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1. Introduction

The railway transportation lines in China exhibit 
the characteristics of being dense in the east and 
sparse in the west, widely distributed, connecting 
major urban agglomerations and core cities in 
China, and occupying a major position in the 
field of transportation in China. Regular railway 
inspections are of crucial importance in ensuring 
the safety of railway transportation and the 
smooth operation of trains (Moon et al., 2024; 
Stanojević & Stanojević, 2024). Through railway 
inspections, safety hazards in railway lines can 
be detected and eliminated in a timely manner, 
damaged parts on railway lines can be repaired, 
and operational delays or safety accidents caused 
by line problems can be avoided (Wang et al., 
2023; Fan, 2024). However, traditional manual 
inspections involve high labor intensity, harsh 
working environments, and subjective judgment 
interference, which pose severe challenges to the 
railway inspection work (Xing, 2024). In recent 
years, railway line inspections have gradually 
relied on advanced technological means and 
instrument equipment. Robot inspections can 
overcome the shortcomings of manual inspections 
to a certain extent, and through high automation 
and intelligence, the risk of human errors can be 
effectively reduced. However, railway lines often 
traverse various complex terrains, obstacles, 
and harsh weather conditions that interfere with 

the sensor performance of inspection robots, 
significantly reducing their positioning accuracy. 
The existing research shows that multi-sensor 
fusion (MSF) technology can reduce the error of 
a single sensor by integrating data from different 
sensors, improve the environmental awareness of 
patrol robots, and thus improve the positioning 
accuracy. In addition, a good inspection path can 
help improve inspection efficiency and ensure 
a high inspection quality, but the existing path 
planning (PP) methods have a low adaptability 
to the characteristics of railway lines and 
inspection task requirements. At present, swarm 
intelligence optimization algorithms have been 
widely applied in different fields, especially the 
ant colony optimization (ACO) algorithm, which 
has shown a great potential in PP. However, it is 
still necessary to explore robot PP algorithms that 
are suitable for railway inspection. Therefore, to 
foster the intelligent advancement of the railway 
industry and provide a more accurate and efficient 
positioning and PP solutions for railway inspection 
robots, this paper first innovatively proposes 
an adaptive improvement strategy based on an 
extended Kalman filter (EKF), and describes how 
the construction of a MSF positioning algorithm 
is completed. Then, innovative improvements are 
made for the ACO, and the design of a robot PP 
algorithm is presented.
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The remainder of this paper is structured as 
follows. Section 2 presents a review of the current 
research status on inspection robot positioning 
and PP at home and abroad. Section 3 elaborates 
on the construction process for the positioning 
algorithms and PP models, while Section 4 
discusses the experimental results. Finally, Section 
5 concludes this paper and outlines possible future 
research directions.

2. Related Works

Inspection robots have been widely used in 
various industries such as park inspection, the 
power industry, and petrochemicals, and have 
received extensive attention from researchers. 
Key technologies such as the positioning and PP 
of the inspection have been studied. In order to 
improve the coverage of the working area of power 
inspection robots, Jiang et al. (2023) focused on 
the challenges of intelligent control programs in 
navigation modeling and PP. By using multiple 
information fusion for simultaneous localization 
of railway inspection robots and map construction, 
Kalman filtering (KF), five-layer neural networks 
and fuzzy neural networks were employed, and 
high-precision localization and dynamic PP were 
achieved. The simulation verification showed 
that the algorithm was effective and accurate in 
complex environments, improving the efficiency 
of the inspection robot (Jiang et al., 2023). Li 
(2024) aimed at traffic congestion, accidents 
and environmental problems in the process of 
urbanization. An intelligent expressway traffic 
monitoring system based on the Internet of 
Things was proposed, and intelligent inspection 
robots were introduced to monitor road traffic 
flow and violation records in real time. The 
inspection robot utilizes deep learning and 
artificial intelligence technologies, combined 
with improved synchronous positioning and map 
construction algorithms. The results showed that 
the proposed method had a good computational 
efficiency (Li, 2024). Sugin Elankavi et al. (2023) 
designed two wheeled pipeline inspection robots 
in response to the limitations of traditional manual 
inspection methods and early robot designs, aiming 
to overcome the motion singularity problem 
at pipeline bends.  They adopted wheels with 
asymmetrical angles to maintain contact with 
the pipe surface and avoid motion singularities. 
Through motion analysis and experimental 
verification, the proposed method showed a high 
stability and accuracy in pipeline inspection 

(Sugin Elankavi et al., 2023). Gilmour et al. 
(2023) designed a new robot track positioning 
method using a vehicle mounted depth camera 
for navigation in a semi-structured environment. 
The experimental results showed that this method 
had a high accuracy and was suitable for different 
materials and lighting conditions. Taking steel 
plate inspection as an example, it could accurately 
locate the track within a range of 5.7 mm, which 
was significantly better than traditional manual and 
existing robot solutions (Gilmour et al., 2023). To 
achieve an efficient inspection, Xie et al. (2024) 
proposed a relative positioning approach based 
on a radio frequency identification tag array. By 
deploying tag arrays in the detection area and 
constructing a fingerprint database, the high-
precision positioning of inspection robots can be 
achieved. The experiments showed that this method 
was less affected by trajectories and obstacles, with 
a positioning error of less than 6 cm in complex 
scenes, effectively improving the inspection 
accuracy and efficiency (Xie et al., 2024).

Tang et al. (2024) proposed an improved artificial 
electric field algorithm for the problem of robot PP 
optimization. By introducing three mechanisms, 
namely parameter adaptation, reverse learning 
and Cauchy mutation, the exploration ability 
and convergence accuracy of the algorithm were 
improved. The article combines the improved 
artificial electric field algorithm with cubic spline 
interpolation to generate smooth and continuous 
paths, thereby solving the problem of global PP 
in a three-dimensional environment, and verifies 
the effectiveness of the algorithm through a large 
number of virtual simulation experiments (Tang et 
al., 2024). Xi et al. (2024) proposed a lightweight 
real-time PP method based on reinforcement 
learning for the optimization problem of 
unmanned aerial vehicle (UAV) PP - the adaptive 
soft actor-Critic algorithm. This method constructs 
a global training and local adaptation framework 
by optimizing the training process, network 
architecture and algorithm model, and introduces 
a cross-layer connection method to avoid feature 
loss and improve the learning efficiency. The 
results proved the superiority and adaptability of 
the proposed method in PP optimization (Xi et al., 
2024). To tackle the communication challenge of 
mining industry robots in closed environments, 
Cid et al. (2024) proposed a semi-autonomous 
leader-follower scheme and a multi-robot 
connection perception system by using remote 
radio frequency to predict signal propagation and 
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PP. The experiments showed that this method 
significantly improved the communication quality 
and inspection range, achieving an effective 
operation in a line-of-sight environment (Cid et 
al., 2024). Lou et al. (2025) proposed a hybrid 
multi-strategy sandcat swarm optimization 
algorithm for the PP optimization problem of 
mobile robots. This algorithm improved the 
convergence accuracy through the nonlinear 
adjustment strategy, introduced the logarithmic 
weighting strategy to balance the exploration 
and exploitation capabilities of the algorithm in 
the search space, used the alternating selection 
strategy to jump out of the local extremum, and 
adopted the Levy flight position update formula 
to prevent the algorithm from getting stuck. The 
results showed that the proposed algorithm had 
a good planning effect (Lou et al., 2025). To 
optimize the PP of vehicles like mobile robots in 
complex scenes, Li et al. (2024) proposed a PP 
method based on an improved ACO algorithm 
and fractional-order models for non-smooth 
path problems in narrow and large-sized scenes, 
which improved the modeling accuracy and search 
efficiency, and achieved a smooth and efficient 
path generation (Li et al., 2024).

Overall, significant progress has been made with 
regard to the localization and PP of inspection 
robots, such as multi-information fusion 
positioning and intelligent algorithm-based 
optimization of paths, effectively improving the 
inspection efficiency and accuracy. However, for 
specific complex environments such as railway 
inspections, the existing technologies still face 
challenges, such as the ever-changing environment 
and dense obstacles along the railway. Therefore, 
research on the positioning and PP of railway 
inspection robots is particularly necessary, and 
adaptive exploration has been conducted using 
advanced technologies such as multi-information 
fusion positioning and intelligent algorithms.

3. Research Methodology

MSF technology and swarm intelligence algorithms 
can provide support for improving the key 
performance of inspection robots. The study first 
designed a robot positioning algorithm under the 
background of MSF, and then fused multiple swarm 
intelligence algorithms to construct a PP model.

3.1 The Proposed Positioning Algorithm

MSF technology can enhance the environmental 
perception ability and robustness of robots through 
redundant design. Research is been conducted 
on the design of robot positioning algorithms 
under MSF. The study first presents a kinematic 
model of the inspection robot, and the constructed 
coordinate system and corresponding positional 
relationship are shown in Figure 1.

As shown in Figure 1, the kinematic model 
of the robot includes two major coordinate 
systems: a local and a global system. The local 
coordinate system is centered around the robot 
and is used for helping the robot perceive and 
understand its surrounding environment. The 
global coordinate system belongs to a larger 
fixed reference framework that covers the 
overall range of motion of the robot, providing 
a unified and global perspective for the robot. 
The study uses the feature map method to define 
the motion environment of robots and represents 
the environment using the global position of 
parameterized features. Firstly, the study sets the 
known environmental feature point in the motion 
environment of the inspection robot, which is 
represented as Li = (xi, yi). A set of feature points 
form the environmental map feature set. The pose 
of a robot is composed of position coordinates and 
deflection angles in a two-dimensional plane, and 
its own pose can be estimated using the feature 
point Li = (xi,yi) (Jovanović et al., 2023; Pang et 

(a) Coordinate system (b) Relative position relationship diagram

Figure 1. Coordinate System and Relative Positional Relationship Diagram of the Robot Kinematic Model
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al., 2024). Therefore, the kinematic model of the 
robot is shown in equation (1):
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In equation (1), x , y , and θ  represent the 
coordinates and directional quantity after motion, 
respectively. θ indicates the directional quantity. 
v and ω represent the linear velocity and centroid 
angular velocity. In the global coordinate system, 
the distance between the robot and the target (xi,yi) 
is d. The directional vector of the target is α. The 
position of the robot at time k is [xk,yk,θk]. Then, 
the expression of the robot observation model is 
shown in equation (2):
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The positioning problem of inspection robots, 
also known as the filtering problem, can be 
defined as a nonlinear system during the 
positioning process. The system is often affected 
by system noise and sensor measurement noise. 
EKF is an extension of KF, which transforms 
the nonlinear state estimation problem into 
a linear problem by linearizing the nonlinear 
system model and using the framework of 
KF for recursive estimation. It is suitable for 
nonlinear systems (Hu & Huang, 2024; Lee, 
Lee & Yoo, 2024). Therefore, EKF was chosen 
in this study as the positioning algorithm for 
robots under multi-sensor conditions. The 
traditional KF algorithm assumes that the system 

is a linear system and that the noise follows a 
Gaussian distribution, which leads to significant 
limitations for the algorithm. EKF uses Taylor 
expansion to approximate nonlinear functions, 
and obtains a linear approximation model by 
linearizing the state transition function and 
observation function. The KF algorithm is used 
for state estimation based on linear model (Li et 
al., 2023). The positioning algorithm process for 
the inspection robot is shown in Figure 2.

As shown in Figure 2, the positioning process 
requires first setting the initial state estimation 
values and covariance matrices, and predicting the 
state estimation and covariance matrix (CM) for 
the next moment based on the system model and 
control inputs. The prediction formula is shown 
in equation (3):

1 1
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In equation (3), ˆkx−  and 1ˆkx −  represent the prior 
state estimation value at time k and the posterior 
state estimation value at time k−1, respectively. 
f represents the state transition function. uk−1 
represents the control input at time k−1. kP−  and 
Pk−1 represent the prior and posterior covariance 
matrices, respectively. Qk is the CM of process 
noise. Ak represents the Jacobian matrix of f. Then, 
the Kalman gain Kk is calculated, as shown in 
equation (4):

( ) 1T T
k k k k k k kK P H H P H R

−− −= +                          (4)

In equation (4), Hk is the Jacobian matrix of the 
observed function h. Rk is the CM of the observed 
noise. The observation predictive value ẑ and 
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Figure 2. Schematic Diagram of the Positioning Algorithm Flow for the Inspection Robot
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residual ε are calculated based on the prior state 
estimation values, as shown in equation (5):

( )/ 1ˆˆ
ˆ

k k k

k k

z h x
z zε

−



=
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In equation (5), Zk represents the observed value. 
Finally, the state and covariance are updated based 
on the KF gain, as shown in equation (6):
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The inspection robot regards the pose and 
environmental feature information as state 
variables based on the EKF algorithm, and defines 
the relationship between state variables using 
error covariance. However, the traditional EKF 
algorithm achieves the linearization of nonlinear 
functions through Taylor series expansion, which 
can easily ignore higher-order terms and lead to 
a reduced system estimation accuracy or even 
filter divergence. In response to this, the study 
introduced the principle of adaptive filtering to 
optimize the traditional EKF. By employing 
innovation-based adaptive estimation, the system 
utilizes the statistical characteristics of the 
innovation sequence to dynamically estimate and 
correct the system model in real time, thereby 
improving the estimation accuracy of the filter. 
The improved EKF positioning principle is shown 
in Figure 3.

As shown in Figure 3, the adaptive EKF will 
calculate the new information based on the 
difference between the measured and anticipated 
values. It utilizes the statistical properties of 

new information to evaluate the performance of 
filters, achieving the correction of CM Qk for noise 
and CM Rk for the observed noise. The adaptive 
adjustment rule is shown in equation (7):
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In equation (7), ei represents the observation 
innovation, namely the difference between the 
actual measurement and the predicted observation, 
serving as an indicator of the prediction error of 
the filter, while M denotes the matching window 
(or sliding window size) used for calculating 
the statistical characteristics of the innovation 
sequence over the most recent M samples.

3.2 Design of the PP model

The PP of inspection robots relies on accurate 
positioning information. After providing reliable 
position information for the inspection robot based 
on the improved EKF positioning algorithm, a 
PP model for the robot was designed to support 
complex inspection tasks. PP is an important 
component of the autonomous navigation 
technology for inspection robots, which involves 
generating an optimal path from the starting 
point to the endpoint in known or unknown 
environments based on environmental maps, 
obstacle distribution, robot dynamics constraints, 
and task requirements. In this paper, the ACO 
algorithm was selected for the PP algorithm 
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Figure 3. Schematic Diagram of the EKF Algorithm Positioning Principle
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design. ACO is a swarm intelligence algorithm 
that mimics the foraging behavior of ants, 
simulating their behavior of finding the shortest 
path by releasing and perceiving pheromones. The 
working mechanism is shown in Figure 4 (Chen 
et al., 2024; Li, Yan & Huang, 2024).

As shown in Figure 4, the path with a high 
concentration of pheromones features a higher 
probability of leading to the food source. Therefore, 
over time, the concentration of pheromones on 
shorter paths will gradually increase, while the 
concentration of pheromones on longer paths will 
gradually decrease due to the smaller number of 
ants on those paths. Hence, ant colonies discover 
the quickest route from their nest to the food. 
The build-up of pheromones serves as the ACO 
algorithm’s positive reinforcement mechanism, 
guiding the search process towards convergence 
and gradually reaching the best possible solution 
(Chowdhury et al., 2024; Wang & Feng, 2024). 
Additionally, in view of this algorithm, multiple ant 
colonies can perform path search simultaneously, 
which enables a strong parallelism and distributed 
characteristics. The PP algorithm first abstractly 
models the motion environment of the inspection 
robot and divides the inspection map into different 
grids. Then, certain parameters are initialized, 
such as the ant colony count, the pheromone 
importance, the heuristic function importance 
factor, the pheromone volatilization factor, etc. 
During the algorithm iteration process, the ants 
shall move between different path nodes with a 
certain probability, which depends on the distance 
from the current node to adjacent nodes and on the 
concentration of pheromones on adjacent nodes. 
The transition probability ( )k

ijp t  calculation is 
given in equation (8):

( ) ( ) ( )
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In equation (8), τij(t) represents the pheromone 
concentration between the nodes i and j. t is the 

moment when the ant colony leaves τij(t), and 
the initial pheromone concentration is τij(0)=C. 
α represents the heuristic factor of pheromone 
concentration, and the value of α determines the 
importance of pheromone concentration in path 
selection. β represents the expected heuristic 
factor, which determines whether the path 
selection should be based on pheromones. ηij(t) 
represents the path heuristic value. Over time, the 
ACO algorithm will simulate the phenomenon 
of natural dissipation of pheromones in nature, 
and introduce the volatility coefficient ρ to help 
the algorithm avoid premature convergence. A 
smaller volatility coefficient ρ corresponds to a 
slower volatilization of pheromones, and ACO 
tends to utilize the known information. A higher 
volatility coefficient ρ increases the possibility of 
ACO exploring unknown paths. The process of 
pheromone change is shown in equation (9):
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In equation (9), m is the total number of ant 
colonies, k = {1, 2, 3, ..., m}. The calculation 
of the pheromone increment Δτij(t) is given in 
equation (10):
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In equation (10), Q represents the strength of 
pheromones, while Lk represents the total length 
of the paths explored by ants during the iteration 
process. The initial pheromone concentration in 
the context of the conventional ACO algorithm 
is uniformly distributed, which increases the 
randomness of path selection and makes it difficult 
for the algorithm to effectively explore the solution 
space in the initial stage. Meanwhile, the residual 
pheromones also make it difficult for the algorithm 
to escape from local optima (Banciu et al., 2024). 
In this regard, research was conducted to improve 

Pheromone

Food Food
Nest

Nest

Figure 4. Illustrative Layout of the Working Principle of the Ant Colony Algorithm
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the ACO algorithm, and a PP model for inspection 
robots was constructed as shown in Figure 5.

As shown in Figure 5, the Bidirectional Particle 
Swarm Optimization (BPSO) algorithm is 
employed to optimize the distribution of initial 
pheromones. BPSO introduces a bidirectional 
learning mechanism based on Particle Swarm 
Optimization (PSO) algorithm, where one particle 
in PSO represents a candidate solution, and its 
position and velocity are iteratively updated 
to approximate the optimal solution. BPSO 
considers both the actual and inverse estimates 
of particles, that is, simultaneously recording 
the optimal value pd and the worst value ppd of 
particles, and introducing the inverse particle dp  
of pd as a new learning factor for BPSO during the 
iteration process. The learning process is shown 
in equation (11):



1

2 3

( 1) ( ) ( ( ) ( ))

( ( ) ( )) ( ( ))
id id id id

gd id gd id

t v t c rand p t x t

c rand p t x t c rand pp x t

ν ω+ = + −

+ − + −   
(11)

In equation (11), vid and xid  are particle velocity 
and position, respectively. c1, c2 and c3 represent 
the learning factors. pgd is the global optimal value, 
while ppgd represents the global worst value. pid 

represents the individual optimal value and ω is 
the weight.

In addition, the traditional ACO algorithms feature 
a strong dependence on pheromones and a high 
sensitivity to algorithm parameters. This study 
introduces an adaptive mechanism to enable the 
algorithm to dynamically adjust its parameters 
and strategies based on the current search state, 
thereby improving the robustness and adaptability 
of the algorithm. The study related the parameters 
α and β specific to individual ants in the ant colony 
to their respective adjustment parameters c1, c2 and 
c3, which regulated the behavioral characteristics 
of ant individuals. The transition probability 
calculation process is expressed in equation (12):
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Finally, the study introduces the quadratic path 
smoothing algorithm, which adjusts the position 
of path points based on the principle of quadratic 
programming to achieve a higher smoothness of 
the path under certain constraints. The operation 
mechanism is shown in Figure 6.

Figure 5. PP Model for Inspection Robots Based on an Improved ACO algorithm

Figure 6. Illustrative Layout of the Working Mechanism of the quadratic path smoothing algorithm
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4. Experiments and Results

To assess the efficacy of the inspection control 
technology for inspection robots proposed in 
this paper, performance testing for positioning 
algorithms and application analysis experiments 
for PP models were conducted, and the results 
were analyzed and discussed.

4.1 Experiment for the MSF  
Positioning Algorithm

The experiment was conducted on a Windows 
10 operating system, using Python 3.8.8 as 
the programming language and Python 1.8.1 
as the deep learning framework. The central 
processing unit was Intel (R) Core (TM) i5-7200 
CPU@2.50GHz. The memory was 64.00GB, 
and the image processor was Ge Force RTX 
2080Ti. Performance testing was conducted on 
the positioning algorithm using the KITTI dataset, 
MH dataset, and TUM dataset, which include 
different scenarios and sensor configurations, 
to evaluate the performance of the positioning 
algorithm in static and dynamic scenarios. The test 
compared the multi-method integration model in 
(Jiang et al., 2023), the closed-loop KF algorithm 

in (Li, 2024), and the RFID tag array positioning 
method in (Xie et al., 2024). The root mean square 
error (RMSE) and mean absolute error (MAE) 
results for four positioning algorithms are shown 
in Figure 7. As shown in Figure 7(a), for different 
anchor points, the improved EKF algorithm 
proposed in this paper obtained the lowest RMSE 
value, which is a significant advantage with regard 
to the positioning accuracy in comparison with 
the other three models. The minimum RMSE 
value for the improved EKF algorithm was 0.136, 
while the RMSE values for the other methods 
were all higher than 0.25. Further on, as shown 
in Figure 7(b), the MAE values for the other 
three employed models at different anchor points 
showed consistent patterns, and the MAE value 
for the improved EKF algorithm was the smallest. 
Based on these two error indicators, the improved 
EKF algorithm achieved the highest positioning 
accuracy for the inspection robot.

Further on, the relative rotation error (RRE) and 
absolute trajectory error (ATE) results for the 
four positioning models are shown in Figure 8. 
As shown in Figures 8(a) and 8(b), in comparison 
with the other three advanced positioning 
algorithms, the improved EFK method proposed 

Figure 7. Comparison of the Positioning Accuracy for the Four Models
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in this study significantly reduced the ATE and 
RRE values, with a minimum ATE value of 0.160 
and a minimum RRE value of 0.137. The ATE and 
RRE values for the other three methods fluctuated 
above the 0.25 value level, indicating that the 
proposed algorithm achieved a high positioning 
accuracy for the inspection robot in the global 
coordinate system, which confirmed the stability 
and accuracy of the improved EFK method under 
long-term and long-distance operation.

The success rate and timeliness rate for the four 
employed positioning algorithms are represented 
in Figure 9. In Figure 9(a), the localization success 
rate for the improved EKF algorithm increased 
with the number of iterations and converged to 
a maximum value of 0.957. The success rates of 
location detection for the other three positioning 
algorithms were all below 0.85. As represented in 
Figure 9(b), the improved EKF algorithm obtained 
the best timeliness rate and featured significant 
advantages in comparison with the other methods, 
as it could complete localization in a shorter time.

4.2 Experiment for the PP Model

In this study, the pheromone volatilization 
coefficient ρ was set at 0.3 and the heuristic 
factor of the ant colony algorithm β = α = 1, 
with a population size of 60 and a maximum 
number of 200 iterations, to complete PP 
performance testing in a 30*30 grid environment. 
Firstly, the performance of the improved ACO 
algorithm proposed in this paper was tested 
using the Schwefel, Rosenbrock, Griewank, and 
Ackley functions as test functions to evaluate 
the hypervolume (HV) and the uniformity of 
performance (UP) for three algorithms, namely 
the improved ACO algorithm, the traditional ACO 
algorithm and the genetic algorithm (GA). The 
experiment outcomes are represented in Figure 
10. As shown in Figure 10(a), the improved ACO 
algorithm quickly reached and maintained a HV 
value close to 1.0. By introducing the BPSO 
algorithm for optimizing the initial pheromone 
distribution, the algorithm’s global search ability 
was enhanced and the diversity of the solution 
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set was improved. The search and optimization 
capabilities of the other two algorithms were 
insufficient, resulting in a significant decrease 
in HV values. As shown in Figure 10(b), the 
UP value for the improved ACO algorithm 
increased rapidly with the number of iterations 
and converged to a maximum value of 0.943. 
The UP values for the traditional ACO  algorithm 
and GA remained stable at around 0.7 and 0.6, 
respectively. The adaptive improvement strategy 
enhanced the robustness and adaptability of the 
ACO algorithm, thereby improving the uniformity 
of the obtained solution.

Further on, the improved ACO PP model proposed 
in this paper was compared with the improved 
RRT* algorithm based on Tang et al. (2024)., the 
improved A* algorithm based on Xi et al. (2024), 
and the NNE-DRL adaptive PP model based on 
Lou et al. (2025). The experiment involved a 
railway inspection environment with obstacles for 
testing the planning performance. The planning 
and efficiency comparison results for the four 
above-mentioned models are shown in Figure 11. 
As shown in Figure 11(a), the path length planned 
by the improved ACO algorithm was the shortest, 
and the path length obtained after 70 iterations 
was 10.299 m. The shortest path lengths planned 
by the improved RRT*, improved A*, and NNE-
DRL models were 15.311 m, 15.445 m, and 
16.397 m, respectively. The maximum decrease 

in the shortest path length reached 36.49%. The 
adaptive mechanism and BPSO enhanced the 
search capability of the improved ACO algorithm, 
enabling it to find better paths. As shown in Figure 
11(b), the improved ACO algorithm obtained the 
shortest planning time, taking only 51.975 seconds 
to complete PP. In comparison with the other three 
methods, the planning time was reduced by up to 
46.67 seconds, and the optimal path was found 
in a shorter time. Therefore, the improved ACO 
algorithm proposed in this paper achieved a higher 
comprehensive planning performance.

Finally, the smoothness and success rate related 
to PP for inspection robots in actual operations 
were compared, as shown in Figure 12. As shown 
in Figure 12(a), in the presence of obstacles, the 
path planned by the improved ACO algorithm was 
the smoothest, with smoothness fluctuating within 
the range of 0.80-0.95, which was significantly 
better than for the other three methods. As shown 
in Figure 12(b), the maximum success rate of 
PP for the improved ACO algorithm was 0.973. 
The adaptive strategy and BPSO proposed in 
this paper contribute to enhancing the ACO 
algorithm’s optimization capability in solving 
the path planning problem for inspection robots, 
particularly by improving the global search 
ability, convergence speed, and solution stability 
in complex obstacle environments.
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5. Conclusion

To enhance the security and effectiveness of robot 
inspection and provide solid support for railway 
transportation, this paper proposed positioning and 
PP algorithms for railway inspection robots based 
on improved EKF and ACO, respectively. The 
experimental outcomes indicated that the improved 
EKF algorithm reached a high positioning 
accuracy, achieving a RMSE value of 0.136 and 
a MAE value of 0.143. In comparison with other 
employed algorithms, the values of ATE and RRE 
obtained by the proposed algorithm provided 
significant advantages and enabled a higher 
positioning accuracy in the global coordinate 
system. Additionally, this positioning method 
obtained a high positioning success rate and 
immediacy, with a positioning success rate of up 
to 0.957 and an immediacy index higher than 0.9, 
which enabled it to achieve an accurate positioning 
in a short period of time. The improved ant colony 
optimization algorithm demonstrated a superior 
optimization capability across multiple benchmark 
test functions, particularly in solving complex path 
planning problems for railway inspection robots 
and the maximum reduction of the length of the 
planned inspection path reached 36.49%. This 
model needed only 51.975 seconds to complete the 
PP In addition, this PP algorithm achieved a high 
success rate and a high smoothness of robot paths. 
The model proposed in this paper can help railway 
inspection robots complete inspection tasks more 
quickly and improve the inspection efficiency.

Although the proposed MSF positioning algorithm 
and the improved ACO PP model demonstrated a 
high performance in various simulation scenarios, 
their applicability in real-world railway inspection 
environments still requires further verification. 
The current experiments were conducted under 
idealized conditions and did not fully consider 
practical environmental factors such as complex 
railway terrains, variable lighting, extreme weather, 
and obstacle interference, all of which could 
significantly affect sensor stability, localization 
accuracy, and path continuity. Additionally, while 
the improved ACO algorithm proved advantageous 
with regard to the convergence speed and global 
search ability for small- to medium-scale tasks, 
its performance for large-scale, high-density PP 
tasks remains insufficiently evaluated, particularly 
regarding the computational complexity and 
convergence time. Moreover, the current 
research mainly focuses on algorithm design and 
simulation validation, without completing the 

hardware–software integration or collaborative 
testing on embedded platforms, which may result 
in challenges related to real-time performance, 
resource constraints, and power consumption.

From an ethical perspective, although the proposed 
system does not involve direct interaction with 
human operators or personal data collection, future 
deployment scenarios may include operation in 
human-populated areas or environments requiring 
spatial coordination or interaction with human 
workers. In such cases, operational safety, privacy 
protection, behavior explainability, and regulatory 
compliance must be carefully addressed. To 
overcome these limitations, future work will 
focus on five main directions: (1) conducting 
field experiments in actual railway environments 
to evaluate the robustness of localization and 
PP of railway inspection robots under complex 
conditions; (2) implementing algorithm migration 
and system integration on embedded hardware 
platforms to improve a system`s real-time 
performance and deployment adaptability; (3) 
further optimizing ACO parameter adjustment 
mechanisms and path smoothing strategies to 
enhance generalization and solution stability in 
complex tasks; (4) developing extended models for 
multi-robot task allocation and collaborative PP for 
improving system scalability; and (5) incorporating 
ethical assessment frameworks and human–robot 
collaboration safety mechanisms to ensure a secure 
and compliant large-scale deployment, that is, the 
real-world integration and implementation of the 
proposed algorithms in practical railway inspection 
robot systems. These improvements will lay a solid 
foundation for the deployment and intelligent 
advancement of railway inspection robots.
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