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1. Introduction

The ambulance system can be considered a 
supply-distribution system or a transportation 
system, considering ambulances as providers of 
medical services and patients as beneficiaries 
(consumers) of medical services.

The specialized literature presents a multitude 
of approaches for generating optimal or close to 
optimal solutions in this field.

The vast majority of them can only be used in 
ideal cases, where the road infrastructure is stable 
and the costs are fixed, previously determined. 
The use of these methods, especially those 
based on linear programming, in real situations 
with variable costs and road segments that may 
become unusable is not possible or, in some cases, 
it requires considerable computational efforts.

A method for determining a cost-efficient 
solution in a transportation network prone to 
critical incidents was proposed in (Bîlbîie, 
Dimon & Popescu, 2024), by using a modified 
form of Dijkstra’s algorithm, usable even for 
real-time applications.

Considering that an essential element of the 
ambulance system is the intervention time, 
which triggers the need to offer quick solutions, 
this paper proposes an approach based on simple 
and efficient algorithms, which can quickly 
generate a solution and can easily adapt to 
changes in the system.

Research in the field has experienced an explosive 
development, especially following the experiences 
during the Covid-19 pandemic, a timespan 
in which significant delays were observed in 

providing medical care, especially during periods 
of multiple requests.

In (Jankovič et al., 2024) the authors propose 
an optimized spatial distribution of ambulances 
using a hierarchical p-median model which, as a 
result of the experiments carried out, generated an 
increase in the number of timely interventions by 
8.7% for the urban areas, respectively by 10.5% 
for the rural areas in Slovakia.

A model for optimizing pre-hospital emergency 
services was developed and presented in (Olave-
Rojas & Nickel, 2021). The study was based on 
hybrid simulation and machine-learning and the 
model was validated by using data collected from 
a service coordination center in northern Germany.

Further on, models for optimizing ambulance 
allocation and determining the locations of 
parking centers based on genetic algorithms are 
presented in (McCormack & Coates, 2015) and 
in (Kochetov & Shamray, 2021). By applying 
the proposed method to the London ambulance 
service (the former work) and Vladivostok 
city EMS service (the latter work), the authors 
obtained a substantial improvement with regard 
to the response time.

Jánošíková et al. (2021) proposed a bi-criteria 
mathematical programming model considering 
the access of high-priority patients to medical 
services the accessibility of high-priority patients 
within a short time limit and the average response 
time for all patients, to relocate emergency 
medical stations where ambulances waiting 
to be dispatched are parked. The methodology 
was verified using real ambulance trip data from 
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Slovakia. The response time was improved by 
58 s (as an average) and the number of “on-time” 
interventions increased by 6% for high-priority 
calls and 5% for the other calls.

In (Thai & Huh, 2022) the authors propose 
a cloud-computing and big-data approach to 
optimizing ambulance services in South Korea. 
The application, based on a web architecture, 
optimizes patient transport based on distances, 
pathologies, and hospitals that can provide 
specialized treatment.

Another model, based on a combination between 
the Discrete Event Simulation method and an 
artificial neural network is presented in (Hosseini 
Shokouh, Mohammadi & Yaghoubi, 2022). The 
solution is obtained by  solving the mathematical 
model based on genetic algorithms. 

In (Selvan et al., 2025) an AI-based solution 
is proposed, using a deep neural network for 
adjusting the ambulance routes.

The present paper considers the modeling of a 
management system for emergency medicine based 
on a simple form of a causal graph (Bîlbîie, Dimon 
& Popescu, 2020), or a directed acyclic graph 
(DAG) (Dawid, 2024), where the nodes represent 
the entities of the system (ambulances and patients) 
and the arcs represent the possibility of each 
ambulance to offer medical services to some (or all) 
patients. The optimization of ambulance allocation 
for patient service is made using procedures 
specific to the strategic game theory.

This model was applied over a road infrastructure 
prone to incidents affecting road segments 
(resulting in an increase or decrease of the travel 
time) and an optimal solution was generated 
in real time for ambulance dispatching in an 
emergency medical system. Both the causal graph 
theory and game theory procedures offer easy-to-
implement and fast enough algorithms to be used 
in real situations.

The results obtained from the simulation based 
on the case study presented in Section 4 indicate 
a possible reduction of the resources used by 
11.1% (less personnel and fewer vehicles) without 
affecting the quality of services (time to arrival) or, 
if the resources are kept the same, a 16.6% increase 
in the number of possible assisted patients.

The remainder of this paper is organised as follows.

Section 2 presents the causal graph associated 
with the management system for emergency 
medicine, the method of determining the initial 
costs and the method of constructing the game 
matrix. Section 3 describes the main methods 
employed for generating an optimal solution by 
using procedures specific to game theory. Further 
on, Section 4 presents a case study related to 
the simulator developed for implementing the 
proposed mechanisms, and the results obtained 
based on the simulation carried out. Finally, 
Section 5 outlines the main conclusions resulting 
from this study.

2. Causal Graph Associated With 
the Management System for 
Emergency Medicine

The architecture of the proposed system can be 
represented in the form of a causal graph (Figure 1), 
with two categories of elements: service providers 
(ambulances) and service beneficiaries (patients 
seeking medical assistance).

Figure 1. The causal graph associated with the 
transportation system

The causal relationships between the variables of 
the management system can be described by using 
a matrix-vector representation. 
The matrix M expresses the causal dependence 
between the vectors a and p:

*p M a=                                                   (1)
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represent the provider nodes (ambulances) 
that will meet the desired requirements of the 
beneficiary nodes (patients).
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The elements of matrix M are: 
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(3)

Given a matrix M and a vector p already known, 
vector a can be calculated according to equation 
4. The configuration of the vector a provides the 
algebraic solution of the causal graph. 

To determine the suppliers, the matrix 
representation is used:

  *ta M p=                                                (4)

where M t is the transpose of the matrix M.

Solving the graph in a causal direction starts 
from the known state regarding the availability 
of providers, given by the known vector a (service 
providers), to estimate the components of the 
patient vector p, related to the patients who require 
medical assistance.

The anti-causal direction of operation starts from 
the patient vector p which is related to the patient 
requirements for locating the appropriate service 
providers denoted by a.

Since the management system reacts to the 
emergence of requests for medical assistance 
on the patient side, the anti-causal approach is 
more appropriate.

When new requests appear, the patients who 
made the requests are activated, and by solving 
the graph in the anti-causal direction, all the free 
providers who can offer the requested services 
are determined.

In Figure 2 one such situation is illustrated, 
indicating the service providers denoted by a, for 
a specific intervention request (patients p1 to p6):

Figure 2. Graph solution for a specific  
intervention request

For this situation, the value of the patient vector is:

[ ]  1 0 0 0 0 1p =                                     
(5)

and the ambulances able to provide services are 
determined by using equation (4), which for the 
matrix associated with the graph in Figure 2, gives:

[ ]  1 0 1 1a =                                             
(6)

2.1. Determining the Costs  
of the Intervention

The road network can be represented as an 
undirected graph, where nodes represent 
intersections and arcs represent connections 
between adjacent nodes. Each connection has an 
associated initial cost, determined by previous 
measurements, a cost that changes over time 
depending on the real situation at the time of 
the analysis.

For each of the connections determined when 
solving the causal graph, the image of the road 
network is constructed and a minimum cost 
path for the intervention is generated using the 
Dijkstra’s algorithm (Dijkstra, 1959). For the 
system shown in Figure 1, the corresponding 
minimum cost paths were determined for each 
possible combination ai → pj, for which mij =1.

The algorithm that determines the estimated cost 
for the proposed route from the source node to the 
destination node follows the steps detailed below:

2.1.1 The Initial Step

	- It starts from the source node, the initial 
minimum cost is zero for the source node and 
it has a large value (considered “infinite”) for 
the other nodes;

	- All the neighbors of the source node are 
analyzed, and for each of them the cost of 
transportation from the source node to the 
analyzed node is memorized;

	- The source node is removed from the list of 
nodes to be analyzed.

2.1.2 The Intermediary Steps

The following operations are executed 
successively until the analyzed node is the 
destination node:

	- The node with the lowest cost is chosen from 
the list of remaining nodes to be analysed. 
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It is obvious that as this node features the 
lowest cost, the route already determined 
from the source node to this node is the 
optimal route; no other route will be able to 
generate a lower cost;

	- The current node is removed from the list of 
remaining nodes to be analyzed;

	- For each neighbor node related to the current 
node that is still in the list, the minimum 
cost is established as the sum of the 
transportation cost to the removed node and 
the transportation cost from the current node 
to the neighbor node;

	- If the new minimum cost determined is 
lower than the previous minimum cost, then 
the new minimum cost is retained, and the 
current node is retained as the previous node;

	- If the new minimum cost is higher than the 
previous one, it means that another minimum 
route was previously determined, and the 
next node is analysed;

2.1.3 The Final Step

	- If the destination node is reached, the 
algorithm stops;

	- If all the nodes were reached according to 
the previous step and the destination node 
was not yet analyzed, it means that there is 
no path between the source node and the 
destination node.

When a significant event that changes the 
previously estimated costs appears, a new 
route is determined using the same algorithm 
by considering the current point of departure 
for the ambulance, updating the costs for the 
road segments involved (or eliminating the 
respective segments or portions from the network 
if necessary) and generating a new route to the 
destination. The new obtained cost is considered 
when proposing a new optimal solution, following 
the analysis of the entire system.

3. Choosing the Optimal Solution 
Through Specific Game  
Theory Procedures

All the costs obtained previously are centralized 
in the form of a matrix, C, in which the rows 
represent the active ambulances and the columns 

represent the active patients. Each element cij 
of the matrix represents the cost of providing 
the service for patient “j” by ambulance “i”. If 
there is no possible route between an ambulance 
and a patient, the travel cost is indicated with 
the value -1 so as not to be considered in the 
optimization process.

Based on the causal graph represented in Figure 1, 
the following cost matrix is constructed (Table 1): 

Table 1. Network-associated cost matrix

C P1 P2 P3 P4 P5 P6
A1 23 37 49 15 -1 21
A2 -1 22 11 39 17 -1
A3 31 44 28 -1 22 41
A4 17 24 -1 39 16 33

The matrix thus obtained can be interpreted 
as a matrix corresponding to a strategic game, 
in which the elements involved represent the 
“losses” of the service provider. Thus,  the 
procedures specific to game theory can be 
used for choosing the optimal strategy either 
by employing a complementary form of these 
procedures based on inverting the minimum 
and maximum conditions, or by transforming 
the matrix C into a matrix of “gains” and then 
applying the procedures in their classical form.

Considering the value of an intervention to 
be, for example, 1000 price units (p.u.), the 
“gains” matrix is constructed by attributing to 
each element of the matrix C the value 1000–cij 
(Table 2).

Table 2. Game Matrix

G P1 P2 P3 P4 P5 P6
A1 977 963 951 985 -1 979
A2 -1 978 989 961 983 -1
A3 969 956 972 -1 978 959
A4 983 976 -1 961 984 967

Each value in this matrix is ​​variable over 
time, being affected by the state of the road 
infrastructure. The reconfiguration of the matrix 
is ​​done quickly, and the generation of a new 
solution in real time is possible thanks to the 
procedures specific to game theory, which are 
easy to implement and extremely fast, even for 
complex cases.
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It is possible that after reconfiguring the game 
matrix, solutions will be generated that differ 
greatly from the initial ones, having as a practical 
representation the redirection of ambulances 
to other patients than those to which they were 
initially assigned.

Ambulance redistribution can also occur in cases 
in which a new patient is registered in the system, 
when the nearest ambulance dispatch center 
can no longer provide services (no ambulance 
is available). In this case, the game matrix is ​​
expanded with another column, the new costs for 
each ambulance-patient pair are determined and 
a new solution is provided.

To generate the optimal solution, the max-min, 
Hurwicz, Laplace and Savage game theory 
procedures were selected. They were selected 
both in order to determine the computational 
time for applying each procedure and to analyze 
the ability of each procedure to generate an 
optimal solution.

3.1. The Max-min Procedure 

This procedure assumes that player A adopts 
the strategy:

{ }1 1 iji n i m
max min c
≤ ≤ ≤ ≤                                                 

(7)

Player A will determine the minimum gains 
for each strategy considering all of player P’s 
strategies, then he will select the strategy that 
ensures a maximum gain.

3.2. The Hurwicz Procedure

According to this procedure, player A will choose 
a “coefficient of pessimism”, q, which will be 
used for computing, for each of his strategies, an 
average value:

min{ } (1 ) max{ }
,

2
1,2,..., ,0 1

ij ij
i

q c q c
Avg

j m q

+ −
=

= ≤ ≤           

(8)

Player A will then choose the strategy that ensures 
maximum gain based on the obtained values:

max{ }iAvg                                                 (9)

3.3. The Laplace Procedure

Based on the Laplace procedure, player A 
will compute an average value for each of his 
strategies. Average values ​​are calculated based 
on the following formula:

1

1 , 1, 2,...,
m

i ij
j

c c i n
m =

= =∑
                         

(10)

Finally, the strategy that ensures 

max , 1,2,...,ic i n=                                   (11)

is chosen.

3.4. The Savage Procedure

This procedure works well under conditions of 
total uncertainty, which means nothing is known 
about the opposing player regarding the strategy 
he will adopt at a given moment. 

Player A will construct a “matrix of erroneous 
decisions” based on the initial game matrix, then 
he will use the max-min procedure on the new 
game matrix. 

The matrix of erroneous decisions is constructed 
in columns as follows (for column k):

{ }
{ }

{ }

1 1

2 2

k ik k

k ik k

nk ik nk

R max c c

R max c c

R max c c

= −


= −
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
 = −



                              

(12)

Thus, each element of the new matrix is obtained 
by subtracting the corresponding element of the 
game matrix from the element with the maximum 
value of the respective column.

After obtaining the new matrix, player A will 
choose the strategy that ensures:

1 1
min{max }iji n j m

R
≤ ≤ ≤ ≤                                            

(13)

Considering the values corresponding to the total 
number of ambulances and all possible locations 
of patients in real situations, which will generate 
a relatively big game matrix, all these procedures 
are applied to a game matrix that contains only 
active ambulances and active patients.
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4. Case Study

As a case study, one chose the activity of a private 
company that serves patients located within a 
geographical area that offers, both due to its relief 
and the sufficiently branched and diversified road 
network, very good conditions for testing the 
proposed optimization mechanisms.

The administrative area for ambulance intervention 
is marked with a dotted line in Figure 3, and the 
three ambulance parking points are marked in 
brown (X, Y and Z).

Figure 3. Administrative map of the analyzed area

There are several ambulances at each base station, 
and these will be treated as independent entities.

The case study was limited to the analysis of 
situations in which it is not necessary to transport 
the patients to the hospital or to other institutions, 
and the ambulances have identical equipment, 

sufficient for a day with up to 20 successive 
interventions. The staffing of the ambulances is 
also identical, so that each ambulance can provide 
services to any patient, in case of need.

The case study starts from an initial situation, with 
no patients requiring an intervention and with all 
ambulances at the parking points.

During the simulation, patients are randomly 
generated in various locations, using the “simple 
random sampling” method, which assumes equal 
probabilities of requesting an intervention for 
each location. In this way, the generation of 
events in diversified locations is ensured and the 
response of the proposed system can be studied 
more easily.

After generating a solution, critical events are 
randomly inserted that require recalculating the 
minimum cost paths, rebuilding the game matrix, 
and determining a new solution.

Although for some places the optimal route 
seems easy to choose, for most of them there 
are alternative routes which, depending on the 
weather and traffic conditions, may (or may not) 
represent better solutions (Figure 4). 

Figure 4. Road infrastructure with alternative routes

For all these points, one starts from the ideal 
situation in which the costs are known and, 
depending on the events occurring on the chosen 
route, the new costs are determined using 
Dijkstra’s algorithm.

The game matrix is ​​constantly updated, both based 
on the previously collected data and on the recent 
data obtained with regard to traffic conditions.
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Thus, whenever a significant event occurs that 
determines a change in the intervention costs, 
the game matrix is ​​reconstructed and the optimal 
strategies are reevaluated.

Based on the specific road infrastructure, a game 
matrix was built as illustrated in Table 3, which 
takes into account the initial costs, corresponding 
to the stable (ideal) situation.

Table 3. Complete game matrix (excerpt)

G P1 P2 P3 P4 P5 ... P102

A1 1000 938 958 984 991 ... 975
A2 1000 938 958 984 991 ... 975
... ... ... ... ... ... ... ...

A10 938 1000 949 954 936 ... 958
... ... ... ... ... ... ... ...

A18 958 949 1000 950 952 ... 941

Each row corresponds to an ambulance, 
and each column corresponds to a possible 
intervention point (the location of a patient – ​​102 
administrative-territorial units).

From this matrix, depending on the patients’ 
requests, a sub-matrix is ​​extracted that includes 
only the columns specific to active patients. For 
this new matrix, the classical procedures specific 
to game theory (the Max-min, Laplace, Hurwicz, 
and Savage procedures) are applied and a solution 
is generated.

The dimensions of the matrix are variable, the 
rows corresponding to ambulances involved in 
an intervention were eliminated for the duration 
of the intervention, and the columns correspond 
only to patients who require transport for the 
medical intervention.

4.1 Simulator Description

The analyzed company operates under the 
following conditions:

	- it has three locations where ambulances are 
stationed (X, Y and Z), which feature a number 
of 9, 5 and 4 ambulances, respectively;

	- each ambulance carries out an average 
number of 12 interventions per day, with 
a minimum of 9 and a maximum of 15 
interventions;

	- the treatment applied to a patient after moving 
to the intervention point takes on average 35 

minutes, with a minimum time of 15 minutes 
and a maximum time of 60 minutes.

Starting from the data collected from the analyzed 
company, the simulator runs in three stages:

	- Stage 1: Establishing the baseline. This 
involves randomly generating a number of 
patients per day similarly to a real scenario 
and determining the average ambulance 
travel time to the patient (the average cost);

	- Stage 2: A gradual reduction of the number of 
ambulances and the analysis of its impact on 
the average travel time;

	- Stage 3: A gradual increase in the number of 
patients per day and the analysis of its impact 
on the average travel time.

The initial data is taken from a database that 
includes the average (standard) travel times from 
the three ambulance parking points to each of the 
locations of potential patients (102 administrative-
territorial units).

To simulate the traffic conditions (better or worse) 
and the occurrence of critical events that affect 
the preset routes and require the generation of 
alternative routes, the standard travel times to 
the patients are adjusted randomly based on 
percentages between -10% and +25%. When the 
average travel time for a road segment is modified, 
that value will be used for all the subsequent trips 
on that segment.

All the results, both the partial and final ones, are 
saved in a database to allow their easy verification.

The method used for generating random events 
is “simple random sampling” which ensures 
a uniform distribution of the generated values ​​
between the minimum and maximum limits.

4.2. Implementation Considerations

For a better integration with the software used 
by the analyzed company, the simulator was 
implemented under Windows OS, using the C# 
programming language.

The game matrix G (Table 3) was constructed 
based on the existing road infrastructure, 
determining for each element the optimal travel 
route by using Dijkstra’s algorithm presented 
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in subsection 2.1. The game matrix is rebuilt 
whenever an incident occurs on the road 
infrastructure and the travel times change.

When a new intervention request is generated 
by a patient, a new, smaller matrix is generated, 
containing only the active patients (as columns) 
and the available ambulances (as rows). In this 
situation, the active patients are all the patients 
waiting for ambulance arrival and the available 
ambulances are considered all ambulances 
which are not involved in providing treatment 
to a patient.

It is possible, in this way, to change the destination 
of an ambulance sent to a patient, if necessary, in 
order to obtain a better total time of intervention.

For the new matrix all four game theory 
procedures presented in section 3 (the max-min, 
Hurwicz, Laplace and Savage procedures) are 
applied and the best result is chosen.

To that, all the inputs and outputs of the 
simulator are in the form of text files, for easier 
human verification.

4.3. Simulation Results

In the first stage, based on the data collected from 
the company providing ambulance services, an 
average travel time to the patient of 32.3 minutes 
was obtained, a value which represents a 12.7% 
reduction of the real travel time of 37 minutes 
(according to the information obtained).

The randomly generated data on the road segment 
costs and patient distribution was saved in an 
external database.

For the second stage the same data was used, 
reducing the number of available ambulances, but 
keeping the other conditions identical. 

To avoid particular configurations resulting from 
random patient generation, the simulation was 
run for 100 (simulated) days, with an average 
of 216 patients per day (18 ambulances with 12 
interventions each).

It is noted that, thanks to the efficient ambulance 
dispatching algorithms for intervention purposes, 
the average travel time was reduced by 4.7 minutes 
in comparison with to the real-life scenario.

The centralized results obtained in stage 2 are 
included below (Table 4):

Table 4. The impact of the number of ambulances on 
the travel time

No. of ambulances Average travel time Blockage 
duration

9, 5, 4 32.3 min 0.5 min
8, 5, 4 34.1 min 0.5 min
9, 4, 4 32.9 min 0.5 min
9, 5, 3 33.3 min 0.6 min
8, 4, 4 36.2 min 1.2 min
8, 5, 3 38.3 min 2 min
9, 4, 3 35.6 min 0.9 min
7, 5, 4 39.1 min 2 min
9, 3, 4 34.7 min 0.8 min
9, 5, 2 37.4 min 1.4 min
8, 4, 3 43 min 4.4 min

By reducing the number of ambulances by 
one, regardless of the location from which an 
ambulance is removed, the algorithms used still 
allow for the provision of medical assistance at a 
level specific to real-life scenarios.

The simulation shows that it is even possible to 
eliminate two ambulances (11.1% less personnel 
and fewer vehicles) if 9 ambulances are kept in 
the headquarter X, and the response times change 
very little (35.6 minutes for the combination 9, 
4, 3 and 34.7 minutes for the combination 9, 3, 
4, respectively).

For these two variants, the average duration of 
the blockage (the period of time during which 
all ambulances are busy and no ambulance can 
be sent to the patient) is under one minute, an 
extremely short time interval.

However, if three ambulances are eliminated, one 
from each location, the time required to travel to a 
patient’s address increases substantially, reaching 
an average of 43 minutes, with an average 
blockage period of 4.4 minutes.

For the third stage, both the number of ambulances 
and the travel times were taken over from the first 
stage, in order to determine the influence of the 
number of patients on the travel time. If in the 
first and second stages the number of patients 
was 216 (ensuring an average of 12 patients for 
the 18 available ambulances), in the third stage 
the number of patients was gradually increased 
(adding 18 patients at each step, which resulted 
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in an average of one more patient for each 
ambulance). The centralized results are presented 
in Table 5.

Table 5. The impact of the number of patients on the 
travel time

No. of patients Average travel time Blockage 
duration

216 32.3 min 0.5 min
234 33.7 min 0.4 min
252 36.7 min 1.2 min
270 46.9 min 6.2 min
288 69.4 min 24.3 min

The results obtained from the simulation show that 
the initial number of ambulances can successfully 
cope with a larger influx of patients, with each 
ambulance being able to provide assistance to 
14 patients daily (a 16.6% increase for the initial 
number), that is 252 patients on average per day, 
without affecting the intervention times (a travel 
time of 36.7 minutes to the patient and 1.2 minutes 
of congestion).

However, for a larger number of patients per day, 
a larger number of ambulances is required, as 
starting with 270 patients the average blockage 
duration reaches 6.2 minutes, and the average 
travel time increases to 46.9 minutes.

5. Conclusions

The proposed method allows the generation 
of rapid solutions for an ambulance services 
management system based on a road infrastructure 
with variable costs over time and with a variable 
number of customers.

Based on the simulation carried out, a very 
detailed description of the road infrastructure has 
a major importance with regard to the additional 

costs arising from an incident. The more detailed 
the network, the closer the total costs are to the 
ideal ones.

The new solutions generated following the 
occurrence of critical incidents are quite close 
in value to the initial ones (differences below 
5%), and their generation is extremely fast, in an 
interval of less than 50 milliseconds.

When a new patient appears, thanks to the 
use of algorithms that do not require complex 
calculations, the new solutions are generated just 
as fast.

The results obtained from the simulation show 
that, as a rule, several game theory procedures 
generate an optimal solution. Due to the simplicity 
of the algorithms used, in real applications it is 
possible to determine a solution through each 
procedure and then choose the most efficient one.

The proposed management system can be used 
both for optimizing the number of vehicles needed 
to ensure timely interventions and for estimating 
the number of patients that can be allocated a 
certain number of ambulances.

The simulation results also demonstrate the 
validity of the proposed model and of the 
employed methods, leading to an increase 
of 16.6% in the number of patients that can 
be assisted by the analyzed company or in 
a decrease of 11.1% of the resources used 
(ambulances and personnel) if the number of 
patients remains the same.

In conclusion, the proposed system meets the 
requirements of an ambulance dispatching 
management system, providing real-time 
solutions that can be used as a basis for human 
decision-making.
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