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Abstract: The precise regulation of temperature and humidity in greenhouses poses a significant control challenge due to
the complex, non-linear interactions within the greenhouse climate system, which are further complicated by uncertainties,
external influences, and sensor imprecision. This paper introduces a new approach for tackling this challenge, based on
the integration of a Kalman filter (KF) and an Extended State Observer (ESO). The ESO is employed for estimating both
the unmeasured system variables and the cumulative effect of disturbances. In order to overcome the ESO’s sensitivity
to measurement noise, a KF is first implemented for filtering the temperature and humidity variables recorded inside the
greenhouse. The interconnection between the KF and the ESO is a coupling which is commonly used in advanced automation
systems, such as robotics or drone control. This approach enables control and observation algorithms to adapt in real time to
variations in the environment, ensuring a robust performance in the face of uncertainties and disturbances. The estimated state
and disturbance variables were then integrated into a robust controller based on state feedback linearization and feedforward
disturbance compensation. The simulation results confirm the effectiveness of the proposed control strategy for an accurate
greenhouse climate management.

Keywords: Disturbance compensation, Extended State Observer, Greenhouse, Kalman Filter, Measurement noise,
Robust control.

1. Introduction

Maintaining stable climate conditions within
greenhouses is a complex control problem.
Although essential for promoting plant growth,
these systems, enclosed by transparent materials,
exhibit a highly dynamic and nonlinear behaviour
and are subject to significant external disturbances
such as solar radiation, wind, and fluctuations
in temperature and humidity. With the aim of
creating an environment conducive to rapid crop
development while minimizing the economic
impact of production (in terms of resources
and energy inputs), various control engineering
solutions have been implemented (Chen et al.,
2025; Zhang et al., 2020).

Among the advanced control strategies, Wang et
al. (2024) present an enhanced nonlinear model
predictive control (NMPC) strategy designed to
balance greenhouse climate precision with energy
efficiency under low-temperature conditions. By
combining a wavelet neural network model with
an optimized objective function, their approach
achieved an energy reduction above 20%,
demonstrating its potential for sustainable and
energy-efficient greenhouse control. However, it
faces challenges related to model complexity and
sensitivity to non-measurable disturbances. Zhang
et al. (2025) introduce an extended disturbance
observer—based sliding mode control (EDO-SMC)
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approach for four-wheel self-steering (4WSS)
agricultural robots, aiming to achieve precise path
tracking on irregular and slippery terrains. Through
the integration of slip disturbance estimation and
adaptive compensation, the proposed method
demonstrates an excellent tracking accuracy and
robustness, validated by simulation and field test
results. However, it is affected by the undesirable
phenomenon of chattering (high-frequency
oscillations around the sliding surface), which
can excite unmodeled dynamics and lead to
system instability. Bouketir et al. (2025) present
a fuzzy logic-based system designed to optimize
greenhouse conditions for tomato cultivation
in Algeria by regulating air and soil humidity,
temperature, light, and irrigation. Simulation
results indicate that this system efficiently
automates ventilation, lighting, and irrigation,
promoting healthy plant growth and enhancing
the crop yield. However, this method relies on an
empirical design, significant human expertise, and
the careful management of uncertainties in relation
to rules and measurements. Escamilla-Garcia et al.
(2020) integrated artificial neural networks into
greenhouse technologies, thereby contributing to
the development of smart agriculture (Industry 4.0).

These technologies enhance the adaptability
and accuracy of intelligent control systems
responsible for managing the climate and
environmental conditions within greenhouses.
Thanks to these systems, it is possible to precisely
adjust parameters such as temperature and
humidity according to environmental variations,
thereby making greenhouse management more
efficient. However, these approaches require
large volumes of reliable data as well as a
complex implementation.

Disturbances and uncertainties are inevitable in
industrial control systems, making their effective
management crucial for maintaining their
performance and stability. Chen et al. (2016)
present a comprehensive framework for the
control of nonlinear systems affected by external
disturbances, employing nonlinear Disturbance
Observer-Based Control (DOBC) techniques for
enhancing system robustness and performance.
Within this context, the developed observer
enables the estimation of disturbances generated
by an exogenous system, whilst ensuring global
exponential stability under certain conditions. Qi
etal. (2021) and Xiong et al. (2015) developed an
Extended State Observer (ESO), useful in model-
free control for estimating unknown dynamics.

Madonski & Herman (2015) introduced the
Active Disturbance Rejection Control (ADRC)
architecture, which uses the Extended State
Observer (ESO) to provide an accurate real-
time estimation of system disturbances. And
although the ESO offers advantages in estimating
disturbances and unmeasurable state variables
(Xue & Huang, 2015; Xue & Huang, 2018), its
performance depends on high observer gains,
which increase the sensitivity to measurement
noise (Lakomy & Madonski, 2021; Shao & Gao,
2016). A hybrid Extended State Observer-Kalman
Filter (ESO-KF) approach has recently been
developed to overcome these limitations, where
the Kalman Filter serves as a pre-filtering stage
for enhancing noise suppression and improving
disturbance rejection (Bai et al., 2018).

This paper proposes an innovative approach
to climate control in agricultural greenhouses
by developing a robust system that integrates
feedback linearization based on an Extended State
Observer (ESO) combined with a Kalman Filter for
measurement preprocessing, along with proactive
disturbance compensation. Unlike previous
studies, which primarily focus on industrial
systems or strictly controlled environments, this
paper adapts these advanced techniques to the
specific challenges of agricultural greenhouses.
These challenges include nonlinear disturbances,
such as sudden changes in temperature, humidity
and solar radiation, that complicate control
processes and require a dynamic adaptation,
as well as sensor limitations caused by harsh
environmental conditions (dust, corrosion),
necessitating particularly robust state estimation
methods. This innovation effectively addresses
the unique demands of greenhouse agriculture,
ensuring a precise and reliable climate regulation.

The remainder of this paper is structured as
follows. A comprehensive dynamic modelling
of the greenhouse climate system is detailed in
Section 2, and a feedback linearisation approach
for decoupling its non-linear dynamics is presented
in Section 3. Further on, Section 4 sets forth
the design of a robust controller incorporating
an extended state observer (ESO), a Kalman
Filter (KF) for state estimation and feedforward
disturbance compensation, while Section 5
validates this approach through simulations and
the comparison with a Proportional-Integral
Sliding Mode control (PISMC) scheme. Finally,
Section 6 presents the conclusions of this paper
and it outlines the prospects for future research.
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2. Greenhouse Dynamic Model

The greenhouse climate model was developed for
predicting environmental variables as a function
of external inputs (such as solar radiation and
ambient temperature), control actions (heating,
cooling, ventilation) and the current state of the
system. The model is based on a set of differential
equations that describe the key phenomena
governing the system, including heat transfer by
conduction, convection and evaporation, as well
as air exchange related to ventilation.

Given the complexity and non-linearity inherent
to these phenomena, the proposed model
incorporates a specific non-linear dynamics
as well as the presence of multiple global
disturbances, including sudden variations in the
external climatic conditions. To better reflect
these complex interactions, the differential
equations were reformulated and fitted using
experimental data and energy balances, providing
a more realistic and robust representation of
the greenhouse’s climatic behaviour, which is
essential for designing effective and reliable
control strategies. These differential equations are
given as follows (Luan et al., 2012):

dT,
dt( ) (Qheat( )+Si(f)—7meog(t))
V (t) )
o M
in out (t))
+ (T, (1), w,,(1),d(1),1)
%:LQ/%Q)JF —E(S,(1),w,, (1))
) — 7 W)=, (1) )

+f (Ti,, (), w,, (),d(1),1)

where T and T  represent the greenhouse’s
internal and external temperatures (°C),
respectively, p is the air density (kg/m?), Cp is the
specific heat of the air (J/(kg-K)), V' is the typical
volume of the greenhouse (m?), 4 is the latent
heat of vaporization (kJ/kg), U, is the overall
heat transfer coefficient (W/(m*:K)), V, is the
ventilation rate (m*/s) and Q, is the supplemental
heat applied to the greenhouse environment
(W). S is the intercepted solar radiation energy
(W/m?), w,_and w_represent the internal and

external humidity (gH20/m?), respectively, Qﬁ)g
is the water capacity of the fog system (gH20/s).
The uncertain functions £, (T, (¢),w,, (¢),d(¢),t)
and f,(7,,(t),w, (t),d(t),t) include unmodelled
dynamics, parameter variations and a complex
non-linear behaviour. Furthermore, the final
term in the set of variables represents the
evapotranspiration function E(S,,w, ).

As a preliminary simplification, the
evapotranspiration rate E(S,,w,,) is approximated
as being primarily governed by the intercepted
solar radiant energy. This relationship is expressed
by the following simplified equation (Gurban et
al., 2014):

E(S, (0., (0) =-5,) = fw, 0 3)
The coefficients a and S account for the
influences of several different factors on E from
several different factors. As it corresponds to
the shading and leaf area, a aggregates those
effects on evapotranspiration. The parameter
[ accounts for various thermodynamics
factors. Greenhouses play an important role
in managing the temperature and humidity for
crops, improving the crop growth conditions,
and preserving agricultural products. Evaporative
cooling systems can be used effectively,
especially in arid regions, where the influence
of the incoming relative humidity is relatively
small. As a result, the term fw_ in equation (3)
is relatively small and Q, in equation (1) is set
at zero. The following parameters are defined:
Co=(pCJV), V,=pV, and a, =a(ApV)”!
Integrating the previous observations, equations
(1) and (2) can be expressed as follows:

dar, (1) 1
—dt( ) =_(S,-(t)_/1Qfog(t)) (4)
V@mm T, (1)
~émm T, ®)
(T, (0, (0),d(0),1)
LURON LQ/-og () +a, S, (¢) ()
dt
”Wm@ W, (1)

+/s (Tm (), w,, (1), d(2),1).
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3. Feedback Linearization Control

The first step of the robust control strategy is
to apply a linearized control law to agricultural
greenhouses. This enables the effective
management of the complex nonlinear dynamics
of the indoor climate, improves control accuracy
and stability, and enables a better disturbance
handling and an optimal decoupling of key
variables (Wu et al., 2024). The greenhouse
model can then be reformulated as a nonlinear
MIMO system, suitable for designing a feedback
linearization controller (Sun et al., 2021):

Xx=Ax+B, (x,v)u+Dv+B, f(x,d(t),t)
y = me+ynoise

with:
1 A
U e 4
A= C, |, B(xw)= Ll
0 0 _70(’“2_"3) 70

o
Il
D~
o N LQ
=

where:

x=[T;,,w,] is the state variable;

u= [VR,Q e ]T is the control variable;

v=[S.T,,.w,| is the measured outside

disturbance variable;
T .
y= [Zns ,Wins] is the system output;

Vroise = [Vroiset» Voo ] 18 the noise for temperature
and humidity;

f(x,d(¢t),t) represents the global uncertain
function, encompassing the unmodelled internal
dynamics dependent on the state x, as well as the
unmeasured disturbances denoted by d(%).

These components are modelled by the functions
/f, and f), respectively. To simplify the controller
synthesis, a proportional relationship is assumed
between these functions:

fi=bf.and f,=b,f,

where b, and b, are proportionality coefficients
(constant or variable), determined according to
the assumptions of the dynamic model.

The control matrix B (x,v), although nonlinear, is
invertible at each computation step under specific

conditions, notably when the matrix is full rank
(i.e. its determinant is nonzero), the variables x
and v belong to a domain where the coefficients of
B remain bounded and continuous, and the system
does not exhibit singularities or discontinuities
within the considered interval.

Based on the previous condition and considering
a reference trajectory r, defined by the setpoint
variables r, and 7 , the application of the feedback
linearization method leads to the following
expression (Chen et al., 2018):

X=r (7)

where r=[r,,r,]" is the new input vector in the
transformed coordinate system.

Based on equations (6) and (7), the feedback
linearization control (FLC) law is designed as
follows (Gao et al., 2014):

Uy =B, (r—Ax—Dv-B, f(x,d(t),t)). (8)
4. Robust Control Strategy

The robust control strategy for agricultural
greenhouses is structured around four main
steps: first, the design of the extended model of
the greenhouse, second, the development of a
combined ESO-KF structure, third, an in-depth
analysis of the robust control law, and finally, the
determination of the Kalman Filter gain using the
Riccati equation.

4.1 Extended Greenhouse Model

ESO is a key tool for estimating, in real time,
the system state variables that are not directly
measurable, such as temperature and humidity
inside the greenhouse. It is also used for detecting
and compensating for external disturbances
(climatic variations, unexpected inputs of humidity
or heat) that may affect the system. This accurate
estimation of system states and disturbances is
essential for ensuring a reliable control despite the
uncertainties and variations in the dynamic model
of the greenhouse.

In ESO-based control, the global disturbance d, is
modelled as an extended system variable, that is
exogenous, and independent of the dynamics of
the internal state of the system (Li et al., 2012):

X, =d, = f(x,d(®),1), )

which should be added to the system in equation (6).
The extended system is then rewritten as follows:
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X = AX + B,u + Dv + Fh(t) (10)
y = émf + ynoise

where the exter}ded state variable X = [xT ,d, ]T ,

and A(?) = x, =d, with:

- - 1 2]
_Yi b —;(xl—vz) C
0 — 1 1
A= 0 0 b |, B =|-—0(,~-v) — |,
Vo Vs
0 0 0
0 0
_ o _ [1 00
D= aO 0 O)FZO) m .
01 0
0 0 0 1

4.2 Combined ESO-Kalman
Filter Structure

To further improve the quality of the estimates, the
ESO is combined with a KF. The latter is an optimal
filtering algorithm that refines the estimates by
considering noisy measurements and statistical
uncertainties. This hybrid ESO-KF approach is
more robust to non-stationary disturbances and
measurement errors, guaranteeing a more stable
and reliable estimation of the system states and
external disturbances.

The equation governing the Kalman Filter is
expressed as follows (Bai et al., 2018):

i=AR+Bu+Dv+B,d,+K,(y-C,%) (11
where % represents the a posteriori estimate of x
(i.e. after correction) obtained using the KF, and K
is the gain matrix of the steady-state Kalman filter.

The ESO model can represent both the dynamics
of the system and the evolution of disturbances,
making it easier to estimate them in real time:

t=Az+Bu+Dv+K,(y-C,z2) (12)

where z=[z/,d.]’ is the estimate of ¥, z, is the
estimate of x, and z =d, is the estimate of the
overall disturbance, all these variables being
obtained through the ESO, and K denotes the gain

matrix of the ESO.

By replacing the lumped perturbation d, related to
the KF (equation (11)) with the estimate d,, and

the actual output signal y in ESO (equation (12)
with the estimate C, %, the resulting continuously
updated ESO-KF interconnected structure can be
expressed as follows:

{)?:A)%+Buu+Dv+Bdc?E +K,(y-C,%) (13)

t=Az+Bu+Dv+K,(C,5-C,z2)
4.3 Robust Control Law Expression

The implementation of a robust controller based
on the use of estimated system state variables
and the estimation of external disturbances
proves essential in order to compensate for the
inaccuracies inherent to direct measurements, the
frequent unavailability of sensors under severe
climatic conditions, as well as sensor failures
or their gradual degradation. By integrating
advanced observers such as the Extended State
Observer combined with the Kalman Filter,
this type of regulator provides a reliable, real-
time estimation of the critical variables and
disturbances, thus ensuring a precise and
stable control despite model uncertainties and
challenging operational conditions. This approach
significantly enhances the robustness of the
control system by guaranteeing the continuity
and quality of greenhouse microclimate regulation
while reducing its dependence on often noisy or
missing direct measurements (Bennis et al. 2008).

The robust command is formulated as the sum of
two components:

- u,, denoting feedback control, which
corrects in real time any differences between
the estimated states, represented by z_and
the setpoint values, ensuring stability and
accuracy;

- u,,denoting feedforward control, whichactgin
anticipation of the estimated disturbances d,,
improving responsiveness and compensation
for external effects.

This allows to express the robust control law in a
comprehensive form:
U=up(z,)+ug(d,)

. 14
=up(z,)+K,d,. (9

where K, is the disturbance compensation gain.
In the context of this hybrid structure, the feedback
control law is defined as follows:

up(z,)=B,'(r—A4z,—Dv-B,d,)

(15)
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The adjustment of the gains in the ESO-KF
hybrid structure, and also of the K, gain of the
u,, is decisive in optimizing the compromise
between convergence speed, stability and
robustness to disturbances.

4.4 KF Gain Determination

Assumption: the noise expressed by y . (?) and the
unmeasurable disturbances denoted by d (1) are:

- stationary, meaning their statistical properties
(mean, variance) remain constant over time or,

- independent, indicating that there is no
correlation between the two noises.

Consequently, the corresponding covariances
are expressed as follows (Schneider &
Georgakis, 2013):

E{d,(t)d,(t+7)"} = 05(2),
E{ Y0 (070t + ) | = RS(2),
E{,, (0, (t+7) } =

(16)

where Q is the disturbance estimation covariance,
R is the measurement noise covariance, and o is
the unit pulse function.

The Kalman gain K fis determined for minimizing
the variance of the estimation error ¢ =x—% of
the steady state system.

It should be noted that P, :E{gx gxr} is the
covariance matrix of the estimation error
(of dimension 2x2) satisfying the following
differential equation (Nicholas & Maria, 2013):

P, = AP, + P, A" ~P,C,R"'C,P, +B,0B;. (17)

The Kalman gain formula is given by:
K,=PC,R". (18)
Remark: The input-to-state stability (ISS) of
the system in equation (6), under the robust
control law in equation (14), is guaranteed if the
disturbances d, and the noises y are bounded,

and if the gains K of the KF ﬁlter in steady state,

K, of the state observer as expressed in equation
(13) and K, related to the feedback control law
as expressed in equation (14) are chosen such that
the matrix 4, is a Hurwitz matrix. This condition
ensures stability despite the uncertainties and
variations in measurements (a sketch of the
stability proof is given in Appendix A).

5. Simulation Results

The proposed robust control strategy was
evaluated with regard to its effectiveness and
performance using a numerical simulation. A
case study was then carried out to demonstrate
the effectiveness of the robust control scheme
illustrated in Figure 1. The system parameter
values are as follows: the value of p is
approximately 1.2 kg/m?, the value of C, is about
1006 J/(kg-K), that of V' is approx1rnately 57.6
m’, the value of 1 is 2256 kJ/kg, and that of U is
10.08 J/(m?-K). The model parameters expressed
in equations (4) and (5) were set as C; = 69.53
kJ/K, V= 69.12 kg, and = 0.00083.

L

u u (13
r 2 ' as Greenhouse (6)
—* FLC é
15)
{- !
J I
1 .
X
Zx !
1] Eso u KF
| [ I
1
|
I
I

Figure 1. General robust control scheme based on
the proposed combination between an Extended State
Observer and a Kalman Filter

To validate the performance of the proposed
controller, it was compared with the Proportional-
Integral Sliding Mode Control approach.

5.1 PI Sliding Mode Control Technique

Lammari et al. (2020) have proposed the
Proportional-Integral Sliding Mode Control
(PISMC), which is crucial for controlling the indoor
environment of greenhouses. This method combines
the advantages of PI controllers, which ensure
accuracy in following the desired trajectories,
with those of SMC, which offer robustness against
disturbances and parametric uncertainties. The
controller is expressed as follows:

U =up (t)+ug,(t)

! 19
=k e(t) +k, j e(r)dr —U sat(c,¢), (19)

where e(t)=r(t)— y(¢) is the tracking error, kp
is the proportional gain, k, is the integral gain,
U is a positive constant of significant value,
is a saturation function, and ¢

sat(o,€) = |o-| e
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is a positive design constant used for attenuating
chattering, and the switching function can be
formulated as o = e.

The optimum values for the PISMC controller
gains for temperature and humidity are kp =0,1285
and k, = 0,1285, with U= 0.2552 and ¢ = 0.1.

5.2 Robust Control Parameters

The parameters of the ESO-KF-based robust
control for temperature and humidity were chosen
as follows to achieve a good control performance:

2233 7.68
The ESO gain matrix is K, =| 7.31  22.76 |,
97.05 102.95

and the KF parameters P, R, and Q are chosen as:

10 0 1 0
R = » R= , 0=100, and
0 10 0 1

-0.01
K, = .

-0.01
where P, denotes an initial covariance matrix of
the estimation error.

To guarantee both asymptotic stability and the
rapid estimation of the system state x and the
external disturbance d, the gain K of the ESO
observer must be rigorously optimized.

This gain is determined using the pole placement
method applied to the matrix 4-K,C,. The
poles are chosen to be sufficiently close to each
other to ensure a consistent dynamics. In this
context, the selected desired poles are [-10,-15,-
20], ensuring a robust stability and an optimal
compromise between the convergence speed and
computational simplicity.

5.3 Performances Obtained by
Both Controllers

A 320-minute setpoint tracking simulation was
conducted to evaluate the performance and
effectiveness of the proposed robust control strategy.

The initial conditions inside the greenhouse,
regarding temperature and humidity, both for
the KF and the ESO, were set at 18 °C and 26
gH>0O/m3, respectively. The outdoor climatic
conditions were modelled by step signals and
set as follows: a solar irradiance S, of S00W/
m?, an outdoor temperature 7 of 32°C and an
outdoor humidity w_ of 10gH O/m The indoor

temperature setpoint remained constant at 20 °C
for the first 150 minutes before being raised to
25 °C. Simultaneously, the humidity setpoint
was adjusted, decreasing from 28 to 22 gH,O/m’.
Furthermore, the model incorporates unknown
and time-varying disturbances expressed by d,
correlated with fluctuations in external weather
conditions, in order to accurately reproduce the
real variations of temperature and humidity inside
the greenhouse.

The indoor temperature and humidity monitoring
performance is shown in Figures 2 and 3. After
the setpoint change at minute 150 of the setpoint
tracking simulation, both controllers reach the
new setpoints (25 °C for temperature and 22
gH20/m* for humidity) within less than 10
minutes, demonstrating a fast dynamic response.
However, the ESO-KF-based controller enables
a significantly more accurate convergence, with
an overshoot of less than +0.3 °C for temperature
(with the peak at around 25.3 °C) and less than
-0.25 gHO/m? for humidity.
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Figure 2. Tracking performances for the greenhouse
indoor temperature
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Figure 3. Tracking performances for the greenhouse
indoor humidity
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On the other hand, the PISMC controller
exhibits more pronounced transient variations: a
temperature overshoot of approximately +1.2 °C
(with the peak at 26.2 °C) and a negative humidity
overshoot of up to -2 gH.O/m?* (the minimum
at 20 gH>O/m? for a setpoint of 22 gH.O/m?).
Additionally, it shows more significant oscillations
around the setpoints, indicating a greater sensitivity
to rapid changes and external disturbances.
These quantitative results confirm that the robust
controller significantly reduces the overshoot and
improves disturbance rejection, which make it
more suitable for maintaining stable and accurate
climate conditions inside the greenhouse in
comparison with the PISMC strategy.

Figures 4 and 5 illustrate the greenhouse
temperature and humidity monitoring errors,
highlighting the superiority of the robust
controller. Due to its advanced estimation
capabilities, it significantly reduces the deviations
from setpoints. Specifically, the errors under the
ESO-KF control remain very small and are quickly
absorbed after each setpoint change, whereas the
PISMC generates larger variations.
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Figure 4. Greenhouse temperature error
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Figure 5. Greenhouse humidity error

Figures 6 and 7 illustrate the control actions of
the ¥, ventilation and O, misting systems. The
results show that, under the robust control, the
ventilation and humidification rates exhibit a
rapid transient dynamics while remaining with-
in acceptable operational limits, the ventilation
varies smoothly between 20% and 60% of the
capacity, while misting varies between 0 and 30
units (an arbitrary scale) without abrupt peaks.
The PISMC controller, on the other hand, gener-
ates a more pronounced chattering phenomenon,
with ventilation rates fluctuating sharply above
70% and misting levels showing irregular peaks.
This chattering can place a significant stress on
the actuators, increasing wear and reducing the
system's reliability.
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Figure 6. Time evolution for the ventilation rate
generated by the employed controllers
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Figure 7. Time evolution for the Q, rate generated
by the employed controlfers

As illustrated in Figure 8, the time evolution of the
lumped disturbances and their estimated values
exhibit good agreement, which demonstrates the
performance of the ESO.
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Figure 8. Estimation of greenhouse
lumped disturbances

Table 1 compares the performance of the
robust controller and PISMC controller using
conventional time domain indices. The MSE
values show significant differences in terms of
accuracy and stability. The robust controller
reduces the MSE for temperature by around
50% in comparison with the PISMC, thanks to
its real-time estimation and active filtering of
disturbances, allowing an optimum compensation
for uncertainties and noise. For humidity, although
the reduction in MSE is less pronounced (around
11%), the robust controller still retains a significant
advantage over the PISMC controller. The lower
values for the standard error of the variance
obtained with robust control, in comparison with
those obtained with the PISMC, indicate the
superior performance of the former in terms of
control accuracy and reliability. This improvement
is crucial for the effective optimization of the
climatic conditions inside the greenhouse. Finally,
the temperature overshoot obtained based on the
robust strategy is limited to 1.1368%, whereas
it reaches 4.94% with the PISMC method, a
difference almost equal to a factor of four. The
difference is even higher for humidity: the robust
strategy maintains the overshoot at 0.87%, while
the PISMC approach records a much higher peak,
reaching 10.45%. This performance demonstrates
the ability of the robust controller to limit transient
fluctuations, reducing the risk of overheating or
thermal instability in the greenhouse.

In the context of climate control in agricultural
greenhouses, this analysis shows that the use of
a robust regulator offers advantages in terms of
sensitivity and ease of use in comparison with
a PISMC controller. The former provides a

better resistance to variations and disturbances,
ensuring a stable performance in the face of
frequent fluctuations in climate parameters. Its
ability to adapt quickly and accurately improves
the sensitivity of the control system, which is
essential for maintaining the optimal conditions
for plant growth. In addition, the simplicity of
its configuration and integration facilitates its
deployment, which is not the case for PISMC,
which requires an in-depth expertise for adjusting
the parameters of the sliding mode. Designed for
managing the non-linearities and uncertainties
inherent to greenhouses, the robust controller
ensures an increased stability and accuracy,
optimising climate management while improving
crop quality, extending the crop growth period and
increasing the crop yield.

Table 1. Results for the tracking performance
comparison with regard to the step response

Performance index | Robust controller | PISMC
MSE "1 0.0667 0.1336
w, | 0.0874 0.0974
Standard error ~. 1 0.0808 0.0832
of the variance | w, | 0.1163 0.1168
Overshoot (%) T 1.1368 4.9401
w, | 0.87 10.45

6. Conclusion

Precise climate control in agricultural
greenhouses is traditionally disrupted by
environmental variations and measurement
noise, which degrades the performance of control
systems. This study brings about a significant
advancement by proposing a high-precision
controller combining two complementary
mechanisms: a dynamic servo control of thermal
setpoints and an active compensation for external
disturbances. The main objective of this paper
is the implementation of a robust controller
based on state feedback linearization coupled
with anticipatory disturbance compensation,
integrating an Extended State Observer
associated with a Kalman filter (ESO-KF).
This architecture optimizes the estimation of
critical parameters while significantly reducing
their dependence on conventional physical
sensors for the system's state. However, it still
requires specific sensors for measuring external
disturbances such as outside temperature,
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ambient humidity and sunlight. Thus, the ESO-
KF improves the robustness and accuracy of real-
time estimates, even in the presence of noise and
uncertainties. The comparative tests which were
carried out involving the robust controller and
the PISMC have demonstrated that the robust
controller offers a significant improvement in
robustness against the unmeasured variations,
as well as a significant reduction in stabilization
times. In addition, it is very easy to apply the
proposed controller in real-world scenarios
due to an architecture that is less dependent on
complex settings. This innovative solution opens
new possibilities for agricultural operations,
particularly in terms of energy savings and
hygrothermal stability. Future research directions
could focus on validating this approach on an
experimental platform equipped with variable
modulation actuators and adaptive supervision
interfaces. This validation will make it possible
to quantify the operational gains under real
production conditions, particularly for crops that
are sensitive to micro-climate disturbances.
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Appendix A: Sketch of the
stability proof

The state error of the system ¢, =x—X, and the
disturbance error &, =d, —d, are considered.

By using equations (6) and (13), the derivative of
the state error can be expressed as:

i =x—%

= (A_K/Cm )gx +Bdgd@ _K/'ynnixe (Al)
The state estimate error is expressed as:
— X Zy
& =X-z= —| - (A2)
d, d,

Using equations (10) and (13), the derivate of &,
can be obtained:

X—z

gZ

=(A-K,C)e. +K,C,e +Fh

e " m-Xx

(A3)

Then, the estimation errors for the ESO-KF
controller are expressed as follows:

= =
>

(A4)
dla

By combining equations (Al) and (A3), the

observer error dynamics can be expressed as:

éo = A&, + de (AS)
where:

A-K,C B —

= Srme 74 B, =[0 B, |,

{ K.C, A—Kec,j i =102 B

. -K )
and de: fynozse

Fh

The following quadratic Lyapunov function is
considered:

V(So) = gOTP(')go (A6)

Therefore, as 4, is a Hurwitz matrix, there exists
a positive definite matrix P, that satisfies a
Lyapunov equation:

ARy + Ry =1

By using the derivative of V(¢ ) the following is
obtained:

V(e,)=—¢,¢,+2d. Be,

< _"80 "2 + 2O-max (})0) 676

“ (A7)
<eoll + lleal” = £l + 20 (Bl

Finally, the following condition is found:

V(e,)<~(1=8)|ef -M(s,)s (A8)
where:
M(s,) = [5"50" -20,..(F) 67@ :|||80|| ,and &<1.
M (g,) = 0 was obtained. In this regard:
20,..(R)|d,

e > —=—" 0= -0

¢ (A9)
Consequently, inequality (A8) satisfies:
V(SO)S—(I—§)||50||2,V”gO”Zy>—O. (A10)
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