
by initializing a random population of particles, 
then the fitness of each particle is calculated 
using a fitness function. Further on, the algorithm 
divides the population randomly into two halves, 
one of which is explored by the PSO algorithm, 
and the other one by the Tabu Search algorithm, 
to finally combine the two halves, and update the 
“pbest”, the “gbest” particles and the Tabu list. 
These steps were repeated until the termination 
condition was verified.

The objective of the work of  Zhu et al. (2021) 
is to develop and evaluate an efficient task 
scheduling method for multi-cloud environments 
that optimizes both the makespan and total cost 
while satisfying the security and reliability 
constraints. The proposed scheduling algorithm 
is called Matching and Multi-round Allocation 
(MMA) and it includes three steps:

1.	 Matching phase: For each task, the algorithm 
finds virtual machines (VMs) that meet its 
security, reliability, and performance needs. 
It picks the VM that best matches each task;

2.	 Initial allocation: Tasks are sorted by priority 
and size, and then assigned to their best 
matching VMs. This helps balance the load 
across similar VMs;

3.	 Multi-round allocation: Tasks are reallocated 
in several rounds to reduce the differences 
in completion time among VMs, which 
improves the efficiency of the process and 
reduces the total execution time.

A Cloud Manager monitors the availability 
of virtual machines (VMs) and coordinates 
the scheduling process. As a centralized 
management centre, it has access to multiple 
cloud environments.

Researchers have tried many ways to improve 
cloud scheduling - some focus on task order, 
others on combining different algorithms, and 
a few on trying to save energy and costs. While 
these methods work well in specific cases, none 
of them can handle all situations perfectly. This 
paper aims to create a more flexible scheduler that 
works efficiently in different cloud environments.

3. Problem Definition

As shown in Figure 1, the cloud-based job 
scheduling framework has three main parts: the 
User Portal, Job Scheduler and Management 
Module. The job scheduler is the brain of the 
system, it decides where and when to run each 
job by assigning it to the right VM (Santhosh et 
al., 2016).

Figure 1. Cloud-based job scheduling framework 
(Santhosh et al., 2016)

In general, the users connect to the cloud to execute 
their requests by exploiting a set of cloud resources, 
and the requests are considered as a set of jobs (or 
tasks) T = {t0, t1. . . .tn-1}, such that each job is a 
pair ti = {li, pi}, where li represents the job duration 
measured by the number of cycles, and pi is the 
priority of the job. The cloud resources are denoted 
by CR = {CR0, CR1. . . CRm-1}, and each cloud 
resource is characterized by a computing capacity 
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measured by the number of cycles per unit of time 
and a cost representing the total resource usage 
cost incurred when tasks are assigned to a cloud 
resource in a cloud computing environment CRi = 
{Si, Ci}. It means that each job ti has a processing 
time in a cloud resource CRj equal to PTij = li/Sj. In 
order to simplify the model, the setup and transfer 
times are ignored. The job scheduling consists in 
mapping T = {t0, t2. . .tn-1} to CR = {CR0, CR1. . . 
CRm-1} so as to minimize the job completion time.

The objective of the problem of job scheduling 
in the cloud environment is to minimize the 
makespan which can be defined as the maximum 
cost of any machine (Feldman et al., 2025).

Task assignment to cloud resources can be 
performed in various ways, and the effectiveness 
of each method can be evaluated by calculating 
the makespan (the total time required to complete 
all tasks). For example, a set of cloud resources 
CR = {CR0(2, 3), CR1(4, 2), CR2(3, 1)} and a set of 
tasks T = {t0(9, 2), t1(8, 3), t2(2, 1), t3(6, 5), t4(8, 3), 
t5(2, 2)} are given. Table 1 illustrates two different 
job assignment strategies: the former is based on a 
random assignment with a makespan of 8.5, while 
the latter is based on an optimal assignment with 
a reduced makespan of 4.

Table 1. Example of job scheduling in the cloud

Random allocation makespan = 8.5

CR0(2, 3) t0(9, 2) => PT00 = 4.5 t1(8, 3) => PT10 = 4 8.5

CR1(4, 2) t2(2, 1) => PT21 = 0.5 t3(6, 5) => PT31 =1.5 2

CR2(3, 1) t4(8, 3) => PT42 =2.33 t5(2, 2) => PT52 =0.66 2.99

Optimized allocation makespan = 4

CR0(2, 3) t2(2, 1) => PT20 = 1 t3(6, 5) => PT30 = 3 4

CR1(4, 2) t1(8, 3) => PT11 = 2 t4(8, 3) => PT41 = 2 4

CR2(3, 1) t0(9, 2) => PT02 = 3 t5(2, 2) => PT52 = 0.66 3.66

Integer Programming (IP) is a mathematical 
optimization technique employed for solving 
problems in which some or all decision variables 
must take integer values. It is particularly 
well-suited for modeling decision-making 
problems involving discrete choices, such as 
job assignment, job scheduling, or resource 
allocation. Further on, an IP formulation for the 
analysed job scheduling problem is presented, 
using binary variables to represent the assignment 
of jobs to virtual machines.

The core component of this model is the 
assignment matrix A, where rows represent the 
available virtual machines (CRs) and columns 
represent jobs. Each element at the intersection 
of row (i) and column (j) indicates whether job j 
is assigned to CRi, and is defined as:

1 if t  is assigned to CR  

0 otherwiseij
i ja


= 
                        

(1)

 According to the IP specification, aij must take an 
integer value. In addition, and in order to ensure 
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Further on, the total cost of the current job 
scheduling is given by equation (4):
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The objective function will be a weighted sum 
function, the aim is to minimize the sum of the 
makespan and the total cost, each multiplied by 
a corresponding weight factor that reflects its 
relative importance in the optimization process 
as expressed in equation (5):

( )1 2* *CosMinimize w MS w t+                  (5)

where w1 represents the importance of minimizing 
the job execution time. and w2 the importance of 
minimizing the total cost.

If one chooses to ignore the cost in the scheduling 
process, the objective function will only minimize 
the makespan, and vice versa - if the makespan 
is ignored, it will only minimize the cost. In this 
paper, the focus is on minimizing the makespan, 
which is the total time required to complete all 
the assigned jobs. This objective is critical for 
improving the resource utilization and reducing 
the overall execution time in cloud environments. 
Other important objectives, such as minimizing 
the total cost or considering a multi-objective 
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approach that balances both the overall execution 
time and cost, are beyond the scope of this work 
and shall be left for future research.

4. The Proposed Method

Based on the previously described model, this 
section presents two solutions as methods for the 
job scheduling problem. One method is based 
on a genetic algorithm, and it is referred to as 
the Genetic Algorithm of Job scheduling in the 
Cloud (GAJSC), and the other is an adaptation of 
PSO algorithm tailored for addressing the same 
scheduling problem. Both approaches use the 
problem representation described earlier to find 
efficient job-to-VM assignments.

4.1. Genetic Algorithm of Job 
Scheduling in the Cloud (GAJSC)

This section presents the first proposed algorithm, 
which is a genetic algorithm for job scheduling, 
based on the problem definition provided in the 
previous section. The complete steps of Algorithm 
1 are illustrated below: 

Algorithm 1. Genetic algorithm for job scheduling
Input: crList, jobList, POP SIZE, 
MAX GENERATIONS, CROSSOVER RATE, 
MUTATION RATE
Output: best-Solution
• Initialize population with random assignments.
• Evaluate initial population and set random best-
Solution.
for i ← 1 to MAX GENERATIONS do

for j ← 1 to POP SIZE do
• Calculate fitness for individual[j]
• Update best-Solution if individual[j]  better 
than old best-Solution.
end

• Select parents using tournament selection.
• Perform crossover and mutation to create new population.
• Replace the current population with the new population.
end

In addition to the standard inputs of the 
algorithm, such as the population size and the 
maximum number of generations, the algorithm 
also takes three problem-specific inputs: the set 
of cloud resources, the set of jobs, and an initial 
(random) assignment.

By encoding the solutions as mentioned above, 
the problem is modeled by using an assignment 
matrix where rows represent virtual machines 
(VMs) and columns represent jobs. A value 

of 1 at the intersection of a row and a column 
means that a job is assigned to a VM. In the 
framework of the genetic algorithm, and in order 
to encode the solution, this matrix is converted 
into a one-dimensional array. The size of the array 
corresponds to the number of jobs. Each element 
in the array represents a job, where its index is the 
job ID and the value of an element is the ID of the 
VM assigned to it (see Figure 2). This encoding 
was chosen because it makes genetic algorithm 
operations easier. For example, in the crossover 
step, a random point was picked and parts of two 
parent solutions  were swapped to create two 
children - each child getting part of its data from 
each parent. In the mutation step, a position was 
randomly selected in the array and its value was 
changed within the allowed range.

Figure 2. Solution encoding for GAJSC

Table 2 includes the key parameters of the 
proposed GAJSC, which were used in the 
experimental phase. Among these parameters, 
the maximum number of generations is fixed for 
experiments with the real dataset, while for the 
synthetic dataset it is variable for evaluating the 
algorithm under varying conditions.

Table 2. GAJSC’s parameters

Parameter Value
Population size 50
Maximum number of 
generations 500

Selection method Tournament selection
Crossover probability 0.8
Mutation probability 0.02
Crossover operator Four points
Mutation operator Randomly change
Encoding scheme Integer



https://www.sic.ici.ro

86 Abdelbasset Barkat, Zohair Tahri, Derya Yiltas-Kaplan

4.2. Particle Swarm Optimization for 
Job Scheduling

For the  PSO-based method, the same solution 
encoding is used as for the previous algorithm 
because it is easier to implement and maintain 
during the programming phase. It is also important 
to note that the proposed PSO algorithm (Algorithm 
2), is a discrete version, adapted to match the 
discrete nature of the job scheduling problem. 

Algorithm 2. PSO for job scheduling
Input: crList, jobList, swarm size, max iter, w, c

1
, c

2
 

Output: gBest: Optimal job-to-resource assignment
for i ← 0 to swarm size do

for j ← 0 to jobList.lenght do
• position[i][j] = crList[random(0,crList.length)]
• velocity[i][j] = random (0, 1)
• makespan = compute makespan(crList, jobList, 
position)
• fitness[i][j] = 1 / (makespan + 1)

end
if pBest[i] is worse than position[i] then

• pBest[i] = position[i]
• pBest fitness[i] = fitness[i]

end
end
/* Initialize global best */
for i ← 0 to swarm size do

if gBest is worse than position[i] then
• gBest = position[i]
• gBest fitness = pBest fitness[i]
end

end
/* PSO Main Loop */
for i ← 0 to max iter do

for j ← 0 to swarm size do
for k ← 0 to jobList.lenght do
• r

1
, r

2
 = random(0, 1)

• cognitive = c
1
 ∗ r

1
∗(pBest[j][k]! = position[j][k])

• social = c
2
 ∗ r

2
 ∗ (gBest[j]! = position[j][k])

• velocity[j][k] = w ∗ velocity[j][k] + cognitive + 
social
• velocity[j][k] = clamp(velocity[j][k], 0, 1)
if random(0, 1) < 0.5 then 
• position[j][k] = pBest[j][k] 
else 
• position[j] = gBest;
end
/* Evaluate new position */
• new makespan = compute makespan(jobs, 
resources, position)
• new fitness = 1 / (new makespan + 1)
/* Update personal best
if new fitness > pBest fitness[i] then
• pBest[j] = position[j]
• pBest fitness[j] = new fitness
end
/* Update global best */
if new fitness > gBest fitness then
• gBest = position[j]
• gBest fitness = new fitness
end

end
end
return gBest

Table 3 presents the key parameters of the 
proposed PSO. The maximum number of 
iterations is fixed at 500 for experiments with the 
real dataset, whereas for the synthetic dataset this 
parameter is adjusted to assess the algorithm’s 
performance under varying conditions.

Table 3. PSO’s parameters

Parameter Value
Population size 50
Max. number of iterations 500
Inertia weight (w) 0.7
Cognitive coefficient (c1) 1.4
Social coefficient (c2) 1.4
Velocity limits (Vmax) Random

5. Experiments and Analysis

The simulation was conducted on a machine 
running the Windows operating system 
and powered by a 10th-generation Intel i5 
processor, and all the algorithms in this study 
were implemented using Java as a programming 
language based on the CloudSim plus framework 
(Silva Filho et al., 2017). With regard to 
experimental data, two types of datasets were 
used, namely a synthetic dataset and a real-
world dataset.

5.1. Synthetic Dataset

In order to test the set of algorithms presented in 
this paper, a synthetic dataset was initially used 
for evaluating their performance before applying 
them to a real-world dataset. The synthetic 
dataset was generated for simulations using the 
CloudSim Plus framework. It consists of a set of 
configurations (problems P1, P2 and P3), each of 
them including two files: one for virtual machines 
(VMs) and one for jobs (cloudlets). Table 4 
includes a summary of the three problems used 
in this paper.

Table 4. The three problems used in this paper

Problem files
P1 VMs = 5 Cloudlets = 100
P2 VMs = 10 Cloudlets = 500
P3 VMs = 200 Cloudlets = 10000

For the VM configuration file, each virtual 
machine is defined by two parameters: a sequential 
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ID and its processing power, measured in tab 
(MIPS). The cloudlet configuration file contains 
job specifications, where each job is characterized 
by its length and a priority value.

Figures 3 to 5 illustrate the convergence behavior 
of both PSO and GA for the cloud job scheduling 
problem (Figure 3 for problem P1, Figure 4 for P2, 
and Figure 5 for P3). As expected, both algorithms 
exhibit a decreasing makespan with an increasing 
number of iterations, indicating that an increasing 
number of iterations allows the algorithms to 
converge toward better solutions. 

Figure 3. The convergence behavior of both PSO

Figure 4. The convergence behavior of both PSO and 
GA for the problem P2

Figure 5. The convergence behavior of both PSO and 
GA for the problem P3

This behavior is consistently observed across 
all the three versions of the analysed problem. 
However, for Problem 3 (P3), which represents 
the largest and most complex scenario, the 
GA demonstrates a slight advantage over PSO 
in terms of minimizing the makespan. Table 5 
represents the best solution found by the GA for 
the problem P1.

Table 5. The solution of the problem P1  
found by GAJSC

Virtual machine Assigned cloudlets

VM1
3, 6, 12, 13, 15, 18, 23, 29, 37, 38, 40, 44, 

45, 46, 49, 51, 55, 61, 65, 72, 73, 76

VM2
0, 1, 8, 10, 11, 17, 34, 36, 48, 53, 56, 58, 

63, 85, 89, 91, 95, 96, 98

VM3
2, 4, 20, 22, 26, 31, 33, 41, 43, 57, 64, 70, 

77, 80, 90, 93, 94

VM4
14, 16, 25, 27, 28, 32, 35, 47, 50, 59, 60, 

69, 74, 78, 82, 86, 92, 99

VM5
5, 7, 9, 19, 21, 24, 30, 39, 42, 52, 54, 62, 

66, 67, 68, 71, 75, 79, 81, 83, 84, 87, 88, 97

The plot in Figure 6 compares the execution time 
for PSO and the Genetic Algorithm (GAJSC) across 
various numbers of iterations. It clearly shows 
that both algorithms experience an increase in the 
execution time as the number of iterations grows, 
which is expected. However, PSO demonstrates a 
significantly steeper increase in the execution time 
in comparison with  GA. At every iteration level, 
the GA consistently requires less time than PSO.

Figure 6. Comparison of the execution time for PSO 
and the Genetic Algorithm (GAJSC)

5.2. Real-world Dataset

The Google Cloud Jobs (GoCJ) Dataset is a public 
dataset made available to help researchers and 
practitioners understand and simulate large-scale 
job scheduling workloads in cloud computing 
environments. It is designed to reflect the 
behavior of real jobs running on Google’s data 
centers, offering insights into production-level job 
scheduling, resource usage, and task execution 
(Hussain & Aleem, 2018).

The line chart in Figure 7 illustrates the 
makespan performance (in seconds) of four 
scheduling algorithms - PSO, the FCFS (First-
Come-First-Serve) algorithm, the SJF (Shortest 
Job First) algorithm, and the genetic algorithm 
(GAJSC) which were evaluated across different 
configurations of the GoCJ (Google Cloud 
Jobs) dataset. Each dataset configuration (e.g. 
“100-5”) represents a unique combination of 
jobs and virtual machines, plotted along the 
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horizontal axis, while the vertical axis indicates 
the corresponding makespan.

At a glance, both the GA and PSO demonstrate a 
superior performance, achieving significantly lower 
makespan values in comparison with the SJF and 
FCFS algorithms. Their trend lines appear very close 
throughout the entire range of datasets, which may 
obscure a key insight: GA consistently performs 
slightly better than PSO, a finding that aligns with 
the previous simulations. Despite their close values, 
GA’s makespan is marginally lower than PSO’s 
makespan across nearly all datasets, underscoring its 
higher optimization capability, which is particularly 
important for complex or evolving cloud workloads. 

In contrast, FCFS shows the poorest performance, 
with the highest makespan values throughout all 
datastes. This result highlights FCFS’s inefficiency 
in dynamic scheduling environments, where it fails 
to adapt to workload complexity. SJF performs 
moderately, offering better outcomes than FCFS 
but falling short of the optimization achieved by 
GA and PSO. Table 6 presents the detailed results 
corresponding to the visual summary shown in 
Figure 7.

Table 6. Makespan-based comparison of the 
scheduling algorithms

Dataset FCFS SJF PSO GAJSC

100-5 
150-7 
200-10 
250-12 
300-15 
350-17 
400-20 
450-22 
500-25 
550-27 
600-30 
650-32 
700-35 
750-37 
800-40 
850-42 
900-45 
950-47 
1000-50

3344.00 
5280.63 
4885.63 
3711.25 
4589.50 
4202.00 
4668.33 
3776.67 
5862.50 
4165.00 
4075.00 
4863.13 
4118.13 
3994.50 
3930.00 
4025.00 
5212.22 
4939.38 
5262.50

3033.33 
4506.25 
3667.50 
3135.63 
3257.22 
3879.38 
3390.56 
3162.78 
3370.00 
3500.63 
3724.38 
3416.67 
3772.50 
3796.25 
3725.00 
3382.22 
3816.25 
3576.88 
3793.75

2512.78 
3381.88 
2360.36 
2325.56 
2605.00 
2847.92 
2547.14 
2398.64 
2752.78 
2774.00 
3045.00 
3036.92 
2821.25 
3042.92 
2630.00 
2683.50 
3170.50 
3059.44 
2981.50

2507.08 
3383.75 
2352.50 
2319.17 
2481.67 
2682.27 
2460.50 
2359.09 
2687.31 
2692.86 
2862.92 
2868.57 
2675.00 
2953.00 
2571.25
2623.64
3003.93
2757.00
2870.00

Figure 7. Comparison of the four employed Scheduling 
Algorithms applied to the Google cloud dataset

Table 7 summarizes the characteristics of the four 
proposed scheduling algorithms, namely the First-
Come-First-Served (FCFS) and the Shortest Job 
First (SJF) algorithms in comparison with the 
proposed Particle Swarm Optimization (PSO) and 
Genetic Algorithm for Job Scheduling in Cloud 
(GAJSC). The comparison is based on key criteria 
such as the average makespan, consistency, 
scalability, and the most appropriate use cases 
for each approach. This qualitative assessment 
highlights the strengths and limitations of each 
algorithm, offering insights into their applicability 
under different workload and system conditions.

In order to benchmark the proposed methods 
against the related approaches, the Average 
Resource Utilization Ratio (ARUR) was used as 
the primary metric for comparison. The ARUR 
is defined as the average resource utilization by 
each method during the complete execution of all 
the cloudlets on the available VMs as given in 
equation (6) (Ibrahim et al., 2020):

( )
max( )
avg makespanARUR

makespan
=

                            
(6)

Table 8 presents the efficiency of the proposed 
approaches in comparison with two other related 
methods in terms of ARUR. All the approaches 
considered in this comparison were evaluated 
using the GoCJ dataset for job scheduling, along 
with synthetic data.

Table 7. Comparison of the Scheduling Algorithms Across Multiple Metrics

Algorithm Average Makespan Consistency Scalability Best Use Cases
PSO Lowest High Excellent Real-time cases

GAJSC Very Low High Excellent Complex, evolving workloads
FCFS Highest Low Low Simplicity over efficiency
SJF Moderate Moderate Moderate Small job workloads



	 89

ICI Bucharest © Copyright 2012-2025. All rights reserved

A Comparative Study of Job Scheduling in Cloud Computing

Table 8. Comparison of the Scheduling Algorithms 
in term of ARUR

Method Synthetic data GoCJ dataset
MOABCQ_FCFS 0.742 0.796
MOABCQ_LJF 0.801 0.792
PSO 0.900 0.824
GAJSC 0.896 0.794

The method MOABCQ is a multi-objectives 
method for solving the problem of job scheduling 
in cloud computing based on the artificial 
bee colony algorithm adopted along with the 
implementation of the Q-learning algorithm. To 
extend this approach, the First-Come-First-Serve 
heuristic is incorporated to create MOABCQ_
FCFS, while the Largest-Job-First heuristic is 
applied to derive the MOABCQ_LJF algorithm 
(Kruekaew & Kimpan, 2022).

The results show that the proposed methods 
significantly outperform the related approaches 
in terms of ARUR. While GAJSC exhibits strong 
results for synthetic data, its performance on 
the GoCJ dataset is comparable with that of the 
existing methods. In contrast, PSO consistently 
achieves the highest ARUR across both datasets, 
demonstrating its effectiveness and robustness 
in resource utilization. Although GAJSC a 
consistently achieves a better makespan than 
PSO algorithm, the ARUR results indicate that 
PSO utilizes resources more efficiently. This 
suggests that GA prioritizes the reduction of the  
job completion time, possibly at the expense 
of leaving some resources idle, whereas PSO 
distributes the workload more evenly, leading to 
a higher resource utilization but slightly longer job 
completion times.

6. Conclusion

Cloud computing makes it possible to access 
shared resources like servers, storage, and 
applications over the Internet whenever needed. 
A key part of this is virtualization, which lets one 
physical server run multiple virtual machines 
(VMs), thereby using hardware more efficiently. 
Thanks to this, organizations can set up and 
manage their IT systems more flexibly through 

models such as IaaS, PaaS, and SaaS. The main 
advantages include lower upfront costs, the ability 
to quickly adjust resources as needed, and better 
options for disaster recovery. Leading companies 
like AWS, Microsoft Azure, and Google Cloud use 
virtualization in order to deliver these services on 
a global scale.

In highly dynamic cloud environments where 
the amount of resources changes every second, 
there is a critical need for efficient job scheduling 
strategies. This paper addresses the task 
scheduling problem in such environments by 
proposing two novel algorithms. One of them is a 
genetic algorithm-based approach, referred to as 
GAJSC (Genetic Algorithm for Job Scheduling in 
Cloud), and the other is a meta-heuristic algorithm 
based on Particle Swarm Optimization (PSO). 
Both algorithms were evaluated using synthetic 
and real-world datasets and compared against two 
traditional baseline algorithms, namely FCFS and 
SJF. The experimental results demonstrate that the 
PSO algorithm has a higher resource utilization, 
resulting in higher ARUR values. 

However, it does not consistently achieve the 
lowest makespan, while GAJSC features a 
balanced performance, combining a competitive 
makespan with a high ARUR which makes it a 
particularly effective solution for scheduling in 
highly dynamic cloud infrastructures.

As a continuation of this research, future 
work could focus on extending the current job 
scheduling framework for supporting a multi-
objective optimization. In real-world cloud 
environments, job scheduling decisions often 
involve trade-offs between multiple conflicting 
objectives such as the execution time, resource 
utilization, energy consumption, and cost 
efficiency. The aim of future work will be to 
integrate dynamic priority adjustment mechanisms 
for adapting to real-time workload changes and 
service-level agreements (SLAs). This extension 
will enable a more comprehensive and practical 
scheduling strategy that better aligns with the 
complex and heterogeneous nature of modern 
cloud computing infrastructures.
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