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Abstract: This work enhances autonomous drone navigation by integrating real-time dynamic replanning with multi-agent
coordination. Using the A* algorithm for initial path planning, the optimal routes for the drones are recalculated in order to
avoid new obstacles. Swarm intelligence allows multiple drones to share information and collaborate on complex tasks, which
improves their collective performance. To that, energy optimization strategies extend the battery life and operational times.
The simulation results proved the system’s robustness and flexibility in the context of real-time changes and multi-drone
coordination, making it ideal for delivery, surveillance and exploration, and highlighting its potential for revolutionizing
various industries.
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1. Introduction

Autonomous drone navigation has become a
hot topic in recent years, with the potential to
transform various industries such as delivery
services, agriculture, and surveillance. By
integrating advanced technologies like artificial
intelligence (AI), machine learning (ML),
and real-time path planning, drones can now
navigate complex environments with minimal
human intervention. For example, reinforcement
learning algorithms have shown great promise
in developing efficient and cost-effective
navigation systems.

Beyond this, adaptive control strategies inspired
by other domains such as the Adaptive Neuro-
Fuzzy Inference System (ANFIS) used for
reducing vibrations in vehicle suspension
systems highlight the broader potential of Al-
driven solutions. In vehicular applications,
ANFIS outperformed traditional PID controllers
in minimizing disturbances from road roughness
while improving ride comfort and stability
(Souilem & Derbel, 2018), underscoring how
adaptive methods can enhance resilience in
dynamic systems. Similarly, exploring multi-
agent coordination and swarm intelligence has

expanded the capabilities of drone fleets, enabling
collaborative tasks and improved operational
efficiency (Khaldi & Foudil, 2015). Additionally,
exploring multi-agent coordination and swarm
intelligence has enhanced the capabilities of drone
fleets, enabling them to perform collaborative
tasks and improve their operational efficiency
(Gowda & Kumar, 2025).

Recent research has focused on overcoming
the challenges posed by dynamic and uncertain
environments. Dynamic replanning techniques
allow drones to adjust their paths in real time when
they encounter new obstacles, making this a key
area of study (Gugan & Haque, 2023). Algorithms
like D* and its variants have been crucial in
helping drones navigate safely and efficiently in
unpredictable settings (Suanpang & Jamjuntr,
2024). Moreover, object detection models
such as YOLOvVS have significantly improved
the accuracy and speed of real-time obstacle
detection and avoidance, further enhancing
drone autonomy (Afdhal et al., 2023). Energy
optimization is another vital aspect of autonomous
drone navigation, as limited battery life remains
a significant constraint. Researchers have
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developed various strategies to optimize energy
consumption, including intelligent path planning
and adaptive flight control systems (Ahmed et
al., 2024). These advancements are critical for
extending the operational times of drones, making
them more viable for long-duration missions
(Gao, 2024). Thanks to these technologies, drones
can now perform a wide range of tasks, from
last-mile delivery and infrastructure inspection to
environmental monitoring and disaster response.
Ongoing research and development continue to
push the boundaries of what autonomous drones
can achieve, paving the way for more robust,
efficient, and versatile systems (Zhu & Pan, 2024).

This work aims to advance the state of the art
in autonomous drone navigation by integrating
real-time dynamic replanning and multi-agent
coordination. By leveraging the A* algorithm
for initial path planning, the system effectively
recalculates the optimal paths when encountering
newly detected obstacles, ensuring an efficient
and collision-free navigation. Additionally,
swarm intelligence enables multiple drones to
share information and collaborate on complex
tasks, enhancing their collective performance and
mission success.

Energy optimization strategies are also
implemented to manage battery life effectively,
extending the operational times of drones and
improving their overall efficiency. The simulation
results demonstrate the system’s robustness and
flexibility in handling real-time changes while
efficiently coordinating multiple drones. These
capabilities are essential for applications in
delivery, surveillance, exploration, and beyond,
highlighting the transformative potential of
autonomous drones across various industries.

The remainder of this paper is organized as
follows. Section 2 provides a review of the current
drone navigation technologies and the existing
path planning algorithms. Section 3 outlines
the methodology, including the setup of the
environment, an explanation of the A* algorithm
for initial path planning, the implementation
of the dynamic replanning algorithm, and the
approach to multi-agent coordination. Further
on, Section 4 sets forth certain strategies for
energy optimization, detailing the energy
consumption model and some methods for
extending the flight time. Section 5 presents the
simulation results, illustrating the performance of

drones in various navigation scenarios. Finally,
Section 6 concludes this paper by discussing
the implications of the findings and suggesting
potential future research directions in the field of
autonomous drone navigation.

2. Literature Review

2.1 The State of the Art in Drone
Navigation Technologies

The rapid advancements in drone navigation
technologies have significantly improved the
capabilities and applications of autonomous
drones. Recent studies have focused on enhancing
the precision, reliability, and efficiency of drone
navigation systems through advanced algorithms,
sensor technologies, and Al techniques. For
instance, a project supported by the U.S. Army
Engineer Research and Development Center
has shown that visual navigation systems can
enable drones to autonomously navigate using
visual landmarks, even in environments where
GPS is compromised (Arafat, Alam & Moh,
2023). Furthermore, advancements in sensor
fusion have allowed drones to combine data from
multiple sources, such as LiDAR, cameras, and
GPS, resulting in a robust and accurate navigation
(Zhang, 2024).

2.2 Review of Existing Path
Planning Algorithms

Path planning is a crucial component of
autonomous drone navigation, ensuring that
drones can find efficient and collision-free routes
from a starting point to a destination. Over the
years, several path planning algorithms have been
developed and refined, including:

1. A* Algorithm: This widely used graph
traversal and path finding algorithm employs
heuristics to find the shortest path. It is
known for its completeness, optimality, and
efficiency (Yan, 2023);

2. Dijkstra’s Algorithm: This algorithm finds
the shortest path in a weighted graph without
using heuristics. While it guarantees an
optimal solution, it can be computationally
expensive for large graphs (Barbehenn, 1998);

3. Rapidly-Exploring Random Tree (RRT):
RRT is a sampling-based algorithm
particularly useful for high-dimensional
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spaces and non-holonomic constraints. It
generates random samples and incrementally
builds a tree to explore the search space
(Lavalle & Kuftner, 2000);

4. Genetic Algorithms: Inspired by natural
selection, these algorithms optimize paths
by simulating the process of evolution. They
are especially useful for solving complex
optimization problems in path planning
(Pan, 2024);

5. Ant Colony Optimization (ACO): ACO
mimics the pheromone trail following
behavior of ants in finding the shortest path to
food sources. This algorithm uses pheromone
trails to guide the search for optimal paths
(Dorigo, Birattari & Stiitzle, 2006).

2.3 Examination of Dynamic Replanning
Techniques and Swarm Intelligence

Dynamic replanning techniques are essential for
autonomous drones operating in dynamic and
uncertain environments. These methods allow
drones to adjust their paths in real time in response
to new obstacles or changes in their surroundings.
Key dynamic replanning techniques include:

1. D* Algorithm: This method and its variants,
such as D* Lite, are designed for real-time
replanning. They efficiently update paths as
the environment changes, which makes them
suitable for dynamic scenarios (Ferguson &
Stentz, 2005);

2. Real-Time Heuristic Search: Algorithms
like Anytime Repairing A* (ARA*) balance
computational efficiency and solution quality,
enabling real-time path adjustments (Bulitko
etal., 2011);

3. Incremental Search Algorithms: These
algorithms update the existing plans
incrementally rather than recomputing them
from scratch, efficiently handling dynamic
environments (Pemberton & Korf, 1994);

4. Swarm intelligence refers to the collective
behavior of decentralized, self-organized
systems, such as drone swarms. Techniques
related to swarm intelligence include:

- Particle Swarm Optimization (PSO): This
technique mimics the social behavior of birds
or fish to find optimal paths and has been
effectively applied to multi-agent systems for
collaborative navigation (Jones, 2023).

- Ant Colony Optimization (ACO): As
mentioned earlier, ACO is employed to find
optimal paths by simulating the pheromone
trail following behavior of ants and has
been successfully applied to swarm robotics
(Dorigo, Birattari & Stiitzle, 2006);

- Behavior-Based Algorithms: These
algorithms able drones to react to their
environment in real time, similarly to how
insects or animals behave in groups. Flocking
techniques and leader-follower models
are commonly used in swarm intelligence
(Ahmed & Glasgow, 2012).

The integration of advanced technologies in
autonomous drone navigation is paving the way
for revolutionary applications across various
industries. By leveraging algorithms for path
planning, dynamic replanning, and swarm
intelligence, drones can operate more efficiently
and effectively in complex environments. As
research continues to advance, the ability of
drones to transform sectors such as delivery,
surveillance, and disaster response becomes
increasingly evident. The ongoing exploration of
energy optimization strategies also plays a crucial
role in extending the operational capabilities of
these systems, ensuring that they can meet the
demands of real-world applications.

3.Methodology

3.1 Environment Setup

The environment is modeled as a 3D grid, defined
by the dimensions of rows, columns, and heights.
Each cell in this grid represents a potential
position that a drone can occupy. Obstacles are
strategically placed within the grid to create a
realistic and challenging navigation scenario.
These obstacles are represented by cells with
specific values, forming a binary grid where ‘1’
indicates the presence of an obstacle and ‘0’
indicates free space.

The 3D grid can be expressed as follows:

if cell(x,y,z) is an obstacle,

(1)

1
Grid(x,y,z) = . .
*.3:2) {O if cellis free space

This setup allows for the simulation of complex
environments with varying obstacle configurations.
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3.2 Explanation of the A* Algorithm
for Initial Path Planning

The A* algorithm is used for initial path planning
due to its efficiency and optimality. It finds the
shortest path from a start node to a goal node
within the 3D grid by considering both the cost
of reaching each node and an estimated cost for
reaching the goal node. The cost function f(n) is
defined as:

f () =g(n)+h(n) (2)

where f(n) is the total estimated cost of the
cheapest solution through node n, g(n) represents
the cost from the start node to node 7, and h(n)
is the heuristic estimate of the cost from node 7n
to the goal.

The heuristic function 4(n) commonly represents
the Euclidean distance in 3D space:

h() =%, = %) + (3, = Vo) + (2, 2,00) (3)

where (x,,y,,z,) are the coordinates of node #,
and (X5 Y gous s Zgor) @r€ the coordinates of the

goal node.

3.3 Implementation of the Dynamic
Replanning Algorithm

Dynamic replanning enables drones to adjust
their paths in real time in response to newly
detected obstacles. Upon detecting an obstacle, the
replanning algorithm updates the cost function and
computes a new path. The updated cost function

£ (n) is given by:
f(n)=g (n)+h(n) (4)

where g (n) is the updated cost from the start
node to node n after considering the new
obstacles, as follows:

g (m)=g(n)+Ag (5)

where Ag is the additional cost due to the presence
of new obstacles.

The dynamic replanning algorithm, such
as D* Lite, efficiently updates the path by
incrementally modifying the existing plan instead
of recomputing it from scratch, allowing for rapid
adjustments to changing environments (Ferguson
& Stentz, 2005).

3.4 Approach to Multi-Agent
Coordination

Multi-agent coordination is facilitated through
swarm intelligence, allowing multiple drones to
share information and collaborate on complex
tasks. The Particle Swarm Optimization (PSO)
algorithm is utilized to coordinate the movement
of multiple drones. Each drone (particle) updates
its position and velocity based on its own
experience and the experiences of neighboring
drones, as expressed in the following equations:

Vi (tH 1) = wv () + oy (p; - X, (D) +
¢1; (g - X, (1)

X, (tF1) = X, () + v, (t+ 1) (7)

(6)

where VT('[) is the velocity of drone i at time ¢,
X, (t) is the position of drone i at time ¢ ,

E(t) is the best known position of drone i, § is
the global best position found by the swarm,

w represents the inertia weight, ¢,,c, are the
acceleration coefficients and 7,7, are random
numbers between 0 and 1.

This approach ensures that drones can effectively
coordinate their movements, avoiding collisions
and optimizing their paths to achieve mission
objectives (Shirabayashi & Ruiz, 2023). The PSO
algorithm enables drones to adapt to changes in the
environment and collaborate efficiently, enhancing
the overall performance of multi-agent systems.

4. Energy Optimization

4.1 Model for Energy Consumption of
Drones During Flight

Energy consumption in drones primarily depends
on factors such as propulsion power, onboard
electronics, and environmental conditions. The total
power consumption P, can be expressed as the
sum of the power required for propulsion (Ppmp)
and the power consumed by onboard electronics
(P,.) (Beigi, Rajabi & Aghakhani, 2022):

Ptotal (t) = I)prop (t) + Pelec (t) (8)

P, (1) is the propulsion power required to
maintain flight at time t, including lift and
thrust and P, (¢) is the power consumed by

elec
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onboard electronics at time ¢ such as sensors,
communication devices, and control systems.

The propulsion power (P, ) can be further
expressed based on the drone’s aerodynamic
properties, flight speed (v) and air density (0):

LI
Pprop (t) = EpAV Cd (9)

where p is the air density, A represents the
frontal area of the drone, v is the flight speed and
C, is the drag coefficient.

The total energy consumption (E£) over a flight
duration (7') is obtained by integrating the total
power consumption over time:

E=[P,,()dt (10)

This model estimates the energy consumption
based on various flight parameters and
operating conditions.

4.2 Strategies for Optimizing Battery
Usage and Extending Flight Time

In order to optimize battery usage and extend
flight time, several strategies can be implemented:

1. Intelligent Path Planning: Flight paths
can be optimized for minimizing energy
consumption by selecting routes that avoid
unnecessary altitude changes and high-speed
segments. Maintaining a constant altitude
and speed can significantly reduce energy
usage (Meng et al., 2025);

2. Adaptive Speed Control: Flight speed can
be adjusted based on energy consumption
patterns and mission requirements. While
slower speeds can reduce propulsion power,
they may increase flight time, therefore a
careful balance is necessary (Delgado &
Prats, 2012);

3. Energy-Efficient Hardware: Low-power
electronics and efficient propulsion systems
can be used to lower overall energy
consumption. Advances in battery technology
and lightweight materials also contribute to
an enhanced energy efficiency (Mikhaylov,
Tervonen & Fadeev, 2012);

4. Energy Harvesting: Energy harvesting
technologies, such as solar panels, can be
incorporated to supplement battery power

and extend flight times, particularly for long-
duration missions in sunny environments
(Hao et al., 2022);

5. Dynamic Replanning: Real-time dynamic
replanning can be implemented to adjust
flight paths in response to changing
environmental conditions and energy
availability. This ensures that the drone can
complete its mission within the constraints of
the available battery life (Lee et al., 2022).

4.3 Simulation of Energy Consumption
Along the Planned and Dynamically
Adjusted Paths

To evaluate the effectiveness of the energy
optimization strategies, simulations are conducted
to compare energy consumption along both the
planned and dynamically adjusted paths. The
simulation process involves several key steps:

1. Initial Path Planning: The initial flight path
is calculated using the A* algorithm, taking
into account the energy consumption model;

2. Dynamic Replanning: The flight path is
adjusted in real time based on newly detected
obstacles and changing energy conditions.
The dynamic replanning algorithm updates
the path to ensure energy efficiency while
avoiding collisions;

3. Energy Consumption Calculation: The total
energy consumption for both the initial and
dynamically adjusted paths is computed using
the energy consumption model. This involves
integrating the total power consumption over
the flight duration for each path:

T;’nitial
Einitial = j })total (t)dt (11)
0
Tdynamic
Edynamic = _[ Ptotal (t)dt (12)
0
where £ and E imamic TEPTESENT the energy

consumption for the initial and dynamically
adjusted paths, respectively, while 7, and 7'

dynamic

represent the corresponding flight durations;

4. Analysis and Comparison: The simulation
results are analyzed for comparing the
energy consumption and flight times for
both paths. This analysis helps identify the
effectiveness of dynamic replanning and
energy optimization strategies.
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By implementing these strategies and conducting
thorough simulations, the goal is to enhance the
efficiency and sustainability of drone operations,
ultimately leading to longer flight times and
reduced energy costs.

5. Simulation Results

Figure 1 illustrates a 2D grid environment using
MATLAB used for simulating the path planning
for a drone where each cell represents a possible
position for the drone. The horizontal and vertical
axes denote the grid dimensions. Obstacles
are marked on different rows and columns,
signifying the areas that the drone must avoid.
The start point is indicated by a green circle, and
the goal point is represented by a blue circle. The
red line represents the path planned by the A*
algorithm, which finds the shortest route from
the start to the goal while avoiding obstacles.
This visualization helps illustrate how the A*
algorithm navigates through the grid to find
an optimal path, highlighting the challenge of
avoiding obstacles.

Planned Trajectory with A*

9 Trajectory
Departure
10 o Arrival
1 2 3 4 5 6 7 8 9 10
X(m)

Figure 1. A* Algorithm Path Planning with Obstacles

Figure 2 demonstrates the application of the
A* algorithm using MATLAB to efficiently
minimize the distance between a start point and
a goal point while navigating around obstacles
in a 2D grid environment. The grid comprises
various cells, some of which are designated
as obstacles that the drone must avoid and
represented by specific blocked cells. The start
point is represented by a green circle, and the
goal point by a blue circle. The path planned by
the A* algorithm, shown as a red line, represents
the optimal route from the start to the goal. This

path calculation ensures the shortest possible
distance while avoiding the obstacles.

This visual representation exemplifies how the
A* algorithm adeptly navigates through the grid,
overcoming the challenges posed by the obstacles
and achieving an efficient route.

Planned trajectory with A*

Y(m)

9 Trajectory
Departure
10 Q Arival
1 2 3 4 5 6 7 8 9 10
X(m)

Figure 2. Minimized planned trajectory

Figure 3 depicts a three-dimensional grid using
MATLAB used for simulating the environment
of a drone. The X, Y, and Z axes indicate the
dimensions of this space. The grid points,
scattered throughout this space, represent
possible positions that the drone can reach. The
obstacles are shown as black points, marking the
areas through which the drone cannot pass. The
start and goal points are depicted by bright red
and cyan points, respectively, enhancing their
visibility and making it easier to understand the
planned route for the mission. This visualization
helps to better comprehend the challenges the
drone will face when navigating through an
obstructed environment.

3D Grid with Obstacles
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Figure 3. 3D Grid with Obstacles
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Figure 4 showcases the navigation process of a
drone within a three-dimensional grid environment
while avoiding obstacles. The axes X, Y, and Z
represent the dimensions of this space, with each
grid point indicating a possible location for the
drone. The obstacles, represented by black points,
indicate the areas that the drone must avoid. The
starting point is highlighted by a bright red circle,
showing where the drone begins its journey,
while the goal point is illustrated by a cyan
circle, indicating the destination. The planned
trajectory, illustrated by a red line, demonstrates
the A* algorithm’s ability to find the most efficient
route from the start to the goal, navigating around
obstacles to ensure the shortest possible distance.
This visualization effectively illustrates the
algorithm’s capacity to determine an optimal path
in a complex environment, ensuring a successful
navigation from start to finish.

3D Trajectory Planning with A*
L]

®  Grid Points
Trajectory
3 Stant

Goal

=2
"8 9 PSR RD

LI IR B BE BE B BE BE BN

Figure 4. 3D Trajectory Planning with
the A* Algorithm

Figure 5 illustrates the simultaneous navigation
of two drones within a three-dimensional grid
environment that includes obstacles. The grid
points are represented, with obstacles shown in
black. The first drone’s trajectory is depicted in
red, starting from a red circle and ending at a cyan
circle, while the second drone’s trajectory is shown
in blue, starting from a green circle and ending at
a magenta circle. This visualization highlights the
ability of the A* algorithm to effectively plan and
coordinate the paths of two drones, ensuring that
both drones navigate efficiently through the grid,
avoiding obstacles and reaching their respective
goals. This demonstrates the algorithm’s capability
to handle complex scenarios involving multiple
agents in the same environment.

3D Trajectory Planning for Two Drones

®  Grid Points
Trajectory Drone 1
Trajectary Drone 2
Start Drone 1

Goal Drone 1
{7y Start Drane 2
0 Goal Drone 2

LR B0 B BE BE O % ]

Figure 5. 3D Trajectory Planning for Two Drones

Figure 6 illustrates the coordinated navigation
of three drones within a three-dimensional grid
environment that includes obstacles. The grid
points are represented, with obstacles shown in
black. The first drone’s trajectory is depicted in
red, starting from a red circle and ending at a
cyan circle.

The second drone’s trajectory is shown in blue,
starting from a green circle and ending at a
magenta circle. The third drone’s trajectory is
illustrated in green, starting from a black circle
and ending at a yellow circle. This visualization
highlights the capability of the A* algorithm
to plan and coordinate the paths of multiple
drones simultaneously, ensuring that each drone
navigates efficiently through the grid while
avoiding obstacles and reaching its respective
goal. This demonstrates the algorithm’s robustness
in handling complex scenarios involving multiple
agents in the same environment.

3D Trajectory Planning for Three Drones

. ®  Grid Points
Trajectory Drone 1

Trajectory Drone 2
Trajectory Drone 3
Start Drone 1
Goal Drone 1
Start Drone 2
Goal Drone 2
Start Drone 3
Goal Drone 3
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Figure 6. 3D Trajectory Planning for Three Drones
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3D Trajectory Planning with Dynamic Replanning for Three Drones.
L

——— Replanned Trajectory Drone 3
Start Drone

1
Goal Drone 1
) Start Drone 2
Goal Drene 2
Start Drone 3
Goal Drane 3

Figure 7. 3D Trajectory Planning with Dynamic Replanning for Three Drones

Figure 7 illustrates the navigation and real-time
path adjustment of three drones within a three-
dimensional grid environment containing both
static and dynamic obstacles. The grid points are
displayed, with obstacles represented in black and
newly introduced dynamic obstacles highlighted
in yellow. The initial planned trajectories for each
drone are shown as dashed lines: for Drone 1 in
red, Drone 2 in blue, and Drone 3 in green. These
initial paths provide a baseline for the navigation
plan before encountering any new obstacles. Upon
detecting new obstacles, the dynamic replanning
algorithm is triggered, resulting in updated paths
that are depicted as solid lines. The replanned
trajectories ensure that each drone avoids
collisions and continues toward its goal efficiently.
The starting point for each drone is illustrated
by a red, green and black circle, respectively,
and their destinations are highlighted in distinct
colors (cyan for Drone 1, magenta for Drone 2,
and yellow for Drone 3).

This visualization clearly illustrates the system’s
capability to dynamically adjust paths in
response to real-time changes in the environment,
showcasing the robustness and flexibility of the
dynamic replanning algorithm. It highlights the
importance of incorporating adaptive strategies
in autonomous drone navigation to ensure safe
and efficient operations in unpredictable and
dynamic settings.

Figure 8 displays the 3D trajectories of three
drones, each represented by a distinct color:
red for Drone 1, blue for Drone 2, and green
for Drone 3. Along these paths, scattered points
indicate the remaining energy levels, with colors
varying in intensity as shown by the color bar
on the right. As the drones move, their energy

levels decrease linearly, reflecting a consistent
energy consumption of 1 unit per movement.
This visualization allows for a comparison of
the drones’ energy performance, highlighting the
importance of energy management to ensure the
efficiency of flight missions.

Energy Consumption Simulation for

Three Drones
100

: i

R ] 90
N

4 AT

| L 85
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Trajectory Drone 1
B Energy Level Drone 1
Trajectory Drone 2
®  Energy Level Drone 2
Trajectory Drone 3
Energy Level Drone 3

Figure 8. Energy Consumption Simulation for
Three Drones

Figure 9 enables insights into UAV performance
through a flight simulation and historical data
visualized in 3D. The scatter plot shows the UAV’s
trajectory in a three-dimensional space, with color
coding indicating the success of flight segments.
Denser clusters represent successful flights, while
less dense areas highlight challenges. The Z-axis
reflects altitude changes, indicating the UAV’s
adaptation to different terrains. Additionally, a
3D line plot tracks the UAV’s path and battery
level, with a red line for its trajectory and scattered
points for battery status. The observed decline in
battery level emphasizes the need for effective
battery management to complete missions
successfully. Overall, these visualizations aid in
optimizing the flight plans and improving UAV
operations by identifying areas for enhancement.
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UAV Flight Simulation

Flight Path
#  Battery Level

10

Z Position

Y Position )

X Pasition

Figure 9. UAV Flight Simulation

6. Conclusion

This work highlights the significant advancements
made in autonomous drone navigation by
integrating real-time dynamic replanning and
multi-agent coordination. Utilizing the A*
algorithm for initial path planning, the system
effectively recalculates the optimal paths in
response to the newly detected obstacles, ensuring
an effective and collision-free navigation in
dynamic environments. The incorporation of
swarm intelligence allows multiple drones to
share information and collaborate on complex
tasks, enhancing their collective performance
and the success of the mission. The analysis of
flight data visualizations further underscores these
advancements, illustrating how historical and
simulated data can inform operational strategies.
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