

Advanced Autonomous Drone Navigation with Real-Time Dynamic Replanning and Multi-Agent Coordination

Haifa SOUILEM^{1,2*}, Chokri BEN SALAH^{1,3}, Mehdi TLIJA⁴, Abdelhamid RABHI⁵

¹ Laboratory of Automation, Electrical Systems and Environment (LASEE), University of Monastir, Ibn El Jazzaar, 5019 Monastir, Tunisia
chokribs@yahoo.fr

² National Engineering School of Sousse (ENISo), University of Sousse, Technological Pole of Sousse, Sahloul Belt Road, 4054 Sousse, Tunisia
haifa.souilem@gmail.com (*Corresponding author)

³ Higher Institute of Applied Science and Technology of Sousse (ISSAT), University of Sousse, Tahar Ben Achour, 4003 Sousse, Tunisia

⁴ Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
mtlija@ksu.edu.sa

⁵ MIS Laboratory, University of Picardie Jules Verne, Chem. du Thil, 80000 Amiens, France
abdelhamid.rabhi@upicardie.fr

Abstract: This work enhances autonomous drone navigation by integrating real-time dynamic replanning with multi-agent coordination. Using the A* algorithm for initial path planning, the optimal routes for the drones are recalculated in order to avoid new obstacles. Swarm intelligence allows multiple drones to share information and collaborate on complex tasks, which improves their collective performance. To that, energy optimization strategies extend the battery life and operational times. The simulation results proved the system's robustness and flexibility in the context of real-time changes and multi-drone coordination, making it ideal for delivery, surveillance and exploration, and highlighting its potential for revolutionizing various industries.

Keywords: Autonomous Drone Navigation, A* Algorithm, Dynamic Replanning, Multi-Agent Coordination, Swarm Intelligence, Real-Time Path Planning, Collision Avoidance, Energy Optimization, Obstacle Detection.

1. Introduction

Autonomous drone navigation has become a hot topic in recent years, with the potential to transform various industries such as delivery services, agriculture, and surveillance. By integrating advanced technologies like artificial intelligence (AI), machine learning (ML), and real-time path planning, drones can now navigate complex environments with minimal human intervention. For example, reinforcement learning algorithms have shown great promise in developing efficient and cost-effective navigation systems.

Beyond this, adaptive control strategies inspired by other domains such as the Adaptive Neuro-Fuzzy Inference System (ANFIS) used for reducing vibrations in vehicle suspension systems highlight the broader potential of AI-driven solutions. In vehicular applications, ANFIS outperformed traditional PID controllers in minimizing disturbances from road roughness while improving ride comfort and stability (Souilem & Derbel, 2018), underscoring how adaptive methods can enhance resilience in dynamic systems. Similarly, exploring multi-agent coordination and swarm intelligence has

expanded the capabilities of drone fleets, enabling collaborative tasks and improved operational efficiency (Khaldi & Foudil, 2015). Additionally, exploring multi-agent coordination and swarm intelligence has enhanced the capabilities of drone fleets, enabling them to perform collaborative tasks and improve their operational efficiency (Gowda & Kumar, 2025).

Recent research has focused on overcoming the challenges posed by dynamic and uncertain environments. Dynamic replanning techniques allow drones to adjust their paths in real time when they encounter new obstacles, making this a key area of study (Gugan & Haque, 2023). Algorithms like D* and its variants have been crucial in helping drones navigate safely and efficiently in unpredictable settings (Suanpang & Jamjuntr, 2024). Moreover, object detection models such as YOLOv8 have significantly improved the accuracy and speed of real-time obstacle detection and avoidance, further enhancing drone autonomy (Afdhal et al., 2023). Energy optimization is another vital aspect of autonomous drone navigation, as limited battery life remains a significant constraint. Researchers have

developed various strategies to optimize energy consumption, including intelligent path planning and adaptive flight control systems (Ahmed et al., 2024). These advancements are critical for extending the operational times of drones, making them more viable for long-duration missions (Gao, 2024). Thanks to these technologies, drones can now perform a wide range of tasks, from last-mile delivery and infrastructure inspection to environmental monitoring and disaster response. Ongoing research and development continue to push the boundaries of what autonomous drones can achieve, paving the way for more robust, efficient, and versatile systems (Zhu & Pan, 2024).

This work aims to advance the state of the art in autonomous drone navigation by integrating real-time dynamic replanning and multi-agent coordination. By leveraging the A* algorithm for initial path planning, the system effectively recalculates the optimal paths when encountering newly detected obstacles, ensuring an efficient and collision-free navigation. Additionally, swarm intelligence enables multiple drones to share information and collaborate on complex tasks, enhancing their collective performance and mission success.

Energy optimization strategies are also implemented to manage battery life effectively, extending the operational times of drones and improving their overall efficiency. The simulation results demonstrate the system's robustness and flexibility in handling real-time changes while efficiently coordinating multiple drones. These capabilities are essential for applications in delivery, surveillance, exploration, and beyond, highlighting the transformative potential of autonomous drones across various industries.

The remainder of this paper is organized as follows. Section 2 provides a review of the current drone navigation technologies and the existing path planning algorithms. Section 3 outlines the methodology, including the setup of the environment, an explanation of the A* algorithm for initial path planning, the implementation of the dynamic replanning algorithm, and the approach to multi-agent coordination. Further on, Section 4 sets forth certain strategies for energy optimization, detailing the energy consumption model and some methods for extending the flight time. Section 5 presents the simulation results, illustrating the performance of

drones in various navigation scenarios. Finally, Section 6 concludes this paper by discussing the implications of the findings and suggesting potential future research directions in the field of autonomous drone navigation.

2. Literature Review

2.1 The State of the Art in Drone Navigation Technologies

The rapid advancements in drone navigation technologies have significantly improved the capabilities and applications of autonomous drones. Recent studies have focused on enhancing the precision, reliability, and efficiency of drone navigation systems through advanced algorithms, sensor technologies, and AI techniques. For instance, a project supported by the U.S. Army Engineer Research and Development Center has shown that visual navigation systems can enable drones to autonomously navigate using visual landmarks, even in environments where GPS is compromised (Arafat, Alam & Moh, 2023). Furthermore, advancements in sensor fusion have allowed drones to combine data from multiple sources, such as LiDAR, cameras, and GPS, resulting in a robust and accurate navigation (Zhang, 2024).

2.2 Review of Existing Path Planning Algorithms

Path planning is a crucial component of autonomous drone navigation, ensuring that drones can find efficient and collision-free routes from a starting point to a destination. Over the years, several path planning algorithms have been developed and refined, including:

1. A* Algorithm: This widely used graph traversal and path finding algorithm employs heuristics to find the shortest path. It is known for its completeness, optimality, and efficiency (Yan, 2023);
2. Dijkstra's Algorithm: This algorithm finds the shortest path in a weighted graph without using heuristics. While it guarantees an optimal solution, it can be computationally expensive for large graphs (Barbehenn, 1998);
3. Rapidly-Exploring Random Tree (RRT): RRT is a sampling-based algorithm particularly useful for high-dimensional

spaces and non-holonomic constraints. It generates random samples and incrementally builds a tree to explore the search space (Lavalle & Kuffner, 2000);

4. Genetic Algorithms: Inspired by natural selection, these algorithms optimize paths by simulating the process of evolution. They are especially useful for solving complex optimization problems in path planning (Pan, 2024);
5. Ant Colony Optimization (ACO): ACO mimics the pheromone trail following behavior of ants in finding the shortest path to food sources. This algorithm uses pheromone trails to guide the search for optimal paths (Dorigo, Birattari & Stützle, 2006).

2.3 Examination of Dynamic Replanning Techniques and Swarm Intelligence

Dynamic replanning techniques are essential for autonomous drones operating in dynamic and uncertain environments. These methods allow drones to adjust their paths in real time in response to new obstacles or changes in their surroundings. Key dynamic replanning techniques include:

1. D* Algorithm: This method and its variants, such as D* Lite, are designed for real-time replanning. They efficiently update paths as the environment changes, which makes them suitable for dynamic scenarios (Ferguson & Stentz, 2005);
2. Real-Time Heuristic Search: Algorithms like Anytime Repairing A* (ARA*) balance computational efficiency and solution quality, enabling real-time path adjustments (Bulitko et al., 2011);
3. Incremental Search Algorithms: These algorithms update the existing plans incrementally rather than recomputing them from scratch, efficiently handling dynamic environments (Pemberton & Korf, 1994);
4. Swarm intelligence refers to the collective behavior of decentralized, self-organized systems, such as drone swarms. Techniques related to swarm intelligence include:
 - Particle Swarm Optimization (PSO): This technique mimics the social behavior of birds or fish to find optimal paths and has been effectively applied to multi-agent systems for collaborative navigation (Jones, 2023).

- Ant Colony Optimization (ACO): As mentioned earlier, ACO is employed to find optimal paths by simulating the pheromone trail following behavior of ants and has been successfully applied to swarm robotics (Dorigo, Birattari & Stützle, 2006);
- Behavior-Based Algorithms: These algorithms enable drones to react to their environment in real time, similarly to how insects or animals behave in groups. Flocking techniques and leader-follower models are commonly used in swarm intelligence (Ahmed & Glasgow, 2012).

The integration of advanced technologies in autonomous drone navigation is paving the way for revolutionary applications across various industries. By leveraging algorithms for path planning, dynamic replanning, and swarm intelligence, drones can operate more efficiently and effectively in complex environments. As research continues to advance, the ability of drones to transform sectors such as delivery, surveillance, and disaster response becomes increasingly evident. The ongoing exploration of energy optimization strategies also plays a crucial role in extending the operational capabilities of these systems, ensuring that they can meet the demands of real-world applications.

3. Methodology

3.1 Environment Setup

The environment is modeled as a 3D grid, defined by the dimensions of rows, columns, and heights. Each cell in this grid represents a potential position that a drone can occupy. Obstacles are strategically placed within the grid to create a realistic and challenging navigation scenario. These obstacles are represented by cells with specific values, forming a binary grid where '1' indicates the presence of an obstacle and '0' indicates free space.

The 3D grid can be expressed as follows:

$$\text{Grid}(x, y, z) = \begin{cases} 1 & \text{if cell}(x, y, z) \text{ is an obstacle,} \\ 0 & \text{if cell is free space} \end{cases} \quad (1)$$

This setup allows for the simulation of complex environments with varying obstacle configurations.

3.2 Explanation of the A* Algorithm for Initial Path Planning

The A* algorithm is used for initial path planning due to its efficiency and optimality. It finds the shortest path from a start node to a goal node within the 3D grid by considering both the cost of reaching each node and an estimated cost for reaching the goal node. The cost function $f(n)$ is defined as:

$$f(n) = g(n) + h(n) \quad (2)$$

where $f(n)$ is the total estimated cost of the cheapest solution through node n , $g(n)$ represents the cost from the start node to node n , and $h(n)$ is the heuristic estimate of the cost from node n to the goal.

The heuristic function $h(n)$ commonly represents the Euclidean distance in 3D space:

$$h(n) = \sqrt{(x_n - x_{goal})^2 + (y_n - y_{goal})^2 + (z_n - z_{goal})^2} \quad (3)$$

where (x_n, y_n, z_n) are the coordinates of node n , and $(x_{goal}, y_{goal}, z_{goal})$ are the coordinates of the goal node.

3.3 Implementation of the Dynamic Replanning Algorithm

Dynamic replanning enables drones to adjust their paths in real time in response to newly detected obstacles. Upon detecting an obstacle, the replanning algorithm updates the cost function and computes a new path. The updated cost function $f'(n)$ is given by:

$$f'(n) = g'(n) + h(n) \quad (4)$$

where $g'(n)$ is the updated cost from the start node to node n after considering the new obstacles, as follows:

$$g'(n) = g(n) + \Delta g \quad (5)$$

where Δg is the additional cost due to the presence of new obstacles.

The dynamic replanning algorithm, such as D* Lite, efficiently updates the path by incrementally modifying the existing plan instead of recomputing it from scratch, allowing for rapid adjustments to changing environments (Ferguson & Stentz, 2005).

3.4 Approach to Multi-Agent Coordination

Multi-agent coordination is facilitated through swarm intelligence, allowing multiple drones to share information and collaborate on complex tasks. The Particle Swarm Optimization (PSO) algorithm is utilized to coordinate the movement of multiple drones. Each drone (particle) updates its position and velocity based on its own experience and the experiences of neighboring drones, as expressed in the following equations:

$$\vec{v}_i(t+1) = w \vec{v}_i(t) + c_1 r_1 (\vec{p}_i - \vec{x}_i(t)) + c_2 r_2 (\vec{g} - \vec{x}_i(t)) \quad (6)$$

$$\vec{x}_i(t+1) = \vec{x}_i(t) + \vec{v}_i(t+1) \quad (7)$$

where $\vec{v}_i(t)$ is the velocity of drone i at time t , $\vec{x}_i(t)$ is the position of drone i at time t ,

$\vec{p}_i(t)$ is the best known position of drone i , \vec{g} is the global best position found by the swarm,

w represents the inertia weight, c_1, c_2 are the acceleration coefficients and r_1, r_2 are random numbers between 0 and 1.

This approach ensures that drones can effectively coordinate their movements, avoiding collisions and optimizing their paths to achieve mission objectives (Shirabayashi & Ruiz, 2023). The PSO algorithm enables drones to adapt to changes in the environment and collaborate efficiently, enhancing the overall performance of multi-agent systems.

4. Energy Optimization

4.1 Model for Energy Consumption of Drones During Flight

Energy consumption in drones primarily depends on factors such as propulsion power, onboard electronics, and environmental conditions. The total power consumption P_{total} can be expressed as the sum of the power required for propulsion (P_{prop}) and the power consumed by onboard electronics (P_{elec}) (Beigi, Rajabi & Aghakhani, 2022):

$$P_{total}(t) = P_{prop}(t) + P_{elec}(t) \quad (8)$$

$P_{prop}(t)$ is the propulsion power required to maintain flight at time t , including lift and thrust and $P_{elec}(t)$ is the power consumed by

onboard electronics at time t such as sensors, communication devices, and control systems.

The propulsion power (P_{prop}) can be further expressed based on the drone's aerodynamic properties, flight speed (v) and air density (ρ):

$$P_{prop}(t) = \frac{1}{2} \rho A v^3 C_d \quad (9)$$

where ρ is the air density, A represents the frontal area of the drone, v is the flight speed and C_d is the drag coefficient.

The total energy consumption (E) over a flight duration (T) is obtained by integrating the total power consumption over time:

$$E = \int_0^T P_{total}(t) dt \quad (10)$$

This model estimates the energy consumption based on various flight parameters and operating conditions.

4.2 Strategies for Optimizing Battery Usage and Extending Flight Time

In order to optimize battery usage and extend flight time, several strategies can be implemented:

1. Intelligent Path Planning: Flight paths can be optimized for minimizing energy consumption by selecting routes that avoid unnecessary altitude changes and high-speed segments. Maintaining a constant altitude and speed can significantly reduce energy usage (Meng et al., 2025);
2. Adaptive Speed Control: Flight speed can be adjusted based on energy consumption patterns and mission requirements. While slower speeds can reduce propulsion power, they may increase flight time, therefore a careful balance is necessary (Delgado & Prats, 2012);
3. Energy-Efficient Hardware: Low-power electronics and efficient propulsion systems can be used to lower overall energy consumption. Advances in battery technology and lightweight materials also contribute to an enhanced energy efficiency (Mikhaylov, Tervonen & Fadeev, 2012);
4. Energy Harvesting: Energy harvesting technologies, such as solar panels, can be incorporated to supplement battery power

and extend flight times, particularly for long-duration missions in sunny environments (Hao et al., 2022);

5. Dynamic Replanning: Real-time dynamic replanning can be implemented to adjust flight paths in response to changing environmental conditions and energy availability. This ensures that the drone can complete its mission within the constraints of the available battery life (Lee et al., 2022).

4.3 Simulation of Energy Consumption Along the Planned and Dynamically Adjusted Paths

To evaluate the effectiveness of the energy optimization strategies, simulations are conducted to compare energy consumption along both the planned and dynamically adjusted paths. The simulation process involves several key steps:

1. Initial Path Planning: The initial flight path is calculated using the A* algorithm, taking into account the energy consumption model;
2. Dynamic Replanning: The flight path is adjusted in real time based on newly detected obstacles and changing energy conditions. The dynamic replanning algorithm updates the path to ensure energy efficiency while avoiding collisions;
3. Energy Consumption Calculation: The total energy consumption for both the initial and dynamically adjusted paths is computed using the energy consumption model. This involves integrating the total power consumption over the flight duration for each path:

$$E_{initial} = \int_0^{T_{initial}} P_{total}(t) dt \quad (11)$$

$$E_{dynamic} = \int_0^{T_{dynamic}} P_{total}(t) dt \quad (12)$$

where $E_{initial}$ and $E_{dynamic}$ represent the energy consumption for the initial and dynamically adjusted paths, respectively, while $T_{initial}$ and $T_{dynamic}$ represent the corresponding flight durations;

4. Analysis and Comparison: The simulation results are analyzed for comparing the energy consumption and flight times for both paths. This analysis helps identify the effectiveness of dynamic replanning and energy optimization strategies.

By implementing these strategies and conducting thorough simulations, the goal is to enhance the efficiency and sustainability of drone operations, ultimately leading to longer flight times and reduced energy costs.

5. Simulation Results

Figure 1 illustrates a 2D grid environment using MATLAB used for simulating the path planning for a drone where each cell represents a possible position for the drone. The horizontal and vertical axes denote the grid dimensions. Obstacles are marked on different rows and columns, signifying the areas that the drone must avoid. The start point is indicated by a green circle, and the goal point is represented by a blue circle. The red line represents the path planned by the A* algorithm, which finds the shortest route from the start to the goal while avoiding obstacles. This visualization helps illustrate how the A* algorithm navigates through the grid to find an optimal path, highlighting the challenge of avoiding obstacles.

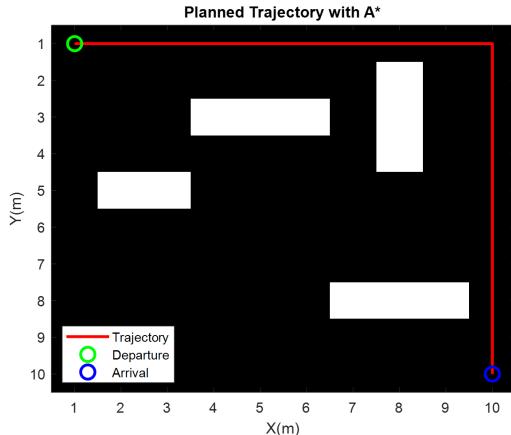


Figure 1. A* Algorithm Path Planning with Obstacles

Figure 2 demonstrates the application of the A* algorithm using MATLAB to efficiently minimize the distance between a start point and a goal point while navigating around obstacles in a 2D grid environment. The grid comprises various cells, some of which are designated as obstacles that the drone must avoid and represented by specific blocked cells. The start point is represented by a green circle, and the goal point by a blue circle. The path planned by the A* algorithm, shown as a red line, represents the optimal route from the start to the goal. This

path calculation ensures the shortest possible distance while avoiding the obstacles.

This visual representation exemplifies how the A* algorithm adeptly navigates through the grid, overcoming the challenges posed by the obstacles and achieving an efficient route.

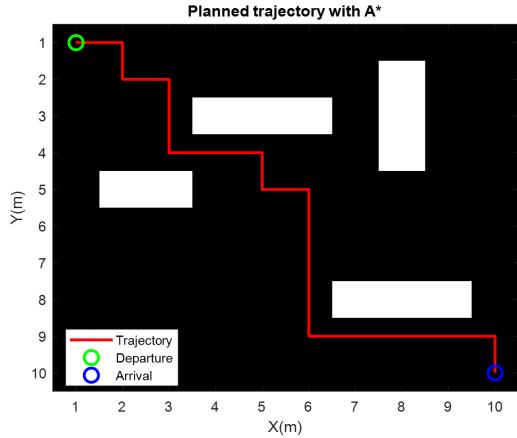


Figure 2. Minimized planned trajectory

Figure 3 depicts a three-dimensional grid using MATLAB used for simulating the environment of a drone. The X, Y, and Z axes indicate the dimensions of this space. The grid points, scattered throughout this space, represent possible positions that the drone can reach. The obstacles are shown as black points, marking the areas through which the drone cannot pass. The start and goal points are depicted by bright red and cyan points, respectively, enhancing their visibility and making it easier to understand the planned route for the mission. This visualization helps to better comprehend the challenges the drone will face when navigating through an obstructed environment.

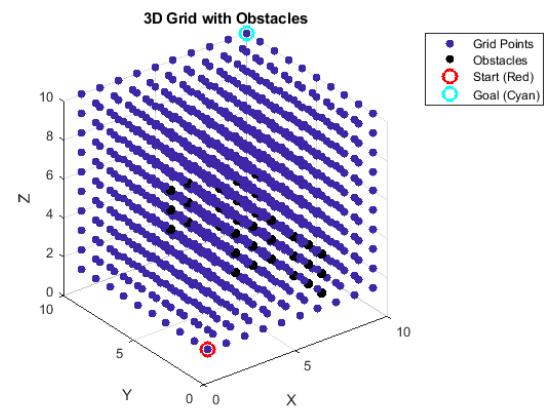


Figure 3. 3D Grid with Obstacles

Figure 4 showcases the navigation process of a drone within a three-dimensional grid environment while avoiding obstacles. The axes X, Y, and Z represent the dimensions of this space, with each grid point indicating a possible location for the drone. The obstacles, represented by black points, indicate the areas that the drone must avoid. The starting point is highlighted by a bright red circle, showing where the drone begins its journey, while the goal point is illustrated by a cyan circle, indicating the destination. The planned trajectory, illustrated by a red line, demonstrates the A* algorithm's ability to find the most efficient route from the start to the goal, navigating around obstacles to ensure the shortest possible distance. This visualization effectively illustrates the algorithm's capacity to determine an optimal path in a complex environment, ensuring a successful navigation from start to finish.

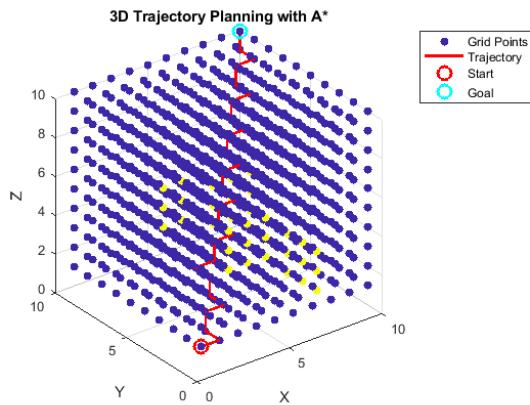


Figure 4. 3D Trajectory Planning with the A* Algorithm

Figure 5 illustrates the simultaneous navigation of two drones within a three-dimensional grid environment that includes obstacles. The grid points are represented, with obstacles shown in black. The first drone's trajectory is depicted in red, starting from a red circle and ending at a cyan circle, while the second drone's trajectory is shown in blue, starting from a green circle and ending at a magenta circle. This visualization highlights the ability of the A* algorithm to effectively plan and coordinate the paths of two drones, ensuring that both drones navigate efficiently through the grid, avoiding obstacles and reaching their respective goals. This demonstrates the algorithm's capability to handle complex scenarios involving multiple agents in the same environment.

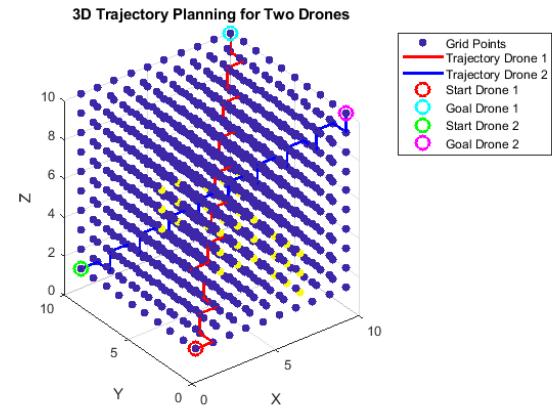


Figure 5. 3D Trajectory Planning for Two Drones

Figure 6 illustrates the coordinated navigation of three drones within a three-dimensional grid environment that includes obstacles. The grid points are represented, with obstacles shown in black. The first drone's trajectory is depicted in red, starting from a red circle and ending at a cyan circle, while the second drone's trajectory is shown in blue, starting from a green circle and ending at a magenta circle, and the third drone's trajectory is in green, starting from a black circle and ending at a yellow circle. This visualization highlights the capability of the A* algorithm to plan and coordinate the paths of multiple drones simultaneously, ensuring that each drone navigates efficiently through the grid while avoiding obstacles and reaching its respective goal. This demonstrates the algorithm's robustness in handling complex scenarios involving multiple agents in the same environment.

The second drone's trajectory is shown in blue, starting from a green circle and ending at a magenta circle. The third drone's trajectory is illustrated in green, starting from a black circle and ending at a yellow circle. This visualization highlights the capability of the A* algorithm to plan and coordinate the paths of multiple drones simultaneously, ensuring that each drone navigates efficiently through the grid while avoiding obstacles and reaching its respective goal. This demonstrates the algorithm's robustness in handling complex scenarios involving multiple agents in the same environment.

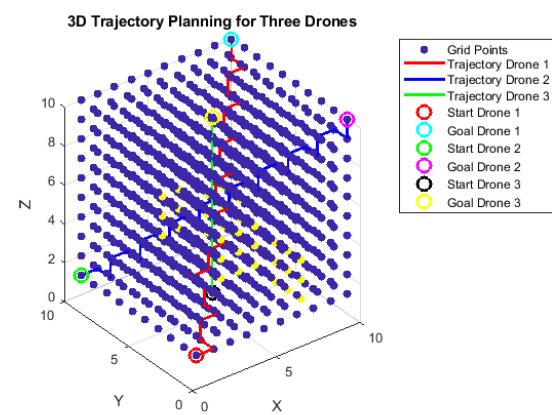


Figure 6. 3D Trajectory Planning for Three Drones

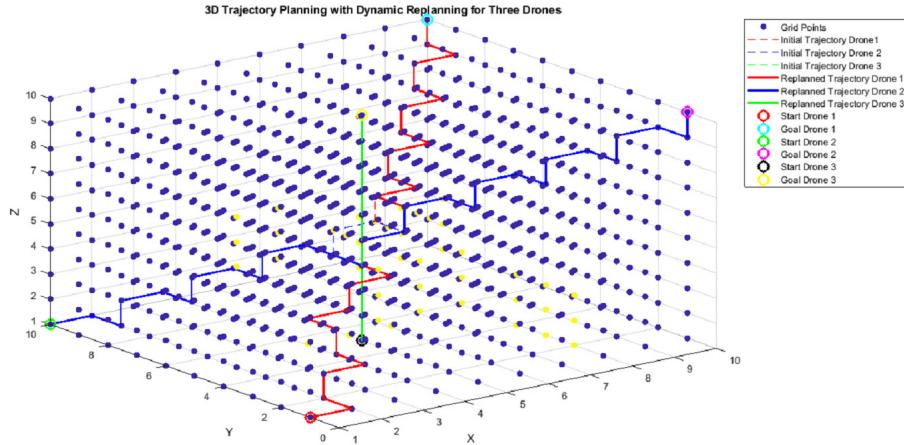


Figure 7. 3D Trajectory Planning with Dynamic Replanning for Three Drones

Figure 7 illustrates the navigation and real-time path adjustment of three drones within a three-dimensional grid environment containing both static and dynamic obstacles. The grid points are displayed, with obstacles represented in black and newly introduced dynamic obstacles highlighted in yellow. The initial planned trajectories for each drone are shown as dashed lines: for Drone 1 in red, Drone 2 in blue, and Drone 3 in green. These initial paths provide a baseline for the navigation plan before encountering any new obstacles. Upon detecting new obstacles, the dynamic replanning algorithm is triggered, resulting in updated paths that are depicted as solid lines. The replanned trajectories ensure that each drone avoids collisions and continues toward its goal efficiently. The starting point for each drone is illustrated by a red, green and black circle, respectively, and their destinations are highlighted in distinct colors (cyan for Drone 1, magenta for Drone 2, and yellow for Drone 3).

This visualization clearly illustrates the system's capability to dynamically adjust paths in response to real-time changes in the environment, showcasing the robustness and flexibility of the dynamic replanning algorithm. It highlights the importance of incorporating adaptive strategies in autonomous drone navigation to ensure safe and efficient operations in unpredictable and dynamic settings.

Figure 8 displays the 3D trajectories of three drones, each represented by a distinct color: red for Drone 1, blue for Drone 2, and green for Drone 3. Along these paths, scattered points indicate the remaining energy levels, with colors varying in intensity as shown by the color bar on the right. As the drones move, their energy

levels decrease linearly, reflecting a consistent energy consumption of 1 unit per movement. This visualization allows for a comparison of the drones' energy performance, highlighting the importance of energy management to ensure the efficiency of flight missions.

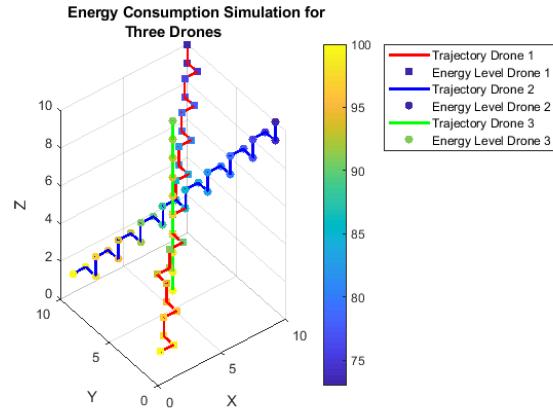


Figure 8. Energy Consumption Simulation for Three Drones

Figure 9 enables insights into UAV performance through a flight simulation and historical data visualized in 3D. The scatter plot shows the UAV's trajectory in a three-dimensional space, with color coding indicating the success of flight segments. Denser clusters represent successful flights, while less dense areas highlight challenges. The Z-axis reflects altitude changes, indicating the UAV's adaptation to different terrains. Additionally, a 3D line plot tracks the UAV's path and battery level, with a red line for its trajectory and scattered points for battery status. The observed decline in battery level emphasizes the need for effective battery management to complete missions successfully. Overall, these visualizations aid in optimizing the flight plans and improving UAV operations by identifying areas for enhancement.

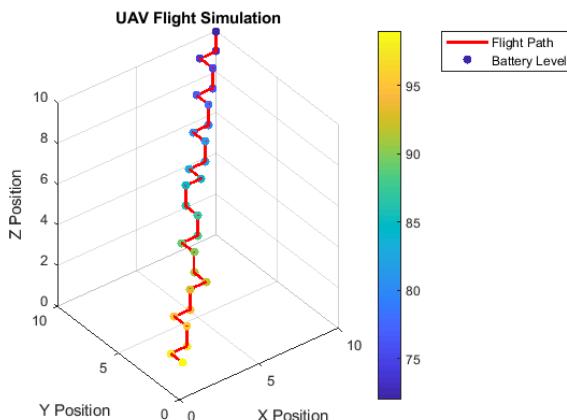


Figure 9. UAV Flight Simulation

6. Conclusion

This work highlights the significant advancements made in autonomous drone navigation by integrating real-time dynamic replanning and multi-agent coordination. Utilizing the A* algorithm for initial path planning, the system effectively recalculates the optimal paths in response to the newly detected obstacles, ensuring an effective and collision-free navigation in dynamic environments. The incorporation of swarm intelligence allows multiple drones to share information and collaborate on complex tasks, enhancing their collective performance and the success of the mission. The analysis of flight data visualizations further underscores these advancements, illustrating how historical and simulated data can inform operational strategies.

REFERENCES

Afdhal, A., Saddami, K., Sugiarto, S. et al. (2023) Real-Time Object Detection Performance of YOLOv8 Models for Self-Driving Cars in a Mixed Traffic Environment. In: *2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), 2-3 August 2023, Banda Aceh, Indonesia*. New York, USA, IEEE. pp. 260-265.

Ahmed, G., Sheltami, T., Ghaleb, M. et al. (2024) Energy-Efficient Internet of Drones Path-Planning Study Using Meta-Heuristic Algorithms. *Applied Sciences*. 14(6), art. no. 2418. <https://doi.org/10.3390/app14062418>.

Ahmed, H. & Glasgow, J. (2012) *Swarm Intelligence: Concepts, Models and Applications*. Conference: Queen's University, School of Computing. Report number: 2012-585.

Arafat, M. Y., Alam, M. M. & Moh, S. (2023) Vision-Based Navigation Techniques for Unmanned Aerial Vehicles: Review and Challenges. *Drones*. 7(2), art. no. 89. <https://doi.org/10.3390/drones7020089>.

Barbehenn, M. (1998) A note on the complexity of Dijkstra's algorithm for graphs with weighted vertices. *IEEE Transactions on Computers*. 47(2), 263. <https://doi.org/10.1109/12.663776>.

Beigi, P., Rajabi, M. S. & Aghakhani, S. (2022) An Overview of Drone Energy Consumption Factors and Models. In: Fathi, M., Zio, E. & Pardalos, P.M. (eds.) *Handbook of Smart Energy Systems*. Cham, Switzerland, Springer, pp. 529-548.

Bulitko, V., Björnsson, Y., Sturtevant, N. et al. (2011) Real-time Heuristic Search for Pathfinding in Video Games. In: González-Calero, P. & Gómez-Martín,

The 3D scatter plots and battery management insights provide valuable feedback on the UAV's performance, revealing patterns that can optimize future flight missions. Observing the UAV's trajectory alongside its battery status emphasizes the importance of energy management, a critical factor in extending operational times and improving a UAV's overall efficiency.

The simulation results demonstrate the robustness and flexibility of the proposed system in handling real-time changes, adapting to evolving scenarios, and efficiently coordinating multiple drones. These capabilities are essential for applications associated with delivery, surveillance, exploration, and beyond, where autonomous drones must navigate within unpredictable and dynamic environments.

This work lays a strong foundation for future research and practical applications, showcasing the transformative potential of autonomous drones across various industries. As technology advances, integrating advanced navigation algorithms, dynamic replanning techniques, and swarm intelligence will be crucial for enhancing autonomous systems. This study emphasizes the role of data-driven insights in creating smarter, more reliable, and efficient drone operations. By utilizing both simulation and historical data, one can usher in a new era of autonomous flight, characterized by informed decision-making that improves operational success and adaptability.

M. (eds.) *Artificial Intelligence for Computer Games*. Springer, USA, New York, pp. 1-30.

Delgado, L. & Prats, X. (2012) En Route Speed Reduction Concept for Absorbing Air Traffic Flow Management Delays. *Journal of Aircraft*. 49(1), 214-224. <https://doi.org/10.2514/1.C031484>.

Dorigo, M., Birattari, M. & Stützle, T. (2006) Ant Colony Optimization. *IEEE Computational Intelligence Magazine*. 1(4), 28-39. <https://doi.org/10.1109/MCI.2006.329691>.

Ferguson, D. & Stentz, A. (2005) The Delayed D* Algorithm for Efficient Path Replanning. In: *Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 18-22 April 2005, Barcelona, Spain*. New York, USA, IEEE. pp. 2045-2050.

Gao, T. (2024) Improving the flight endurance of multi-rotor drones in windy days. *Theoretical and Natural Science*. 30(1), 86-92. <https://doi.org/10.54254/2753-8818/30/20241074>.

Gowda, D. & Kumar, S. (2025) Multi-Agent Reinforcement Learning for Coordinated Drone Swarms. *International Journal of Advance Research and Innovative Ideas in Education*. 11(2), 3218-3223. <https://doi.org/10.1234/ijarie.2025.56789>.

Gugan, G. & Haque, A. (2023) Path Planning for Autonomous Drones: Challenges and Future Directions. *Drones*. 7(3), art. no. 169. <https://doi.org/10.3390/drones7030169>.

Hao, D., Qi, L., Tairab, A. et al. (2022) Solar energy harvesting technologies for PV self-powered applications: A comprehensive review. *Renewable Energy*. 188, 678-697. <https://doi.org/10.1016/j.renene.2022.02.066>.

Jones, A. (2023) *Particle Swarm Optimization*. Thesis, University of Chester. <https://doi.org/10.13140/RG.2.2.32162.20163>.

Khaldi, B. & Foudil, C. (2015) An Overview of Swarm Robotics: Swarm Intelligence Applied to Multi-robotics. *International Journal of Computer Applications*. 126(2), 31-37. <https://doi.org/10.5120/ijca2015906000>.

Lavalle, S. M. & Kuffner, J. (2000) Rapidly-Exploring Random Trees: Progress and Prospects. In: Donald, B., Lynch, K. & Rus, D. (eds.) *Algorithmic and computational robotics: New directions*. Boca Raton, USA, CRC Press, pp. 1-16.

Lee, M.-T., Chuang, M.-L., Kuo, S.-T. et al. (2022) UAV Swarm Real-Time Rerouting by Edge Computing D* Lite Algorithm. *Applied Sciences*. 12(3), art. no. 1056. <https://doi.org/10.3390/app12031056>.

Meng, W., Zhang, X., Zhou, L. et al. (2025) Advances in UAV Path Planning: A Comprehensive Review of Methods, Challenges and Future Directions. *Drones*. 9(5), art. no. 376. <https://doi.org/10.3390/drones9050376>.

Mikhaylov, K., Tervonen, J. & Fadeev, D. (2012) Development of Energy Efficiency Aware Applications Using Commercial Low Power Embedded Systems. In: Tanaka, K. (ed.) *Embedded Systems - Theory and Design Methodology*. Melbourne, Australia, InTech, pp. 407-430.

Pan, Z. (2024) Development, Applications, and Future Trends of UAV Autonomous Navigation Technology. *Highlights in Science, Engineering and Technology*. 119, 228-232. <https://doi.org/10.54097/rfwmrj57>.

Pemberton, J. C. & Korf, R. E. (1994) Incremental Search Algorithms for Real-Time Decision Making. In: *Proceedings of the Second International Conference on Artificial Intelligence Planning Systems (ICAPS), 13-15 June 1994, Chicago, IL, USA*. Washington, USA, AAAI. pp. 140-145.

Shirabayashi, J. V. & Ruiz, L. B. (2023) Toward UAV Path Planning Problem Optimization Considering the Internet of Drones. *IEEE Access*. 11, 136825-136854. <https://doi.org/10.1109/ACCESS.2023.3339227>.

Souilem, H. & Derbel, N. (2018) Neuro-fuzzy control of vehicle active suspension system. *International Journal of Circuits, Systems and Signal Processing*. 12, 423-431.

Suanpang, P. & Jamjuntr, P. (2024) Optimizing Autonomous UAV Navigation with D* Algorithm for Sustainable Development. *Sustainability*. 16(17), art. no. 7867. <https://doi.org/10.3390/su16177867>.

Yan, Y. (2023) Research on the A Star Algorithm for Finding Shortest Path. *Highlights in Science, Engineering and Technology*, 46, 154-161. <https://doi.org/10.54097/hset.v46i.7697>.

Zhang, Y. (2024) Application of Multi-Sensor Fusion Technology. *Highlights in Science, Engineering and Technology*. 119, 752-757. <https://doi.org/10.54097/bb6dzv74>.

Zhu, J. & Pan, D. (2024) Improved Genetic Algorithm for Solving Robot Path Planning Based on Grid Maps. *Mathematics*. 12(24), art. no. 4017. <https://doi.org/10.3390/math12244017>.

This is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License.