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1. Introduction

Maintaining stable climate conditions within 
greenhouses is a complex control problem. 
Although essential for promoting plant growth, 
these systems, enclosed by transparent materials, 
exhibit a highly dynamic and nonlinear behaviour 
and are subject to significant external disturbances 
such as solar radiation, wind, and fluctuations 
in temperature and humidity. With the aim of 
creating an environment conducive to rapid crop 
development while minimizing the economic 
impact of production (in terms of resources 
and energy inputs), various control engineering 
solutions have been implemented (Chen et al., 
2025; Zhang et al., 2020). 

Among the advanced control strategies, Wang et 
al. (2024) present an enhanced nonlinear model 
predictive control (NMPC) strategy designed to 
balance greenhouse climate precision with energy 
efficiency under low-temperature conditions. By 
combining a wavelet neural network model with 
an optimized objective function, their approach 
achieved an energy reduction above 20%, 
demonstrating its potential for sustainable and 
energy-efficient greenhouse control. However, it 
faces challenges related to model complexity and 
sensitivity to non-measurable disturbances. Zhang 
et al. (2025) introduce an extended disturbance 
observer–based sliding mode control (EDO-SMC) 
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disturbance compensation. The simulation results confirm the effectiveness of the proposed control strategy for an accurate 
greenhouse climate management.
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approach for four-wheel self-steering (4WSS) 
agricultural robots, aiming to achieve precise path 
tracking on irregular and slippery terrains. Through 
the integration of slip disturbance estimation and 
adaptive compensation, the proposed method 
demonstrates an excellent tracking accuracy and 
robustness, validated by simulation and field test 
results. However, it is affected by the undesirable 
phenomenon of chattering (high-frequency 
oscillations around the sliding surface), which 
can excite unmodeled dynamics and lead to 
system instability. Bouketir et al. (2025) present 
a fuzzy logic-based system designed to optimize 
greenhouse conditions for tomato cultivation 
in Algeria by regulating air and soil humidity, 
temperature, light, and irrigation. Simulation 
results indicate that this system efficiently 
automates ventilation, lighting, and irrigation, 
promoting healthy plant growth and enhancing 
the crop yield. However, this method relies on an 
empirical design, significant human expertise, and 
the careful management of uncertainties in relation 
to rules and measurements. Escamilla-García et al. 
(2020) integrated artificial neural networks into 
greenhouse technologies, thereby contributing to 
the development of smart agriculture (Industry 4.0). 

These technologies enhance the adaptability 
and accuracy of intelligent control systems 
responsible for managing the climate and 
environmental conditions within greenhouses. 
Thanks to these systems, it is possible to precisely 
adjust parameters such as temperature and 
humidity according to environmental variations, 
thereby making greenhouse management more 
efficient. However, these approaches require 
large volumes of reliable data as well as a 
complex implementation. 

Disturbances and uncertainties are inevitable in 
industrial control systems, making their effective 
management crucial for maintaining their 
performance and stability. Chen et al. (2016) 
present a comprehensive framework for the 
control of nonlinear systems affected by external 
disturbances, employing nonlinear Disturbance 
Observer-Based Control (DOBC) techniques for 
enhancing system robustness and performance. 
Within this context, the developed observer 
enables the estimation of disturbances generated 
by an exogenous system, whilst ensuring global 
exponential stability under certain conditions. Qi 
et al. (2021) and Xiong et al. (2015) developed an 
Extended State Observer (ESO), useful in model-
free control for estimating unknown dynamics. 

Madonski & Herman (2015) introduced the 
Active Disturbance Rejection Control (ADRC) 
architecture, which uses the Extended State 
Observer (ESO) to provide an accurate real-
time estimation of system disturbances. And 
although the ESO offers advantages in estimating 
disturbances and unmeasurable state variables 
(Xue & Huang, 2015; Xue & Huang, 2018), its 
performance depends on high observer gains, 
which increase the sensitivity to measurement 
noise (Lakomy & Madonski, 2021; Shao & Gao, 
2016). A hybrid Extended State Observer-Kalman 
Filter (ESO-KF) approach has recently been 
developed to overcome these limitations, where 
the Kalman Filter serves as a pre-filtering stage 
for enhancing noise suppression and improving 
disturbance rejection (Bai et al., 2018).

This paper proposes an innovative approach 
to climate control in agricultural greenhouses 
by developing a robust system that integrates 
feedback linearization based on an Extended State 
Observer (ESO) combined with a Kalman Filter for 
measurement preprocessing, along with proactive 
disturbance compensation. Unlike previous 
studies, which primarily focus on industrial 
systems or strictly controlled environments, this 
paper adapts these advanced techniques to the 
specific challenges of agricultural greenhouses. 
These challenges include nonlinear disturbances, 
such as sudden changes in temperature, humidity 
and solar radiation, that complicate control 
processes and require a dynamic adaptation, 
as well as sensor limitations caused by harsh 
environmental conditions (dust, corrosion), 
necessitating particularly robust state estimation 
methods. This innovation effectively addresses 
the unique demands of greenhouse agriculture, 
ensuring a precise and reliable climate regulation.

The remainder of this paper is structured as 
follows. A comprehensive dynamic modelling 
of the greenhouse climate system is detailed in 
Section 2, and a feedback linearisation approach 
for decoupling its non-linear dynamics is presented 
in Section 3. Further on, Section 4 sets forth 
the design of a robust controller incorporating 
an extended state observer (ESO), a Kalman 
Filter (KF) for state estimation and feedforward 
disturbance compensation, while Section 5 
validates this approach through simulations and 
the comparison with a Proportional-Integral 
Sliding Mode control (PISMC) scheme. Finally, 
Section 6 presents the conclusions of this paper 
and it outlines the prospects for future research.



	 89

ICI Bucharest © Copyright 2012-2025. All rights reserved

A Combined Extended State Observer-Kalman Filter Approach to Robust Greenhouse Climate Control

2. Greenhouse Dynamic Model

The greenhouse climate model was developed for 
predicting environmental variables as a function 
of external inputs (such as solar radiation and 
ambient temperature), control actions (heating, 
cooling, ventilation) and the current state of the 
system. The model is based on a set of differential 
equations that describe the key phenomena 
governing the system, including heat transfer by 
conduction, convection and evaporation, as well 
as air exchange related to ventilation. 

Given the complexity and non-linearity inherent 
to these phenomena, the proposed model 
incorporates a specific non-linear dynamics 
as well as the presence of multiple global 
disturbances, including sudden variations in the 
external climatic conditions. To better reflect 
these complex interactions, the differential 
equations were reformulated and fitted using 
experimental data and energy balances, providing 
a more realistic and robust representation of 
the greenhouse’s climatic behaviour, which is 
essential for designing effective and reliable 
control strategies. These differential equations are 
given as follows (Luan et al., 2012):
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where Tin and Tout represent the greenhouse’s 
internal and external temperatures (°C), 
respectively, ρ is the air density (kg/m³), Cp is the 
specific heat of the air (J/(kg·K)), V is the typical 
volume of the greenhouse (m³), λ is the latent 
heat of vaporization (kJ/kg), UA is the overall 
heat transfer coefficient (W/(m²·K)), VR is the 
ventilation rate (m³/s) and Qheat is the supplemental 
heat applied to the greenhouse environment 
(W). Si is the intercepted solar radiation energy 
(W/m²), win and wout represent the internal and 

external humidity (gH₂O/m³), respectively, Qfog 
is the water capacity of the fog system (gH₂O/s). 
The uncertain functions 1( ( ), ( ), ( ), )in inf T t w t d t t  
and 2 ( ( ), ( ), ( ), )in inf T t w t d t t  include unmodelled 
dynamics, parameter variations and a complex 
non-linear behaviour. Furthermore, the final 
term in the set of variables represents the 
evapotranspiration function ( , )i inE S w . 

As a preliminary simplification, the 
evapotranspiration rate ( , )i inE S w  is approximated 
as being primarily governed by the intercepted 
solar radiant energy. This relationship is expressed 
by the following simplified equation (Gurban et 
al., 2014):
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(3)

The coefficients α and β account for the 
influences of several different factors on E from 
several different factors. As it corresponds to 
the shading and leaf area, α aggregates those 
effects on evapotranspiration. The parameter 
β accounts for various thermodynamics 
factors. Greenhouses play an important role 
in managing the temperature and humidity for 
crops, improving the crop growth conditions, 
and preserving agricultural products. Evaporative 
cooling systems can be used effectively, 
especially in arid regions, where the influence 
of the incoming relative humidity is relatively 
small. As a result, the term βwin in equation (3) 
is relatively small and Qheat in equation (1) is set 
at zero. The following parameters are defined:

0 ( )pC C Vρ= , 0V Vρ= , and 1
0 ( )Vα α λρ −= . 

Integrating the previous observations, equations 
(1) and (2) can be expressed as follows:
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3. Feedback Linearization Control

The first step of the robust control strategy is 
to apply a linearized control law to agricultural 
greenhouses. This enables the effective 
management of the complex nonlinear dynamics 
of the indoor climate, improves control accuracy 
and stability, and enables a better disturbance 
handling and an optimal decoupling of key 
variables (Wu et al., 2024). The greenhouse 
model can then be reformulated as a nonlinear 
MIMO system, suitable for designing a feedback 
linearization controller (Sun et al., 2021):
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where:

[ ], T
in inx T w=  is the state variable; 

,
T

R fogu V Q =    is the control variable; 

[ ], , T
i out outv S T w=  is the measured outside 

disturbance variable;

[ ], T
inS inSy T w=  is the system output; 

[ ], T
noise noiseT noisewy y y=  is the noise for temperature 

and humidity; 

( , ( ), )f x d t t  represents the global uncertain 
function, encompassing the unmodelled internal 
dynamics dependent on the state x, as well as the 
unmeasured disturbances denoted by d(t).

These components are modelled by the functions 
f1 and f2, respectively. To simplify the controller 
synthesis, a proportional relationship is assumed 
between these functions:

1 1f b f= , and 2 2f b f= ,

where b1 and b2 are proportionality coefficients 
(constant or variable), determined according to 
the assumptions of the dynamic model.

The control matrix Bu(x,v), although nonlinear, is 
invertible at each computation step under specific 

conditions, notably when the matrix is full rank 
(i.e. its determinant is nonzero), the variables x 
and v belong to a domain where the coefficients of 
Bu  remain bounded and continuous, and the system 
does not exhibit singularities or discontinuities 
within the considered interval.

Based on the previous condition and considering 
a reference trajectory r, defined by the setpoint 
variables rT and rw, the application of the feedback 
linearization method leads to the following 
expression (Chen et al., 2018):

x r=                                                           (7)
where [ ], T

T wr r r=  is the new input vector in the 
transformed coordinate system. 

Based on equations (6) and (7), the feedback 
linearization control (FLC) law is designed as 
follows (Gao et al., 2014): 

1( ( , ( ), ))FB u du B r Ax Dv B f x d t t−= − − − .     (8)

4. Robust Control Strategy

The robust control strategy for agricultural 
greenhouses is structured around four main 
steps: first, the design of the extended model of 
the greenhouse, second, the development of a 
combined ESO-KF structure, third, an in-depth 
analysis of the robust control law, and finally, the 
determination of the Kalman Filter gain using the 
Riccati equation.

4.1 Extended Greenhouse Model

ESO is a key tool for estimating, in real time, 
the system state variables that are not directly 
measurable, such as temperature and humidity 
inside the greenhouse. It is also used for detecting 
and compensating for external disturbances 
(climatic variations, unexpected inputs of humidity 
or heat) that may affect the system. This accurate 
estimation of system states and disturbances is 
essential for ensuring a reliable control despite the 
uncertainties and variations in the dynamic model 
of the greenhouse. 

In ESO-based control, the global disturbance de is 
modelled as an extended system variable, that is 
exogenous, and independent of the dynamics of 
the internal state of the system (Li et al., 2012):

3 ( , ( ), ),ex d f x d t t= =                                        (9) 
which should be added to the system in equation (6). 
The extended system is then rewritten as follows:
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4.2 Combined ESO-Kalman  
Filter Structure

To further improve the quality of the estimates, the 
ESO is combined with a KF. The latter is an optimal 
filtering algorithm that refines the estimates by 
considering noisy measurements and statistical 
uncertainties. This hybrid ESO-KF approach is 
more robust to non-stationary disturbances and 
measurement errors, guaranteeing a more stable 
and reliable estimation of the system states and 
external disturbances.

The equation governing the Kalman Filter is 
expressed as follows (Bai et al., 2018):

ˆ ˆ ˆ( )u d e f mx Ax B u Dv B d K y C x= + + + + −

     (11)

where x̂  represents the a posteriori estimate of x 
(i.e. after correction) obtained using the KF, and Kf  
is the gain matrix of the steady-state Kalman filter.

The ESO model can represent both the dynamics 
of the system and the evolution of disturbances, 
making it easier to estimate them in real time:

( )u e mz Az B u Dv K y C z= + + + −                 (12)

where ˆ[ , ]T T
x ez z d=  is the estimate of x , xz  is the 

estimate of x, and 3
ˆ

ez d=  is the estimate of the 
overall disturbance, all these variables being 
obtained through the ESO, and Ke denotes the gain 
matrix of the ESO.

By replacing the lumped perturbation de related to 
the KF (equation (11)) with the estimate ˆ

ed , and 

the actual output signal y in ESO (equation (12) 
with the estimate ˆmC x , the resulting continuously 
updated ESO-KF interconnected structure can be 
expressed as follows:

ˆˆ ˆ ˆ( )
ˆ( )

u d e f m

u e m m

x Ax B u Dv B d K y C x
z Az B u Dv K C x C z
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4.3 Robust Control Law Expression

The implementation of a robust controller based 
on the use of estimated system state variables 
and the estimation of external disturbances 
proves essential in order to compensate for the 
inaccuracies inherent to direct measurements, the 
frequent unavailability of sensors under severe 
climatic conditions, as well as sensor failures 
or their gradual degradation. By integrating 
advanced observers such as the Extended State 
Observer combined with the Kalman Filter, 
this type of regulator provides a reliable, real-
time estimation of the critical variables and 
disturbances, thus ensuring a precise and 
stable control despite model uncertainties and 
challenging operational conditions. This approach 
significantly enhances the robustness of the 
control system by guaranteeing the continuity 
and quality of greenhouse microclimate regulation 
while reducing its dependence on often noisy or 
missing direct measurements (Bennis et al. 2008).

The robust command is formulated as the sum of 
two components:

	- uFB, denoting feedback control, which 
corrects in real time any differences between 
the estimated states, represented by zx and 
the setpoint values, ensuring stability and 
accuracy;

	- uFF, denoting feedforward control, which acts in 
anticipation of the estimated disturbances ˆ ,ed  improving responsiveness and compensation 
for external effects.

This allows to express the robust control law in a 
comprehensive form:

ˆ( ) ( )
ˆ( ) .

FB x FF e

FB x d e

u u z u d

u z K d

= +

= +                                     
(14)

where Kd is the disturbance compensation gain.

In the context of this hybrid structure, the feedback 
control law is defined as follows:

( ) 1( )FB x u x d eu z B r Az Dv B d−= − − −                 (15)
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The adjustment of the gains in the ESO-KF 
hybrid structure, and also of the Kd gain of the 
uFF is decisive in optimizing the compromise 
between convergence speed, stability and 
robustness to disturbances.

4.4 KF Gain Determination 

Assumption: the noise expressed by ynoise(t) and the 
unmeasurable disturbances denoted by de(t) are:

	- stationary, meaning their statistical properties 
(mean, variance) remain constant over time or,

	- independent, indicating that there is no 
correlation between the two noises.

Consequently, the corresponding covariances 
are expressed as follows (Schneider & 
Georgakis, 2013):

{ }
{ }
{ }

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) 0,

T
e e

T
noise noise

T
noise e

E d t d t Q

E y t y t R

E y t d t

τ δ τ

τ δ τ

τ

+ =

+ =

+ =                  

(16)

where Q is the disturbance estimation covariance, 
R is the measurement noise covariance, and δ is 
the unit pulse function.

The Kalman gain Kf is determined for minimizing 
the variance of the estimation error ˆx x xε = −  of 
the steady state system. 

It should be noted that }{ T
f x xP E ε ε=  is the 

covariance matrix of the estimation error 
(of dimension 2×2) satisfying the following 
differential equation (Nicholas & Maria, 2013): 

1T T T
f f f f m m f d dP AP P A P C R C P B QB−= + − + .  (17)

The Kalman gain formula is given by: 
1.T

f f mK P C R−=                                              (18)

Remark: The input-to-state stability (ISS) of 
the system in equation (6), under the robust 
control law in equation (14), is guaranteed if the 
disturbances de and the noises ynoise are bounded, 
and if the gains Kf  of the KF filter in steady state, 
Ke of the state observer as expressed in equation 
(13), and Kd related to the feedback control law 
as expressed in equation (14) are chosen such that 
the matrix A0 is a Hurwitz matrix. This condition 
ensures stability despite the uncertainties and 
variations in measurements (a sketch of the 
stability proof is given in Appendix A).

5. Simulation Results

The proposed robust control strategy was 
evaluated with regard to its effectiveness and 
performance using a numerical simulation. A 
case study was then carried out to demonstrate 
the effectiveness of the robust control scheme 
illustrated in Figure 1. The system parameter 
values are as follows: the value of ρ is 
approximately 1.2 kg/m³, the value of Cp is about 
1006 J/(kg·K), that of V is approximately 57.6 
m³, the value of λ is 2256 kJ/kg, and that of UA is 
10.08 J/(m²·K). The model parameters expressed 
in equations (4) and (5) were set as 𝐶0 = 69.53 
kJ/K, 𝑉0 = 69.12 kg, and 𝛼0 = 0.00083. 

Figure 1. General robust control scheme based on 
the proposed combination between an Extended State 

Observer and a Kalman Filter

To validate the performance of the proposed 
controller, it was compared with the Proportional-
Integral Sliding Mode Control approach.   

5.1 PI Sliding Mode Control Technique

Lammari et al. (2020) have proposed the 
Proportional-Integral Sliding Mode Control 
(PISMC), which is crucial for controlling the indoor 
environment of greenhouses. This method combines 
the advantages of PI controllers, which ensure 
accuracy in following the desired trajectories, 
with those of SMC, which offer robustness against 
disturbances and parametric uncertainties. The 
controller is expressed as follows: 

0

( ) ( )

( ) ( ) ( , ),

PI SMC
t

p i

u u t u t

k e t k e d U satτ τ σ ε

= +

= + −∫
           

(19)

where ( ) ( ) ( )e t r t y t= −  is the tracking error, kp 
is the proportional gain, ki is the integral gain, 
𝑈 is a positive constant of significant value, 

( , )sat σσ ε
σ ε

=
+  

is a saturation function, and ε 
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is a positive design constant used for attenuating 
chattering, and the switching function can be 
formulated as 𝜎 = 𝑒. 

The optimum values for the PISMC controller 
gains for temperature and humidity are kp = 0,1285 
and ki = 0,1285, with  U = 0.2552 and ε = 0.1.

5.2 Robust Control Parameters

The parameters of the ESO-KF-based robust 
control for temperature and humidity were chosen 
as follows to achieve a good control performance: 

The ESO gain matrix is 
22.33 7.68
7.31 22.76

97.05 102.95
eK

 
 =  
  

, 

and the KF parameters P0, R, and Q are chosen as:

0

10 0
0 10

P  
=  
 

,
 

1 0
0 1

R  
=  
 

,
 

100Q = ,
 
and

 
0.01

.
0.01dK
− 

=  − 

where P0 denotes an initial covariance matrix of 
the estimation error.

To guarantee both asymptotic stability and the 
rapid estimation of the system state x and the 
external disturbance de, the gain Ke of the ESO 
observer must be rigorously optimized.

This gain is determined using the pole placement 
method applied to the matrix e mA K C− . The 
poles are chosen to be sufficiently close to each 
other to ensure a consistent dynamics. In this 
context, the selected desired poles are [-10,-15,-
20], ensuring a robust stability and an optimal 
compromise between the convergence speed and 
computational simplicity.

5.3 Performances Obtained by  
Both Controllers

A 320-minute setpoint tracking simulation was 
conducted to evaluate the performance and 
effectiveness of the proposed robust control strategy. 

The initial conditions inside the greenhouse, 
regarding temperature and humidity, both for 
the KF and the ESO, were set at 18 °C and 26 
gH₂O/m³, respectively. The outdoor climatic 
conditions were modelled by step signals and 
set as follows: a solar irradiance Si  of 500W/
m2, an outdoor temperature Tout of 32°C, and an 
outdoor humidity wout of 10gH2O/m3. The indoor 

temperature setpoint remained constant at 20 °C 
for the first 150 minutes before being raised to 
25 °C. Simultaneously, the humidity setpoint 
was adjusted, decreasing from 28 to 22 gH2O/m³. 
Furthermore, the model incorporates unknown 
and time-varying disturbances expressed by de 
correlated with fluctuations in external weather 
conditions, in order to accurately reproduce the 
real variations of temperature and humidity inside 
the greenhouse.

The indoor temperature and humidity monitoring 
performance is shown in Figures 2 and 3. After 
the setpoint change at minute 150 of the setpoint 
tracking simulation, both controllers reach the 
new setpoints (25 °C for temperature and 22 
gH2O/m³ for humidity) within less than 10 
minutes, demonstrating a fast dynamic response. 
However, the ESO-KF-based controller enables 
a significantly more accurate convergence, with 
an overshoot of less than +0.3 °C for temperature 
(with the peak at around 25.3 °C) and less than 
-0.25 gH₂O/m³ for humidity.

Figure 2. Tracking performances for the greenhouse 
indoor temperature

Figure 3. Tracking performances for the greenhouse 
indoor humidity
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On the other hand, the PISMC controller 
exhibits more pronounced transient variations: a 
temperature overshoot of approximately +1.2 °C 
(with the peak at 26.2 °C) and a negative humidity 
overshoot of up to -2 gH₂O/m³ (the minimum 
at 20 gH₂O/m³ for a setpoint of 22 gH₂O/m³). 
Additionally, it shows more significant oscillations 
around the setpoints, indicating a greater sensitivity 
to rapid changes and external disturbances. 
These quantitative results confirm that the robust 
controller significantly reduces the overshoot and 
improves disturbance rejection, which make it 
more suitable for maintaining stable and accurate 
climate conditions inside the greenhouse in 
comparison with the PISMC strategy. 

Figures 4 and 5 illustrate the greenhouse 
temperature and humidity monitoring errors, 
highlighting the superiority of the robust 
controller. Due to its advanced estimation 
capabilities, it significantly reduces the deviations 
from setpoints. Specifically, the errors under the 
ESO-KF control remain very small and are quickly 
absorbed after each setpoint change, whereas the 
PISMC generates larger variations.

Figure 4. Greenhouse temperature error

Figure 5. Greenhouse humidity error

Figures 6 and 7 illustrate the control actions of 
the VR ventilation and Qfog misting systems. The 
results show that, under the robust control, the 
ventilation and humidification rates exhibit a 
rapid transient dynamics while remaining with-
in acceptable operational limits, the ventilation 
varies smoothly between 20% and 60% of the 
capacity, while misting varies between 0 and 30 
units (an arbitrary scale) without abrupt peaks. 
The PISMC controller, on the other hand, gener-
ates a more pronounced chattering phenomenon, 
with ventilation rates fluctuating sharply above 
70% and misting levels showing irregular peaks. 
This chattering can place a significant stress on 
the actuators, increasing wear and reducing the 
system`s reliability. 

Figure 6. Time evolution for the ventilation rate 
generated by the employed controllers

Figure 7. Time evolution for the Qfog rate generated 
by the employed controllers

As illustrated in Figure 8, the time evolution of the 
lumped disturbances and their estimated values 
exhibit good agreement, which demonstrates the 
performance of the ESO.
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Figure 8. Estimation of greenhouse  
lumped disturbances

Table 1 compares the performance of the 
robust controller and PISMC controller using 
conventional time domain indices. The MSE 
values show significant differences in terms of 
accuracy and stability. The robust controller 
reduces the MSE for temperature by around 
50% in comparison with the PISMC, thanks to 
its real-time estimation and active filtering of 
disturbances, allowing an optimum compensation 
for uncertainties and noise. For humidity, although 
the reduction in MSE is less pronounced (around 
11%), the robust controller still retains a significant 
advantage over the PISMC controller.  The lower 
values for the standard error of the variance 
obtained with robust control, in comparison with 
those obtained with the PISMC, indicate the 
superior performance of the former in terms of 
control accuracy and reliability. This improvement 
is crucial for the effective optimization of the 
climatic conditions inside the greenhouse. Finally, 
the temperature overshoot obtained based on the 
robust strategy is limited to 1.1368%, whereas 
it reaches 4.94% with the PISMC method, a 
difference almost equal to a factor of four. The 
difference is even higher for humidity: the robust 
strategy maintains the overshoot at 0.87%, while 
the PISMC approach records a much higher peak, 
reaching 10.45%. This performance demonstrates 
the ability of the robust controller to limit transient 
fluctuations, reducing the risk of overheating or 
thermal instability in the greenhouse. 

In the context of climate control in agricultural 
greenhouses, this analysis shows that the use of 
a robust regulator offers advantages in terms of 
sensitivity and ease of use in comparison with 
a PISMC controller. The former provides a 

better resistance to variations and disturbances, 
ensuring a stable performance in the face of 
frequent fluctuations in climate parameters. Its 
ability to adapt quickly and accurately improves 
the sensitivity of the control system, which is 
essential for maintaining the optimal conditions 
for plant growth. In addition, the simplicity of 
its configuration and integration facilitates its 
deployment, which is not the case for PISMC, 
which requires an in-depth expertise for adjusting 
the parameters of the sliding mode. Designed for 
managing the non-linearities and uncertainties 
inherent to greenhouses, the robust controller 
ensures an increased stability and accuracy, 
optimising climate management while improving 
crop quality, extending the crop growth period and 
increasing the crop yield.

Table 1. Results for the tracking performance 
comparison with regard to the step response

Performance index Robust controller PISMC
MSE Tin 0.0667 0.1336

win 0.0874 0.0974
Standard error Tin 0.0808 0.0832
of the variance win 0.1163 0.1168
Overshoot (%) Tin 1.1368 4.9401

win 0.87 10.45

6. Conclusion

Precise climate control in agricultural 
greenhouses is traditionally disrupted by 
environmental variations and measurement 
noise, which degrades the performance of control 
systems. This study brings about a significant 
advancement by proposing a high-precision 
controller combining two complementary 
mechanisms: a dynamic servo control of thermal 
setpoints and an active compensation for external 
disturbances. The main objective of this paper 
is the implementation of a robust controller 
based on state feedback linearization coupled 
with anticipatory disturbance compensation, 
integrating an Extended State Observer 
associated with a Kalman filter (ESO-KF). 
This architecture optimizes the estimation of 
critical parameters while significantly reducing 
their dependence on conventional physical 
sensors for the system`s state. However, it still 
requires specific sensors for measuring external 
disturbances such as outside temperature, 
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ambient humidity and sunlight. Thus, the ESO-
KF improves the robustness and accuracy of real-
time estimates, even in the presence of noise and 
uncertainties. The comparative tests which were 
carried out involving the robust controller and 
the PISMC have demonstrated that the robust 
controller offers a significant improvement in 
robustness against the unmeasured variations, 
as well as a significant reduction in stabilization 
times. In addition, it is very easy to apply the 
proposed controller in real-world scenarios 
due to an architecture that is less dependent on 
complex settings. This innovative solution opens 
new possibilities for agricultural operations, 
particularly in terms of energy savings and 
hygrothermal stability. Future research directions 
could focus on validating this approach on an 
experimental platform equipped with variable 
modulation actuators and adaptive supervision 
interfaces. This validation will make it possible 
to quantify the operational gains under real 
production conditions, particularly for crops that 
are sensitive to micro-climate disturbances.
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Appendix A: Sketch of the  
stability proof

The state error of the system ˆx x xε = − , and the 
disturbance error ˆ

ed e ed dε = − are considered. 

By using equations (6) and (13), the derivative of 
the state error can be expressed as:

ˆx x xε = −  

( ) .
ef m x d d f noiseA K C B K yε ε= − + −               (A1)

The state estimate error is expressed as:

.ˆ
x

z
e e

zx
x z

d d
ε

  
= − = −   

                               
(A2)

Using equations (10) and (13), the derivate of zε
can be obtained:

z x zε = −


( ) .e m z e m xA K C K C Fhε ε= − + +                 (A3)

Then, the estimation errors for the ESO-KF 
controller are expressed as follows:

0

ˆ

ˆ

x
x

z
e e

x x
x z

d d

ε
ε

ε

  
    = = −                                         

(A4)

By combining equations (A1) and (A3), the 
observer error dynamics can be expressed as: 

0 0 0 eA dε ε= +                                             (A5)

where:

0
f m d

e m e m

A K C B
A

K C A K C
 −

=  − 
,
 

[ ]2 20d dB B×= ,
 

and
 

.f noise
e

K y
d

Fh
− 

=  
 



The following quadratic Lyapunov function is 
considered: 
( )0 0 0 0 .TV Pε ε ε=                                            (A6)

Therefore, as A0 is a Hurwitz matrix, there exists 
a positive definite matrix P0 that satisfies a 
Lyapunov equation: 

0 0 0 0 5 5.
TA P P A I ×+ = −

By using the derivative of V(εo) the following is 
obtained:

( )0 0 0 0 02T T
eV d Pε ε ε ε= − + 



          
2

0 max 0 02 ( ) eP dε σ ε≤ − +            (A7)

          
2 2 2

0 0 0 max 0 02 ( ) .eP dε ξ ε ξ ε σ ε≤ − + − +

Finally, the following condition is found:

( ) ( )2
0 0 0(1 )V Mε ξ ε ε≤ − − − ,                  (A8)

where:

0 0 max 0 0( ) 2 ( ) eM P dε ξ ε σ ε = −  , and 1.ξ 

0( ) 0M ε 
 was obtained. In this regard: 

max 0
0

2 ( )
0eP dσ

ε µ
ξ

≅ 

                     (A9)
Consequently, inequality (A8) satisfies:

2
0 0( ) (1 )V ε ξ ε≤ − −

, 0 0.ε µ∀ ≥          (A10)
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