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Abstract: In order to achieve the precise positioning of railway inspection robots and optimize their inspection paths, this
paper focuses on robot work optimization for railway inspection environments. Firstly, an adaptive improvement strategy
is proposed for the extended Kalman filter algorithm, and a multi-sensor information fusion-based positioning algorithm is
implemented for railway inspection robots. Then, based on the improved ant colony optimization algorithm, a path planning
model for inspection robots is constructed. The experimental results show that the multi-sensor information fusion-based
positioning algorithm features a high positioning accuracy, and the positioning root mean square error converges to the
minimum value of 0.136. To that, the inspection robot localization success rate and the stability of the proposed method make
it better than other methods, with an increase in the success rate amounting to 29.41%. At the same time, the improved ant
colony optimization-based path planning model achieves the highest planning efficiency, with a localization success rate of
97.35% in railway inspection environments with obstacles, a maximum reduction of the inspection path length amounting
to 36.49%, an average planning time reduction of up to 46.67 seconds, and excellent path smoothness. The implementation
of this positioning algorithm and path planning model helps improve the railway inspection efficiency and promotes the

development of multi-sensor fusion technology.

Keywords: Inspection robot, Railway, Information fusion, Sensor, Ant colony optimization algorithm.

1. Introduction

The railway transportation lines in China exhibit
the characteristics of being dense in the east and
sparse in the west, widely distributed, connecting
major urban agglomerations and core cities in
China, and occupying a major position in the
field of transportation in China. Regular railway
inspections are of crucial importance in ensuring
the safety of railway transportation and the
smooth operation of trains (Moon et al., 2024;
Stanojevi¢ & Stanojevié¢, 2024). Through railway
inspections, safety hazards in railway lines can
be detected and eliminated in a timely manner,
damaged parts on railway lines can be repaired,
and operational delays or safety accidents caused
by line problems can be avoided (Wang et al.,
2023; Fan, 2024). However, traditional manual
inspections involve high labor intensity, harsh
working environments, and subjective judgment
interference, which pose severe challenges to the
railway inspection work (Xing, 2024). In recent
years, railway line inspections have gradually
relied on advanced technological means and
instrument equipment. Robot inspections can
overcome the shortcomings of manual inspections
to a certain extent, and through high automation
and intelligence, the risk of human errors can be
effectively reduced. However, railway lines often
traverse various complex terrains, obstacles,
and harsh weather conditions that interfere with

the sensor performance of inspection robots,
significantly reducing their positioning accuracy.
The existing research shows that multi-sensor
fusion (MSF) technology can reduce the error of
a single sensor by integrating data from different
sensors, improve the environmental awareness of
patrol robots, and thus improve the positioning
accuracy. In addition, a good inspection path can
help improve inspection efficiency and ensure
a high inspection quality, but the existing path
planning (PP) methods have a low adaptability
to the characteristics of railway lines and
inspection task requirements. At present, swarm
intelligence optimization algorithms have been
widely applied in different fields, especially the
ant colony optimization (ACO) algorithm, which
has shown a great potential in PP. However, it is
still necessary to explore robot PP algorithms that
are suitable for railway inspection. Therefore, to
foster the intelligent advancement of the railway
industry and provide a more accurate and efficient
positioning and PP solutions for railway inspection
robots, this paper first innovatively proposes
an adaptive improvement strategy based on an
extended Kalman filter (EKF), and describes how
the construction of a MSF positioning algorithm
is completed. Then, innovative improvements are
made for the ACO, and the design of a robot PP
algorithm is presented.
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The remainder of this paper is structured as
follows. Section 2 presents a review of the current
research status on inspection robot positioning
and PP at home and abroad. Section 3 elaborates
on the construction process for the positioning
algorithms and PP models, while Section 4
discusses the experimental results. Finally, Section
5 concludes this paper and outlines possible future
research directions.

2. Related Works

Inspection robots have been widely used in
various industries such as park inspection, the
power industry, and petrochemicals, and have
received extensive attention from researchers.
Key technologies such as the positioning and PP
of the inspection have been studied. In order to
improve the coverage of the working area of power
inspection robots, Jiang et al. (2023) focused on
the challenges of intelligent control programs in
navigation modeling and PP. By using multiple
information fusion for simultaneous localization
of railway inspection robots and map construction,
Kalman filtering (KF), five-layer neural networks
and fuzzy neural networks were employed, and
high-precision localization and dynamic PP were
achieved. The simulation verification showed
that the algorithm was effective and accurate in
complex environments, improving the efficiency
of the inspection robot (Jiang et al., 2023). Li
(2024) aimed at traffic congestion, accidents
and environmental problems in the process of
urbanization. An intelligent expressway traffic
monitoring system based on the Internet of
Things was proposed, and intelligent inspection
robots were introduced to monitor road traffic
flow and violation records in real time. The
inspection robot utilizes deep learning and
artificial intelligence technologies, combined
with improved synchronous positioning and map
construction algorithms. The results showed that
the proposed method had a good computational
efficiency (Li, 2024). Sugin Elankavi et al. (2023)
designed two wheeled pipeline inspection robots
in response to the limitations of traditional manual
inspection methods and early robot designs, aiming
to overcome the motion singularity problem
at pipeline bends. They adopted wheels with
asymmetrical angles to maintain contact with
the pipe surface and avoid motion singularities.
Through motion analysis and experimental
verification, the proposed method showed a high
stability and accuracy in pipeline inspection

(Sugin Elankavi et al., 2023). Gilmour et al.
(2023) designed a new robot track positioning
method using a vehicle mounted depth camera
for navigation in a semi-structured environment.
The experimental results showed that this method
had a high accuracy and was suitable for different
materials and lighting conditions. Taking steel
plate inspection as an example, it could accurately
locate the track within a range of 5.7 mm, which
was significantly better than traditional manual and
existing robot solutions (Gilmour et al., 2023). To
achieve an efficient inspection, Xie et al. (2024)
proposed a relative positioning approach based
on a radio frequency identification tag array. By
deploying tag arrays in the detection area and
constructing a fingerprint database, the high-
precision positioning of inspection robots can be
achieved. The experiments showed that this method
was less affected by trajectories and obstacles, with
a positioning error of less than 6 cm in complex
scenes, effectively improving the inspection
accuracy and efficiency (Xie et al., 2024).

Tang et al. (2024) proposed an improved artificial
electric field algorithm for the problem of robot PP
optimization. By introducing three mechanisms,
namely parameter adaptation, reverse learning
and Cauchy mutation, the exploration ability
and convergence accuracy of the algorithm were
improved. The article combines the improved
artificial electric field algorithm with cubic spline
interpolation to generate smooth and continuous
paths, thereby solving the problem of global PP
in a three-dimensional environment, and verifies
the effectiveness of the algorithm through a large
number of virtual simulation experiments (Tang et
al., 2024). Xi et al. (2024) proposed a lightweight
real-time PP method based on reinforcement
learning for the optimization problem of
unmanned aerial vehicle (UAV) PP - the adaptive
soft actor-Critic algorithm. This method constructs
a global training and local adaptation framework
by optimizing the training process, network
architecture and algorithm model, and introduces
a cross-layer connection method to avoid feature
loss and improve the learning efficiency. The
results proved the superiority and adaptability of
the proposed method in PP optimization (Xi et al.,
2024). To tackle the communication challenge of
mining industry robots in closed environments,
Cid et al. (2024) proposed a semi-autonomous
leader-follower scheme and a multi-robot
connection perception system by using remote
radio frequency to predict signal propagation and
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PP. The experiments showed that this method
significantly improved the communication quality
and inspection range, achieving an effective
operation in a line-of-sight environment (Cid et
al., 2024). Lou et al. (2025) proposed a hybrid
multi-strategy sandcat swarm optimization
algorithm for the PP optimization problem of
mobile robots. This algorithm improved the
convergence accuracy through the nonlinear
adjustment strategy, introduced the logarithmic
weighting strategy to balance the exploration
and exploitation capabilities of the algorithm in
the search space, used the alternating selection
strategy to jump out of the local extremum, and
adopted the Levy flight position update formula
to prevent the algorithm from getting stuck. The
results showed that the proposed algorithm had
a good planning effect (Lou et al., 2025). To
optimize the PP of vehicles like mobile robots in
complex scenes, Li et al. (2024) proposed a PP
method based on an improved ACO algorithm
and fractional-order models for non-smooth
path problems in narrow and large-sized scenes,
which improved the modeling accuracy and search
efficiency, and achieved a smooth and efficient
path generation (Li et al., 2024).

Overall, significant progress has been made with
regard to the localization and PP of inspection
robots, such as multi-information fusion
positioning and intelligent algorithm-based
optimization of paths, effectively improving the
inspection efficiency and accuracy. However, for
specific complex environments such as railway
inspections, the existing technologies still face
challenges, such as the ever-changing environment
and dense obstacles along the railway. Therefore,
research on the positioning and PP of railway
inspection robots is particularly necessary, and
adaptive exploration has been conducted using
advanced technologies such as multi-information
fusion positioning and intelligent algorithms.
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3. Research Methodology

MSF technology and swarm intelligence algorithms
can provide support for improving the key
performance of inspection robots. The study first
designed a robot positioning algorithm under the
background of MSF, and then fused multiple swarm
intelligence algorithms to construct a PP model.

3.1 The Proposed Positioning Algorithm

MSF technology can enhance the environmental
perception ability and robustness of robots through
redundant design. Research is been conducted
on the design of robot positioning algorithms
under MSF. The study first presents a kinematic
model of the inspection robot, and the constructed
coordinate system and corresponding positional
relationship are shown in Figure 1.

As shown in Figure 1, the kinematic model
of the robot includes two major coordinate
systems: a local and a global system. The local
coordinate system is centered around the robot
and is used for helping the robot perceive and
understand its surrounding environment. The
global coordinate system belongs to a larger
fixed reference framework that covers the
overall range of motion of the robot, providing
a unified and global perspective for the robot.
The study uses the feature map method to define
the motion environment of robots and represents
the environment using the global position of
parameterized features. Firstly, the study sets the
known environmental feature point in the motion
environment of the inspection robot, which is
represented as L = (x,,»). A set of feature points
form the environmental map feature set. The pose
of'a robot is composed of position coordinates and
deflection angles in a two-dimensional plane, and
its own pose can be estimated using the feature
point L = (x,y) (Jovanovi¢ et al., 2023; Pang et
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Figure 1. Coordinate System and Relative Positional Relationship Diagram of the Robot Kinematic Model
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al., 2024). Therefore, the kinematic model of the
robot is shown in equation (1):

X cosd 0

i |=|sing 0 N (1)
. (4]

0 0 1

In equation (1), x, y, and 0 represent the
coordinates and directional quantity after motion,
respectively. 6 indicates the directional quantity.
v and w represent the linear velocity and centroid
angular velocity. In the global coordinate system,
the distance between the robot and the target (x,,y,)
is d. The directional vector of the target is a. The
position of the robot at time k is [x,,y,,6,]. Then,
the expression of the robot observation model is
shown in equation (2):

Z m Jos =5 = (-0 )

arctanu—ek
X, — X,
The positioning problem of inspection robots,
also known as the filtering problem, can be
defined as a nonlinear system during the
positioning process. The system is often affected
by system noise and sensor measurement noise.
EKF is an extension of KF, which transforms
the nonlinear state estimation problem into
a linear problem by linearizing the nonlinear
system model and using the framework of
KF for recursive estimation. It is suitable for
nonlinear systems (Hu & Huang, 2024; Lee,
Lee & Yoo, 2024). Therefore, EKF was chosen
in this study as the positioning algorithm for
robots under multi-sensor conditions. The
traditional KF algorithm assumes that the system

2)

is a linear system and that the noise follows a
Gaussian distribution, which leads to significant
limitations for the algorithm. EKF uses Taylor
expansion to approximate nonlinear functions,
and obtains a linear approximation model by
linearizing the state transition function and
observation function. The KF algorithm is used
for state estimation based on linear model (Li et
al., 2023). The positioning algorithm process for
the inspection robot is shown in Figure 2.

As shown in Figure 2, the positioning process
requires first setting the initial state estimation
values and covariance matrices, and predicting the
state estimation and covariance matrix (CM) for
the next moment based on the system model and
control inputs. The prediction formula is shown
in equation (3):

{ Xo= (o uey) 3)
Bo= Ach—lAZ +0,

In equation (3), X, and X, , represent the prior
state estimation value at time & and the posterior
state estimation value at time k—1, respectively.
S represents the state transition function. u,_,
represents the control input at time k—1. F, and
P_ represent the prior and posterior covariance
matrices, respectively. O, is the CM of process
noise. 4, represents the Jacobian matrix of /. Then,
the Kalman gain K, is calculated, as shown in

equation (4):
K, = Pk_HkT (HkEc_HkT +R, )7]

(4)

In equation (4), H, is the Jacobian matrix of the
observed function 4. R, is the CM of the observed
noise. The observation predictive value Z and
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Figure 2. Schematic Diagram of the Positioning Algorithm Flow for the Inspection Robot
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residual ¢ are calculated based on the prior state
estimation values, as shown in equation (5):

2k = h(jek/k—l ) (5)
E=2z, -2,
In equation (5), Z, represents the observed value.
Finally, the state and covariance are updated based
on the KF gain, as shown in equation (6):

fck=x,;+Kk(zk—h(x,;)) (©6)
B=(1-K.H )R

The inspection robot regards the pose and
environmental feature information as state
variables based on the EKF algorithm, and defines
the relationship between state variables using
error covariance. However, the traditional EKF
algorithm achieves the linearization of nonlinear
functions through Taylor series expansion, which
can easily ignore higher-order terms and lead to
a reduced system estimation accuracy or even
filter divergence. In response to this, the study
introduced the principle of adaptive filtering to
optimize the traditional EKF. By employing
innovation-based adaptive estimation, the system
utilizes the statistical characteristics of the
innovation sequence to dynamically estimate and
correct the system model in real time, thereby
improving the estimation accuracy of the filter.
The improved EKF positioning principle is shown
in Figure 3.

As shown in Figure 3, the adaptive EKF will
calculate the new information based on the
difference between the measured and anticipated
values. It utilizes the statistical properties of

Start

A 4

new information to evaluate the performance of
filters, achieving the correction of CM ), for noise
and CM R, for the observed noise. The adaptive
adjustment rule is shown in equation (7):

Q/: = KkAk—lKZ

e=Z; -z,

1 i
F, =ﬁ;=eieiT

RI: =F - Hch/k—lHZ

(7

In equation (7), e, represents the observation
innovation, namely the difference between the
actual measurement and the predicted observation,
serving as an indicator of the prediction error of
the filter, while M denotes the matching window
(or sliding window size) used for calculating
the statistical characteristics of the innovation
sequence over the most recent M samples.

3.2 Design of the PP model

The PP of inspection robots relies on accurate
positioning information. After providing reliable
position information for the inspection robot based
on the improved EKF positioning algorithm, a
PP model for the robot was designed to support
complex inspection tasks. PP is an important
component of the autonomous navigation
technology for inspection robots, which involves
generating an optimal path from the starting
point to the endpoint in known or unknown
environments based on environmental maps,
obstacle distribution, robot dynamics constraints,
and task requirements. In this paper, the ACO
algorithm was selected for the PP algorithm
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Figure 3. Schematic Diagram of the EKF Algorithm Positioning Principle
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design. ACO is a swarm intelligence algorithm
that mimics the foraging behavior of ants,
simulating their behavior of finding the shortest
path by releasing and perceiving pheromones. The
working mechanism is shown in Figure 4 (Chen
et al., 2024; Li, Yan & Huang, 2024).

As shown in Figure 4, the path with a high
concentration of pheromones features a higher
probability of leading to the food source. Therefore,
over time, the concentration of pheromones on
shorter paths will gradually increase, while the
concentration of pheromones on longer paths will
gradually decrease due to the smaller number of
ants on those paths. Hence, ant colonies discover
the quickest route from their nest to the food.
The build-up of pheromones serves as the ACO
algorithm’s positive reinforcement mechanism,
guiding the search process towards convergence
and gradually reaching the best possible solution
(Chowdhury et al., 2024; Wang & Feng, 2024).
Additionally, in view of this algorithm, multiple ant
colonies can perform path search simultaneously,
which enables a strong parallelism and distributed
characteristics. The PP algorithm first abstractly
models the motion environment of the inspection
robot and divides the inspection map into different
grids. Then, certain parameters are initialized,
such as the ant colony count, the pheromone
importance, the heuristic function importance
factor, the pheromone volatilization factor, etc.
During the algorithm iteration process, the ants
shall move between different path nodes with a
certain probability, which depends on the distance
from the current node to adjacent nodes and on the
concentration of pheromones on adjacent nodes.
The transition probability p[]; (t) calculation is
given in equation (8):

0 ,else
[=,()] [m ()]
[z ()] [,(1)]

Jjeallowed,

p;(1)= 5 J €allowed, (8)

In equation (8), T,j(t) represents the pheromone
concentration between the nodes i and j. ¢ is the

. i . A € F

§9 . ¢ 46y & 858N\ 5o 4. .
AL @g,?g,‘?g G,7 4 %5 ¢
L RG99 T EVE Le9 4 9ed g
§eRPe g ¥9 ¢ @& aak ¢

moment when the ant colony leaves 7,(1), and
the initial pheromone concentration is 7,(0)=C.
o represents the heuristic factor of pheromone
concentration, and the value of a determines the
importance of pheromone concentration in path
selection. S represents the expected heuristic
factor, which determines whether the path
selection should be based on pheromones. 1,(7)
represents the path heuristic value. Over time, the
ACO algorithm will simulate the phenomenon
of natural dissipation of pheromones in nature,
and introduce the volatility coefficient p to help
the algorithm avoid premature convergence. A
smaller volatility coefficient p corresponds to a
slower volatilization of pheromones, and ACO
tends to utilize the known information. A higher
volatility coefficient p increases the possibility of
ACO exploring unknown paths. The process of
pheromone change is shown in equation (9):

£ (+n)=(1- p) 5, (1) #az, (1)

n (€))
o7, (1) =307, (1)

k=1
In equation (9), m is the total number of ant
colonies, k={1,2,3,...,m}. The calculation
of the pheromone increment a7 (7) is given in
equation (10):

9 tour(i,j) € tour,

AT, (l) L, (10)

0 else

In equation (10), O represents the strength of
pheromones, while L, represents the total length
of the paths explored by ants during the iteration
process. The initial pheromone concentration in
the context of the conventional ACO algorithm
is uniformly distributed, which increases the
randomness of path selection and makes it difficult
for the algorithm to effectively explore the solution
space in the initial stage. Meanwhile, the residual
pheromones also make it difficult for the algorithm
to escape from local optima (Banciu et al., 2024).
In this regard, research was conducted to improve

Figure 4. Illustrative Layout of the Working Principle of the Ant Colony Algorithm
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the ACO algorithm, and a PP model for inspection
robots was constructed as shown in Figure 5.

As shown in Figure 5, the Bidirectional Particle
Swarm Optimization (BPSO) algorithm is
employed to optimize the distribution of initial
pheromones. BPSO introduces a bidirectional
learning mechanism based on Particle Swarm
Optimization (PSO) algorithm, where one particle
in PSO represents a candidate solution, and its
position and velocity are iteratively updated
to approximate the optimal solution. BPSO
considers both the actual and inverse estimates
of particles, that is, simultaneously recording
the optimal value p, and the worst value pp, of

particles, and introducing the inverse particle p,
of p, as a new learning factor for BPSO during the
iteration process. The learning process is shown
in equation (11):

v,(t+1)=owv,(t)+crand(p,(t) —x, (1))
+eyrand(p, (1) = x,(£)) + c;rand (pp,, — %, (t))

(11)

In equation (11), v, and x, are particle velocity
and position, respectively. ¢, ¢, and c, represent
the learning factors. Pu is the global optimal value,
while pp,, represents the global worst value. p,,

represents the individual optimal value and w is
the weight.

In addition, the traditional ACO algorithms feature
a strong dependence on pheromones and a high
sensitivity to algorithm parameters. This study
introduces an adaptive mechanism to enable the
algorithm to dynamically adjust its parameters
and strategies based on the current search state,
thereby improving the robustness and adaptability
of the algorithm. The study related the parameters
o and S specific to individual ants in the ant colony
to their respective adjustment parameters c , ¢, and
¢,, which regulated the behavioral characteristics
of ant individuals. The transition probability
calculation process is expressed in equation (12):

0 ,else
.:Ti/' (t)]am '[’7:‘1 (t)Jﬂ(C)
> (o @] n, 0]

Jeallowed,,

pi ()=

jeallowed, (12)

Finally, the study introduces the quadratic path
smoothing algorithm, which adjusts the position
of path points based on the principle of quadratic
programming to achieve a higher smoothness of
the path under certain constraints. The operation
mechanism is shown in Figure 6.
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Figure 6. Illustrative Layout of the Working Mechanism of the quadratic path smoothing algorithm
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4. Experiments and Results

To assess the efficacy of the inspection control
technology for inspection robots proposed in
this paper, performance testing for positioning
algorithms and application analysis experiments
for PP models were conducted, and the results
were analyzed and discussed.

4.1 Experiment for the MSF
Positioning Algorithm

The experiment was conducted on a Windows
10 operating system, using Python 3.8.8 as
the programming language and Python 1.8.1
as the deep learning framework. The central
processing unit was Intel (R) Core (TM) i5-7200
CPU@2.50GHz. The memory was 64.00GB,
and the image processor was Ge Force RTX
2080Ti. Performance testing was conducted on
the positioning algorithm using the KITTI dataset,
MH dataset, and TUM dataset, which include
different scenarios and sensor configurations,
to evaluate the performance of the positioning
algorithm in static and dynamic scenarios. The test
compared the multi-method integration model in
(Jiang et al., 2023), the closed-loop KF algorithm

B (Jiang et al., 2023)B (Li, 2024)

0.4 O (Xic et al., 2024) @ Improved EKF

Root Mean Square Error

1 2 3 4 5 6 7 8

Anchor point
(a) Comparison of RMSE

in (Li, 2024), and the RFID tag array positioning
method in (Xie et al., 2024). The root mean square
error (RMSE) and mean absolute error (MAE)
results for four positioning algorithms are shown
in Figure 7. As shown in Figure 7(a), for different
anchor points, the improved EKF algorithm
proposed in this paper obtained the lowest RMSE
value, which is a significant advantage with regard
to the positioning accuracy in comparison with
the other three models. The minimum RMSE
value for the improved EKF algorithm was 0.136,
while the RMSE values for the other methods
were all higher than 0.25. Further on, as shown
in Figure 7(b), the MAE values for the other
three employed models at different anchor points
showed consistent patterns, and the MAE value
for the improved EKF algorithm was the smallest.
Based on these two error indicators, the improved
EKF algorithm achieved the highest positioning
accuracy for the inspection robot.

Further on, the relative rotation error (RRE) and
absolute trajectory error (ATE) results for the
four positioning models are shown in Figure 8.
As shown in Figures 8(a) and 8(b), in comparison
with the other three advanced positioning
algorithms, the improved EFK method proposed

B (Jiang et al., 2023)B (Li, 2024)
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Figure 7. Comparison of the Positioning Accuracy for the Four Models
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Figure 8. Comparison of RRE and ATE for the Four Location Models
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in this study significantly reduced the ATE and
RRE values, with a minimum ATE value of 0.160
and a minimum RRE value of 0.137. The ATE and
RRE values for the other three methods fluctuated
above the 0.25 value level, indicating that the
proposed algorithm achieved a high positioning
accuracy for the inspection robot in the global
coordinate system, which confirmed the stability
and accuracy of the improved EFK method under
long-term and long-distance operation.

The success rate and timeliness rate for the four
employed positioning algorithms are represented
in Figure 9. In Figure 9(a), the localization success
rate for the improved EKF algorithm increased
with the number of iterations and converged to
a maximum value of 0.957. The success rates of
location detection for the other three positioning
algorithms were all below 0.85. As represented in
Figure 9(b), the improved EKF algorithm obtained
the best timeliness rate and featured significant
advantages in comparison with the other methods,
as it could complete localization in a shorter time.
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4.2 Experiment for the PP Model

In this study, the pheromone volatilization
coefficient p was set at 0.3 and the heuristic
factor of the ant colony algorithm B = a = 1,
with a population size of 60 and a maximum
number of 200 iterations, to complete PP
performance testing in a 30*30 grid environment.
Firstly, the performance of the improved ACO
algorithm proposed in this paper was tested
using the Schwefel, Rosenbrock, Griewank, and
Ackley functions as test functions to evaluate
the hypervolume (HV) and the uniformity of
performance (UP) for three algorithms, namely
the improved ACO algorithm, the traditional ACO
algorithm and the genetic algorithm (GA). The
experiment outcomes are represented in Figure
10. As shown in Figure 10(a), the improved ACO
algorithm quickly reached and maintained a HV
value close to 1.0. By introducing the BPSO
algorithm for optimizing the initial pheromone
distribution, the algorithm’s global search ability
was enhanced and the diversity of the solution
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set was improved. The search and optimization
capabilities of the other two algorithms were
insufficient, resulting in a significant decrease
in HV values. As shown in Figure 10(b), the
UP value for the improved ACO algorithm
increased rapidly with the number of iterations
and converged to a maximum value of 0.943.
The UP values for the traditional ACO algorithm
and GA remained stable at around 0.7 and 0.6,
respectively. The adaptive improvement strategy
enhanced the robustness and adaptability of the
ACO algorithm, thereby improving the uniformity
of the obtained solution.

Further on, the improved ACO PP model proposed
in this paper was compared with the improved
RRT* algorithm based on Tang et al. (2024)., the
improved A* algorithm based on Xi et al. (2024),
and the NNE-DRL adaptive PP model based on
Lou et al. (2025). The experiment involved a
railway inspection environment with obstacles for
testing the planning performance. The planning
and efficiency comparison results for the four
above-mentioned models are shown in Figure 11.
As shown in Figure 11(a), the path length planned
by the improved ACO algorithm was the shortest,
and the path length obtained after 70 iterations
was 10.299 m. The shortest path lengths planned
by the improved RRT*, improved A*, and NNE-
DRL models were 15.311 m, 15.445 m, and
16.397 m, respectively. The maximum decrease

300 fgy .
280 LT,

Time (s)

in the shortest path length reached 36.49%. The
adaptive mechanism and BPSO enhanced the
search capability of the improved ACO algorithm,
enabling it to find better paths. As shown in Figure
11(b), the improved ACO algorithm obtained the
shortest planning time, taking only 51.975 seconds
to complete PP. In comparison with the other three
methods, the planning time was reduced by up to
46.67 seconds, and the optimal path was found
in a shorter time. Therefore, the improved ACO
algorithm proposed in this paper achieved a higher
comprehensive planning performance.

Finally, the smoothness and success rate related
to PP for inspection robots in actual operations
were compared, as shown in Figure 12. As shown
in Figure 12(a), in the presence of obstacles, the
path planned by the improved ACO algorithm was
the smoothest, with smoothness fluctuating within
the range of 0.80-0.95, which was significantly
better than for the other three methods. As shown
in Figure 12(b), the maximum success rate of
PP for the improved ACO algorithm was 0.973.
The adaptive strategy and BPSO proposed in
this paper contribute to enhancing the ACO
algorithm’s optimization capability in solving
the path planning problem for inspection robots,
particularly by improving the global search
ability, convergence speed, and solution stability
in complex obstacle environments.
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5. Conclusion

To enhance the security and effectiveness of robot
inspection and provide solid support for railway
transportation, this paper proposed positioning and
PP algorithms for railway inspection robots based
on improved EKF and ACO, respectively. The
experimental outcomes indicated that the improved
EKF algorithm reached a high positioning
accuracy, achieving a RMSE value of 0.136 and
a MAE value of 0.143. In comparison with other
employed algorithms, the values of ATE and RRE
obtained by the proposed algorithm provided
significant advantages and enabled a higher
positioning accuracy in the global coordinate
system. Additionally, this positioning method
obtained a high positioning success rate and
immediacy, with a positioning success rate of up
to 0.957 and an immediacy index higher than 0.9,
which enabled it to achieve an accurate positioning
in a short period of time. The improved ant colony
optimization algorithm demonstrated a superior
optimization capability across multiple benchmark
test functions, particularly in solving complex path
planning problems for railway inspection robots
and the maximum reduction of the length of the
planned inspection path reached 36.49%. This
model needed only 51.975 seconds to complete the
PP In addition, this PP algorithm achieved a high
success rate and a high smoothness of robot paths.
The model proposed in this paper can help railway
inspection robots complete inspection tasks more
quickly and improve the inspection efficiency.

Although the proposed MSF positioning algorithm
and the improved ACO PP model demonstrated a
high performance in various simulation scenarios,
their applicability in real-world railway inspection
environments still requires further verification.
The current experiments were conducted under
idealized conditions and did not fully consider
practical environmental factors such as complex
railway terrains, variable lighting, extreme weather,
and obstacle interference, all of which could
significantly affect sensor stability, localization
accuracy, and path continuity. Additionally, while
the improved ACO algorithm proved advantageous
with regard to the convergence speed and global
search ability for small- to medium-scale tasks,
its performance for large-scale, high-density PP
tasks remains insufficiently evaluated, particularly
regarding the computational complexity and
convergence time. Moreover, the current
research mainly focuses on algorithm design and
simulation validation, without completing the

hardware—software integration or collaborative
testing on embedded platforms, which may result
in challenges related to real-time performance,
resource constraints, and power consumption.

From an ethical perspective, although the proposed
system does not involve direct interaction with
human operators or personal data collection, future
deployment scenarios may include operation in
human-populated areas or environments requiring
spatial coordination or interaction with human
workers. In such cases, operational safety, privacy
protection, behavior explainability, and regulatory
compliance must be carefully addressed. To
overcome these limitations, future work will
focus on five main directions: (1) conducting
field experiments in actual railway environments
to evaluate the robustness of localization and
PP of railway inspection robots under complex
conditions; (2) implementing algorithm migration
and system integration on embedded hardware
platforms to improve a system's real-time
performance and deployment adaptability; (3)
further optimizing ACO parameter adjustment
mechanisms and path smoothing strategies to
enhance generalization and solution stability in
complex tasks; (4) developing extended models for
multi-robot task allocation and collaborative PP for
improving system scalability; and (5) incorporating
ethical assessment frameworks and human-robot
collaboration safety mechanisms to ensure a secure
and compliant large-scale deployment, that is, the
real-world integration and implementation of the
proposed algorithms in practical railway inspection
robot systems. These improvements will lay a solid
foundation for the deployment and intelligent
advancement of railway inspection robots.
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