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Abstract: This paper proposes an efficient decision support system for an ambulance dispatching management system.
The system is represented in the form of a causal graph, in which each arc represents a causal connection between the
medical service providers (ambulances) and the medical service beneficiaries (patients). The generated solution is based on
determining the optimal strategies by using specific game theory procedures. The determination of the intervention costs is
based on the existing road infrastructure. The novelty of the proposed solution lies both in considering the road infrastructure
as a time-varying system, with variable costs and road segments that may become inaccessible, as well as in the possibility
of generating a solution based on the current positions of the medical service providers.
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1. Introduction

The ambulance system can be considered a
supply-distribution system or a transportation
system, considering ambulances as providers of
medical services and patients as beneficiaries
(consumers) of medical services.

The specialized literature presents a multitude
of approaches for generating optimal or close to
optimal solutions in this field.

The vast majority of them can only be used in
ideal cases, where the road infrastructure is stable
and the costs are fixed, previously determined.
The use of these methods, especially those
based on linear programming, in real situations
with variable costs and road segments that may
become unusable is not possible or, in some cases,
it requires considerable computational efforts.

A method for determining a cost-efficient
solution in a transportation network prone to
critical incidents was proposed in (Bilbiie,
Dimon & Popescu, 2024), by using a modified
form of Dijkstra’s algorithm, usable even for
real-time applications.

Considering that an essential element of the
ambulance system is the intervention time,
which triggers the need to offer quick solutions,
this paper proposes an approach based on simple
and efficient algorithms, which can quickly
generate a solution and can easily adapt to
changes in the system.

Research in the field has experienced an explosive
development, especially following the experiences
during the Covid-19 pandemic, a timespan
in which significant delays were observed in

providing medical care, especially during periods
of multiple requests.

In (Jankovic et al., 2024) the authors propose
an optimized spatial distribution of ambulances
using a hierarchical p-median model which, as a
result of the experiments carried out, generated an
increase in the number of timely interventions by
8.7% for the urban areas, respectively by 10.5%
for the rural areas in Slovakia.

A model for optimizing pre-hospital emergency
services was developed and presented in (Olave-
Rojas & Nickel, 2021). The study was based on
hybrid simulation and machine-learning and the
model was validated by using data collected from
a service coordination center in northern Germany.

Further on, models for optimizing ambulance
allocation and determining the locations of
parking centers based on genetic algorithms are
presented in (McCormack & Coates, 2015) and
in (Kochetov & Shamray, 2021). By applying
the proposed method to the London ambulance
service (the former work) and Vladivostok
city EMS service (the latter work), the authors
obtained a substantial improvement with regard
to the response time.

Janosikova et al. (2021) proposed a bi-criteria
mathematical programming model considering
the access of high-priority patients to medical
services the accessibility of high-priority patients
within a short time limit and the average response
time for all patients, to relocate emergency
medical stations where ambulances waiting
to be dispatched are parked. The methodology
was verified using real ambulance trip data from
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Slovakia. The response time was improved by
58 s (as an average) and the number of “on-time”
interventions increased by 6% for high-priority
calls and 5% for the other calls.

In (Thai & Huh, 2022) the authors propose
a cloud-computing and big-data approach to
optimizing ambulance services in South Korea.
The application, based on a web architecture,
optimizes patient transport based on distances,
pathologies, and hospitals that can provide
specialized treatment.

Another model, based on a combination between
the Discrete Event Simulation method and an
artificial neural network is presented in (Hosseini
Shokouh, Mohammadi & Yaghoubi, 2022). The
solution is obtained by solving the mathematical
model based on genetic algorithms.

In (Selvan et al., 2025) an Al-based solution
is proposed, using a deep neural network for
adjusting the ambulance routes.

The present paper considers the modeling of a
management system for emergency medicine based
on a simple form of a causal graph (Bilbiie, Dimon
& Popescu, 2020), or a directed acyclic graph
(DAG) (Dawid, 2024), where the nodes represent
the entities of the system (ambulances and patients)
and the arcs represent the possibility of each
ambulance to offer medical services to some (or all)
patients. The optimization of ambulance allocation
for patient service is made using procedures
specific to the strategic game theory.

This model was applied over a road infrastructure
prone to incidents affecting road segments
(resulting in an increase or decrease of the travel
time) and an optimal solution was generated
in real time for ambulance dispatching in an
emergency medical system. Both the causal graph
theory and game theory procedures offer easy-to-
implement and fast enough algorithms to be used
in real situations.

The results obtained from the simulation based
on the case study presented in Section 4 indicate
a possible reduction of the resources used by
11.1% (less personnel and fewer vehicles) without
affecting the quality of services (time to arrival) or,
if the resources are kept the same, a 16.6% increase
in the number of possible assisted patients.

The remainder of this paper is organised as follows.

Section 2 presents the causal graph associated
with the management system for emergency
medicine, the method of determining the initial
costs and the method of constructing the game
matrix. Section 3 describes the main methods
employed for generating an optimal solution by
using procedures specific to game theory. Further
on, Section 4 presents a case study related to
the simulator developed for implementing the
proposed mechanisms, and the results obtained
based on the simulation carried out. Finally,
Section 5 outlines the main conclusions resulting
from this study.

2. Causal Graph Associated With
the Management System for
Emergency Medicine

The architecture of the proposed system can be
represented in the form of a causal graph (Figure 1),
with two categories of elements: service providers
(ambulances) and service beneficiaries (patients
seeking medical assistance).

Figure 1. The causal graph associated with the
transportation system

The causal relationships between the variables of
the management system can be described by using
a matrix-vector representation.

The matrix M expresses the causal dependence
between the vectors a and p:

p=M*a (1
where:

T
a = [al, Ayy ooy ap]
T

(2)
P = [pl’pZ’ -'-apm]

represent the provider nodes (ambulances)
that will meet the desired requirements of the
beneficiary nodes (patients).
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The elements of matrix M are:

_{l, if path a; — p, exists

0, if not )

i

Given a matrix M and a vector p already known,
vector a can be calculated according to equation
4. The configuration of the vector a provides the
algebraic solution of the causal graph.

To determine the suppliers, the matrix
representation is used:
a=M*p 4)

where M is the transpose of the matrix M.

Solving the graph in a causal direction starts
from the known state regarding the availability
of providers, given by the known vector a (service
providers), to estimate the components of the
patient vector p, related to the patients who require
medical assistance.

The anti-causal direction of operation starts from
the patient vector p which is related to the patient
requirements for locating the appropriate service
providers denoted by a.

Since the management system reacts to the
emergence of requests for medical assistance
on the patient side, the anti-causal approach is
more appropriate.

When new requests appear, the patients who
made the requests are activated, and by solving
the graph in the anti-causal direction, all the free
providers who can offer the requested services
are determined.

In Figure 2 one such situation is illustrated,
indicating the service providers denoted by a, for
a specific intervention request (patients p, to p,):

Figure 2. Graph solution for a specific
intervention request

For this situation, the value of the patient vector is:
p=1[100001] (5)

and the ambulances able to provide services are
determined by using equation (4), which for the
matrix associated with the graph in Figure 2, gives:

a=[1011] 6)

2.1. Determining the Costs
of the Intervention

The road network can be represented as an
undirected graph, where nodes represent
intersections and arcs represent connections
between adjacent nodes. Each connection has an
associated initial cost, determined by previous
measurements, a cost that changes over time
depending on the real situation at the time of
the analysis.

For each of the connections determined when
solving the causal graph, the image of the road
network is constructed and a minimum cost
path for the intervention is generated using the
Dijkstra’s algorithm (Dijkstra, 1959). For the
system shown in Figure 1, the corresponding
minimum cost paths were determined for each
possible combination a, — p,, for which m, =1.

The algorithm that determines the estimated cost
for the proposed route from the source node to the
destination node follows the steps detailed below:

2.1.1 The Initial Step

- It starts from the source node, the initial
minimum cost is zero for the source node and
it has a large value (considered “infinite”) for
the other nodes;

- All the neighbors of the source node are
analyzed, and for each of them the cost of
transportation from the source node to the
analyzed node is memorized;

- The source node is removed from the list of
nodes to be analyzed.

2.1.2 The Intermediary Steps

The following operations are executed
successively until the analyzed node is the
destination node:

- The node with the lowest cost is chosen from
the list of remaining nodes to be analysed.
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It is obvious that as this node features the
lowest cost, the route already determined
from the source node to this node is the
optimal route; no other route will be able to
generate a lower cost;

- The current node is removed from the list of
remaining nodes to be analyzed;

- For each neighbor node related to the current
node that is still in the list, the minimum
cost is established as the sum of the
transportation cost to the removed node and
the transportation cost from the current node
to the neighbor node;

- If the new minimum cost determined is
lower than the previous minimum cost, then
the new minimum cost is retained, and the
current node is retained as the previous node;

- If the new minimum cost is higher than the
previous one, it means that another minimum
route was previously determined, and the
next node is analysed;

2.1.3 The Final Step

- If the destination node is reached, the
algorithm stops;

- If all the nodes were reached according to
the previous step and the destination node
was not yet analyzed, it means that there is
no path between the source node and the
destination node.

When a significant event that changes the
previously estimated costs appears, a new
route is determined using the same algorithm
by considering the current point of departure
for the ambulance, updating the costs for the
road segments involved (or eliminating the
respective segments or portions from the network
if necessary) and generating a new route to the
destination. The new obtained cost is considered
when proposing a new optimal solution, following
the analysis of the entire system.

3. Choosing the Optimal Solution
Through Specific Game
Theory Procedures

All the costs obtained previously are centralized
in the form of a matrix, C, in which the rows
represent the active ambulances and the columns

represent the active patients. Each element c;
of the matrix represents the cost of providing
the service for patient “j” by ambulance “i”. If
there is no possible route between an ambulance
and a patient, the travel cost is indicated with
the value -1 so as not to be considered in the
optimization process.

Based on the causal graph represented in Figure 1,
the following cost matrix is constructed (Table 1):

Table 1. Network-associated cost matrix

C P1 P2 P3 P4 PS5 P6
Al 23 37 49 15 -1 21
A2 -1 22 11 39 17 -1
A3 31 44 28 -1 22 41
A4 17 24 -1 39 16 33

The matrix thus obtained can be interpreted
as a matrix corresponding to a strategic game,
in which the elements involved represent the
“losses” of the service provider. Thus, the
procedures specific to game theory can be
used for choosing the optimal strategy either
by employing a complementary form of these
procedures based on inverting the minimum
and maximum conditions, or by transforming
the matrix C into a matrix of “gains” and then
applying the procedures in their classical form.

Considering the value of an intervention to
be, for example, 1000 price units (p.u.), the
“gains” matrix is constructed by attributing to
each element of the matrix C the value 1000—c;
(Table 2).

Table 2. Game Matrix

G | P [ P2[ P3| P4 Ps| Ps
Al 977 | 963 | 951 | 985 | -1 | 979
A2 -1 | 978 | 989 | 961 | 983 | -1
A3 969 | 956 | 972 | -1 | 978 | 959
A4 983 | 976 | -1 | 961 | 984 | 967

Each value in this matrix is variable over
time, being affected by the state of the road
infrastructure. The reconfiguration of the matrix
is done quickly, and the generation of a new
solution in real time is possible thanks to the
procedures specific to game theory, which are
easy to implement and extremely fast, even for
complex cases.
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It is possible that after reconfiguring the game
matrix, solutions will be generated that differ
greatly from the initial ones, having as a practical
representation the redirection of ambulances
to other patients than those to which they were
initially assigned.

Ambulance redistribution can also occur in cases
in which a new patient is registered in the system,
when the nearest ambulance dispatch center
can no longer provide services (no ambulance
is available). In this case, the game matrix is
expanded with another column, the new costs for
each ambulance-patient pair are determined and
a new solution is provided.

To generate the optimal solution, the max-min,
Hurwicz, Laplace and Savage game theory
procedures were selected. They were selected
both in order to determine the computational
time for applying each procedure and to analyze
the ability of each procedure to generate an
optimal solution.

3.1. The Max-min Procedure

This procedure assumes that player A adopts
the strategy:
max{min c..} (7)

N i i
1<i<n 1<ism Y/

Player A will determine the minimum gains
for each strategy considering all of player P’s
strategies, then he will select the strategy that
ensures a maximum gain.

3.2. The Hurwicz Procedure

According to this procedure, player A will choose
a “coefficient of pessimism”, g, which will be
used for computing, for each of his strategies, an
average value:

B gmin{c; }+(1-g)max{c,}
. 2
j=L2,...m0<¢g<1

Avg

’ (8)

Player A will then choose the strategy that ensures
maximum gain based on the obtained values:

max{Avg,} %)

3.3. The Laplace Procedure

Based on the Laplace procedure, player A
will compute an average value for each of his
strategies. Average values are calculated based
on the following formula:

- 1

ci=—Y ci=12,..n (10)
m

Finally, the strategy that ensures

maxc,,i=1,2,...,n (11)

is chosen.
3.4. The Savage Procedure

This procedure works well under conditions of
total uncertainty, which means nothing is known
about the opposing player regarding the strategy
he will adopt at a given moment.

Player A will construct a “matrix of erroneous
decisions” based on the initial game matrix, then
he will use the max-min procedure on the new
game matrix.

The matrix of erroneous decisions is constructed
in columns as follows (for column k):

Ry, =max {Cik} —Ci

R, = max{cik } —Cx

(12)
R, = ma'x{cik } “Cuk

Thus, each element of the new matrix is obtained
by subtracting the corresponding element of the
game matrix from the element with the maximum
value of the respective column.

After obtaining the new matrix, player A will
choose the strategy that ensures:

min{max R, }

1<i<n 1<j<m

(13)

Considering the values corresponding to the total
number of ambulances and all possible locations
of patients in real situations, which will generate
a relatively big game matrix, all these procedures
are applied to a game matrix that contains only
active ambulances and active patients.
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4. Case Study

As a case study, one chose the activity of a private
company that serves patients located within a
geographical area that offers, both due to its relief
and the sufficiently branched and diversified road
network, very good conditions for testing the
proposed optimization mechanisms.

The administrative area for ambulance intervention
is marked with a dotted line in Figure 3, and the
three ambulance parking points are marked in
brown (X, Y and Z).

Moldoveanu.. ™.,

Castelul Bran w

anastirea Boia

Corbeni Z
B
U 24
Y Domnesti g
dﬁ ! ; Flel
bsc =
} Puci
| E574]
[ E01 | Y
(A1) Mioveni
Tan
BasX
y ;
Geamana Topolaveni
I Albota &
| E574 ] ;
Gaesti
 EB1 ) :
Costesti
| E81
5 61]
Scornicesti i o
o5} . Slobozia

Mirosi . =

Figure 3. Administrative map of the analyzed area

There are several ambulances at each base station,
and these will be treated as independent entities.

The case study was limited to the analysis of
situations in which it is not necessary to transport
the patients to the hospital or to other institutions,
and the ambulances have identical equipment,

sufficient for a day with up to 20 successive
interventions. The staffing of the ambulances is
also identical, so that each ambulance can provide
services to any patient, in case of need.

The case study starts from an initial situation, with
no patients requiring an intervention and with all
ambulances at the parking points.

During the simulation, patients are randomly
generated in various locations, using the “simple
random sampling” method, which assumes equal
probabilities of requesting an intervention for
each location. In this way, the generation of
events in diversified locations is ensured and the
response of the proposed system can be studied
more easily.

After generating a solution, critical events are
randomly inserted that require recalculating the
minimum cost paths, rebuilding the game matrix,
and determining a new solution.

Although for some places the optimal route
seems easy to choose, for most of them there
are alternative routes which, depending on the
weather and traffic conditions, may (or may not)
represent better solutions (Figure 4).
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Figure 4. Road infrastructure with alternative routes

For all these points, one starts from the ideal
situation in which the costs are known and,
depending on the events occurring on the chosen
route, the new costs are determined using
Dijkstra’s algorithm.

The game matrix is constantly updated, both based
on the previously collected data and on the recent
data obtained with regard to traffic conditions.
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Thus, whenever a significant event occurs that
determines a change in the intervention costs,
the game matrix is reconstructed and the optimal
strategies are reevaluated.

Based on the specific road infrastructure, a game
matrix was built as illustrated in Table 3, which
takes into account the initial costs, corresponding
to the stable (ideal) situation.

Table 3. Complete game matrix (excerpt)

G | P | P | P | P | P | .. |P,
A, | 1000 | 938 | 958 | 984 | 991 | .. | 975
A, | 1000 | 938 | 958 | 984 | 991 | .. | 975
A, | 938 | 1000 | 949 | 954 | 936 | .. | 958
A, | 958 | 949 | 1000 | 950 | 952 | .. | 941

Each row corresponds to an ambulance,
and each column corresponds to a possible
intervention point (the location of a patient — 102
administrative-territorial units).

From this matrix, depending on the patients’
requests, a sub-matrix is extracted that includes
only the columns specific to active patients. For
this new matrix, the classical procedures specific
to game theory (the Max-min, Laplace, Hurwicz,
and Savage procedures) are applied and a solution
is generated.

The dimensions of the matrix are variable, the
rows corresponding to ambulances involved in
an intervention were eliminated for the duration
of the intervention, and the columns correspond
only to patients who require transport for the
medical intervention.

4.1 Simulator Description

The analyzed company operates under the
following conditions:

- it has three locations where ambulances are
stationed (X, Y and Z), which feature anumber
of 9, 5 and 4 ambulances, respectively;

- each ambulance carries out an average
number of 12 interventions per day, with
a minimum of 9 and a maximum of 15
interventions;

- thetreatment applied to a patient after moving
to the intervention point takes on average 35

minutes, with a minimum time of 15 minutes
and a maximum time of 60 minutes.

Starting from the data collected from the analyzed
company, the simulator runs in three stages:

- Stage 1: Establishing the baseline. This
involves randomly generating a number of
patients per day similarly to a real scenario
and determining the average ambulance
travel time to the patient (the average cost);

- Stage 2: A gradual reduction of the number of
ambulances and the analysis of its impact on
the average travel time;

- Stage 3: A gradual increase in the number of
patients per day and the analysis of its impact
on the average travel time.

The initial data is taken from a database that
includes the average (standard) travel times from
the three ambulance parking points to each of the
locations of potential patients (102 administrative-
territorial units).

To simulate the traffic conditions (better or worse)
and the occurrence of critical events that affect
the preset routes and require the generation of
alternative routes, the standard travel times to
the patients are adjusted randomly based on
percentages between -10% and +25%. When the
average travel time for a road segment is modified,
that value will be used for all the subsequent trips
on that segment.

All the results, both the partial and final ones, are
saved in a database to allow their easy verification.

The method used for generating random events
is “simple random sampling” which ensures
a uniform distribution of the generated values
between the minimum and maximum limits.

4.2. Implementation Considerations

For a better integration with the software used
by the analyzed company, the simulator was
implemented under Windows OS, using the C#
programming language.

The game matrix G (Table 3) was constructed
based on the existing road infrastructure,
determining for each element the optimal travel
route by using Dijkstra’s algorithm presented
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in subsection 2.1. The game matrix is rebuilt
whenever an incident occurs on the road
infrastructure and the travel times change.

When a new intervention request is generated
by a patient, a new, smaller matrix is generated,
containing only the active patients (as columns)
and the available ambulances (as rows). In this
situation, the active patients are all the patients
waiting for ambulance arrival and the available
ambulances are considered all ambulances
which are not involved in providing treatment
to a patient.

It is possible, in this way, to change the destination
of an ambulance sent to a patient, if necessary, in
order to obtain a better total time of intervention.

For the new matrix all four game theory
procedures presented in section 3 (the max-min,
Hurwicz, Laplace and Savage procedures) are
applied and the best result is chosen.

To that, all the inputs and outputs of the
simulator are in the form of text files, for easier
human verification.

4.3. Simulation Results

In the first stage, based on the data collected from
the company providing ambulance services, an
average travel time to the patient of 32.3 minutes
was obtained, a value which represents a 12.7%
reduction of the real travel time of 37 minutes
(according to the information obtained).

The randomly generated data on the road segment
costs and patient distribution was saved in an
external database.

For the second stage the same data was used,
reducing the number of available ambulances, but
keeping the other conditions identical.

To avoid particular configurations resulting from
random patient generation, the simulation was
run for 100 (simulated) days, with an average
of 216 patients per day (18 ambulances with 12
interventions each).

It is noted that, thanks to the efficient ambulance
dispatching algorithms for intervention purposes,
the average travel time was reduced by 4.7 minutes
in comparison with to the real-life scenario.

The centralized results obtained in stage 2 are
included below (Table 4):

Table 4. The impact of the number of ambulances on
the travel time

No. of ambulances | Average travel time %Li(;l:ﬁ)gne
9,5, 4 32.3 min 0.5 min
8,5,4 34.1 min 0.5 min
9,4,4 32.9 min 0.5 min
9,5,3 33.3 min 0.6 min
8,4,4 36.2 min 1.2 min
8,5,3 38.3 min 2 min
9,4,3 35.6 min 0.9 min
7,5,4 39.1 min 2 min
9,3,4 34.7 min 0.8 min
9,52 37.4 min 1.4 min
8,4,3 43 min 4.4 min

By reducing the number of ambulances by
one, regardless of the location from which an
ambulance is removed, the algorithms used still
allow for the provision of medical assistance at a
level specific to real-life scenarios.

The simulation shows that it is even possible to
eliminate two ambulances (11.1% less personnel
and fewer vehicles) if 9 ambulances are kept in
the headquarter X, and the response times change
very little (35.6 minutes for the combination 9,
4, 3 and 34.7 minutes for the combination 9, 3,
4, respectively).

For these two variants, the average duration of
the blockage (the period of time during which
all ambulances are busy and no ambulance can
be sent to the patient) is under one minute, an
extremely short time interval.

However, if three ambulances are eliminated, one
from each location, the time required to travel to a
patient’s address increases substantially, reaching
an average of 43 minutes, with an average
blockage period of 4.4 minutes.

For the third stage, both the number of ambulances
and the travel times were taken over from the first
stage, in order to determine the influence of the
number of patients on the travel time. If in the
first and second stages the number of patients
was 216 (ensuring an average of 12 patients for
the 18 available ambulances), in the third stage
the number of patients was gradually increased
(adding 18 patients at each step, which resulted
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in an average of one more patient for each
ambulance). The centralized results are presented
in Table 5.

Table 5. The impact of the number of patients on the
travel time

No. of patients | Average travel time %ﬁzl:;ie
216 32.3 min 0.5 min
234 33.7 min 0.4 min
252 36.7 min 1.2 min
270 46.9 min 6.2 min
288 69.4 min 24.3 min

The results obtained from the simulation show that
the initial number of ambulances can successfully
cope with a larger influx of patients, with each
ambulance being able to provide assistance to
14 patients daily (a 16.6% increase for the initial
number), that is 252 patients on average per day,
without affecting the intervention times (a travel
time of 36.7 minutes to the patient and 1.2 minutes
of congestion).

However, for a larger number of patients per day,
a larger number of ambulances is required, as
starting with 270 patients the average blockage
duration reaches 6.2 minutes, and the average
travel time increases to 46.9 minutes.

5. Conclusions

The proposed method allows the generation
of rapid solutions for an ambulance services
management system based on a road infrastructure
with variable costs over time and with a variable
number of customers.

Based on the simulation carried out, a very
detailed description of the road infrastructure has
a major importance with regard to the additional
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