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1. Introduction

The unmanned aerial vehicles (UAV) represent 
remotely piloted or self-piloted aircrafts. They 
have numerous advantages such as low cost, good 
maneuvering ability, high survival rate. Along 
with these qualities, UAV have the ability to carry 
different equipment or packages, e.g. cameras, 
sensors, weapons, etc. Initially, they were used 
for military purposes, as unmanned combat aerial 
vehicles (UCAV), to carry missiles and for drone 
strikes, but due to the mentioned qualities, UAVs 
are nowadays widely used for various applications 
including scientific [14], commercial [26], 
surveillance [7] and industry [27] applications.

UCAV are usually used in hostile environments, 
hence control systems for them are very 
challenging. The UCAV path planning problem is 
one of the most important parts of the autonomous 
control model for the UCAV. It refers to the 
problem of providing the optimal path from the 
starting point to the final destination, considering 
several objectives and constraints. Numerous 
research papers propose different methods for 
solving this problem. Path planning can be 
understood as a multi-objective constrained 
optimization problem that can include objectives 
like minimization of the fuel consumption, path 
length, exposure to threat, average altitude, path 
smoothness, etc. 

Being a hard optimization problem, there are no 
deterministic methods for solving path planning 

in a reasonable time. Various techniques and 
methods can be used to tackle such NP-hard 
problems. In the last two decades, nature inspired 
algorithms, especially the swarm intelligence 
ones, have been widely and successfully used 
for finding acceptable solutions very quickly. 
Swarm intelligence algorithms are relatively 
new but powerful metaheuristics, where 
solutions for various problems of this kind are 
found by using swarms of simple agents. Each 
of these agents follows rather simple rules and 
they exchange gathered information between 
themselves. That communication enables swarms 
to exhibit remarkable intelligence. Particle swarm 
optimization (PSO) and ant colony optimization 
(ACO) are the oldest representatives of the swarm 
intelligence algorithms. After these two, numerous 
other swarm intelligence algorithms like fireworks 
[12], [19] and firefly algorithms [29], [21] or 
elephant herding optimization [22], have been 
proposed and successfully applied in various 
applications [20], [18], [1].

Numerous swarm intelligence algorithms and 
their modification were proposed for solving the 
UAV and UCAV path planning problem. However, 
recent brain storm optimization algorithm was 
not one of them. In this paper, brain storm 
optimization (BSO) algorithm is adjusted for 
solving the UCAV path planning problem. Quality 
of the proposed method is proven by comparing 
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the obtained results with other state-of-the-art 
algorithms from literature. 

The rest of the paper is structured as follows. A 
brief literature review is given in Section 2. A 
mathematical model for the path planning problem 
used in this paper, as well as performance criteria, 
i.e. considered objectives, are described in Section 
3. The brain storm optimization algorithm and our 
proposed adjustment are presented in Section 4. 
The simulation results along with a comparison 
with state-of-the-art methods are described 
in Section 5. At the end, the conclusion and 
suggestions for a possible future work are given 
in Section 6. 

2. Literature review

Path planning, especially for the UAV and UCAV, 
represents an active research topic of great 
practical importance and numerous methods were 
proposed for solving it. In the recent years, most 
of the proposed methods are based on the nature 
inspired algorithms. 

A method based on unsupervised neural network 
for mobile robot path planning was proposed 
in [3]. Mobile robot was supposed to collect 
objects in the search area, thus the problem was 
considered as the travelling salesman problem. 
Simulation results have shown that the proposed 
method finds a path close to the optimal one.

Obstacles avoidance algorithm for mobile robot 
control that combines intelligent bug algorithm and 
follow the gap method, named intelligent follows 
the gap method (IFGM), was proposed in [33]. 
The IFGM has the ability to dynamically adjust 
path and avoid U and H shape obstacles. Based on 
the simulation results, the proposed algorithm was 
efficient considering distance-time performance.

An algorithm for finding a good path for 
mechanical arm was proposed in [16]. Bayesian 
particles filter was used for inverse kinematics 
problem, while computational geometry was 
proposed for collision detection problem. Using 
an appropriate set of parameters, the proposed 
method was able to find good path in complex 
two-dimensional space environments.

In [15], a modified genetic algorithm named 
multi-frequency vibrational genetic algorithm was 
used for solving the UAV path planning problem. 
The proposed algorithm included new mutation 

application strategy that improved global and local 
search. By introducing Voronoi diagram concepts 
to the initial population phase, the number of 
needed generations was reduced. The method 
was applied to two different environments and the 
results were compared to three different version of 
the genetic algorithm. It has been shown that the 
proposed procedure reduced computational time.

An improved constrained differential evolution 
algorithm was proposed for finding the optimal 
feasible path in three-dimensional space for the 
UAV [31]. Several objectives were considered, 
such as maximum turning angle, climbing slope, 
terrain, forbidden flying areas, map and threat 
areas. This algorithm was combined with the 
level comparison method. Based on the simulation 
results, where two scenarios were considered, the 
proposed method achieved good performance 
considering the solution quality, robustness and 
the constraint handling ability.

A hybrid algorithm that combines differential 
evolution (DE) and quantum particle swarm 
optimization algorithm was proposed in 
[9] for UAV route planning on the sea. The 
method was compared to the standard genetic 
algorithm, differential evolution, particle swarm 
optimization and quantum PSO. The comparison 
results proved that the proposed hybrid algorithm 
is better in quality of solution, robustness and 
convergence speed.

Artificial bee colony algorithm (ABC) improved 
by a balance evolution strategy was proposed for 
unmanned combat aerial vehicles path planning 
problem in [11]. A balance evolution strategy was 
introduced to improve convergence by balancing 
local and global search. This method had better 
performance compared to the standard ABC and 
to other two modified ABC algorithms proposed 
for path planning in literature.

In [30], predator-prey pigeon inspired optimization 
algorithm was proposed for solving three-
dimensional unmanned combat aerial vehicle 
path planning problem in a dynamic environment. 
Predator-prey model was used to improve the 
convergence speed in pigeon inspired algorithm 
(PIO). The proposed method proved to be better 
for the path planning than the original PSO, PIO 
and DE.

Path planning for unmanned combat aerial 
vehicles was solved by a modified firefly 
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algorithm in [24]. The modification was applied 
to the exchange of information between fireflies 
with better objective function values so the 
convergence speed was increased. The proposed 
algorithm was more effective for the path planning 
problem compared to the original firefly algorithm 
and to several other swarm intelligence algorithms 
such as ACO, DE, GA, PSO and others.

In [23] the bat algorithm was modified and adjusted 
for the UCAV path planning. Mutation operator 
for generating a new position of the bats in new 
generation was replaced in some cases by the 
differential evolution operator. Two objectives 
were considered for finding the optimal path, 
fuel consumption and threat avoidance. The 
proposed method was compared with the original 
bat algorithm and with other population based 
algorithms (ACO, PSO, DE, GA, etc.). Simulation 
results have shown that this method had better 
performance compared to other mentioned methods.

3. UCAV path mathematical model

Unmanned combat aerial vehicles path planning 
represents an active research topic and various path 
modellings were proposed. UCAV path planning 
problem can be described as an optimization 
problem where the goal is to find the optimal route 
from the start point (S) to the target (T), according 
to some metrics. Optimal path can be defined in 
numerous ways since different desirable features 
can be considered, for example the shortest or the 
smoothest path, the minimal fuel consumption, the 
safest path, etc. In this paper two different criteria 
were used, fuel consumption and safety degree.

Unmanned combat aerial vehicles are moving 
in three dimensional space, but in this paper 
altitude was not considered, which means that two 
dimensional space was used for the path planning 
problem. This simplification was also considered 
in other papers from the literature [23], [24].

For solution modelling, we adopted a method 
which is commonly used not only for the UCAV 
path planning [11], [13], but also for the robot 
path planning [28], [32]. The used model is rather 
simple, but efficient. The main idea is to ensure 
UCAV’s moving towards the target position. 

The path model used in this paper transforms 
the path planning problem into a D-dimensional 
optimization problem in the following way. The 
first step is to transform the coordinate system so 

that the x-axis is the line that connects the start 
and the target positions. Additionally, start point 
is translated to (0,0) which is accomplished by the 
following transformation:
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where (x,y) represent the original coordinates, 
(x’,y’) are the new coordinates in the transformed 
coordinate system, (xs,ys) are coordinates of the 
start position S and φ  is anti-clockwise angle 

from x-axis to the vector ST
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Next, the path is modelled by dividing the new 
x-axis, the line S-T, into n+1 equal segments by 
n points. The x-coordinate of each path point is 
determined as shown in Figure 1. 

Figure 1. Path modelling

One path point is located on each red line 
presented in Figure 1. The y-coordinate for each 
point needs to be found for the optimal path. In 
Figure 1 path points are marked by ph1, ph2, …, 
phn and n determines the optimization problem 
dimensionality. The complete path of the UCAV 
is represented as:

PH S ph ph ph T
n

=( , , , , , ).
1 2

 	      (3)

3.1 Performance criteria

The goal of the path planning methods is to find 
the optimal route for an UCAV where the criteria 
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for the optimality can be different. In this paper 
two criteria were considered: fuel consumption 
and safety degree.

The first criterion, fuel consumption is proportional 
to the path length so it can be represented as a 
function of the length. Total fuel consumption is 
defined as:

F w dl
fuel f

L

= ∫ ,
0 	      

(4)

where L is the path curve and wf represents the fuel 
cost for each path point. In this paper we used wf=1 
so the fuel cost is equal to the path length which 
is the sum of distances between corresponding 
neighbor points in the path. If the start position S 
is denoted as ph0 and the target position T as phn+1, 
the path length can be calculated as:
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where d(a,b) is the Euclidean distance between 
points a and b.

The second criterion considered in this paper is 
safety. UCAV during their flight can be faced with 
certain threats such as radars, radiation, missiles, 
antiaircraft artillery and similar. These threats can 
be represented as circle areas with different radii 
and threat degree or weight [24]. If the path goes 
through that danger areas, UCAV is exposed to 
the threat of a same degree. The longer the path 
passes through the danger area, the probability of 
UCAV being damaged or destroyed is larger. On 
the other hand, probability to be damaged if the 
path is outside of the threat circle is equal to 0.

Similarly to the fuel consumption, the threat cost 
can be calculated as:

F w dl
threat t

L

= ∫0 ,
	      

(6)

where again L is the path curve and wt represents 
the threat weight for each path point. In order to 
determine the total threat cost, it is necessary to 
include all the threats. Each threat has a circle 
range inside that circle where the threat degree 
is constant. The total threat cost produced by Nt 
threats while UCAV flies along the path segment 
Lij is defined by the following equation [24]:
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where tk represents the danger degree of the threat 
k with the center at (xk,yk). In order to simplify 
calculation of the threat or safety degree, Eq. 
7 can be converted into discreet model. Each 
path segment can be divided into m+1 equal 
subsegments by m points and the threat degree 
of the path segment Lij is represented by the 
average of the danger degrees in these m points. 
In this paper we used the same model presented in 
[11], [23] and [24] where each path segment was 
divided by 5 points thus the threat produced by Nt 
threats while UCAV flies along the path segment 
Lij was calculated by the following equation:
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where Lij represents the length of the path segment 
between phi and phj, dmk is the Euclidean distance 
between the mth subsegment point of the segment 
Lij and threat k, while tk represents the threat level 
of the kth threat.

4. BSO algorithm for the UCAV  
path planning

Brain storm optimization algorithm (BSO) is a 
swarm intelligence algorithm based on the human 
idea generation process which is known as the 
brainstorming process. BSO was proposed by 
Yuhui Shi in 2011 [17]. Since then the BSO was 
used in numerous applications like the support 
vector regression parameter selection [25], the 
energy optimization in grid systems [2], the 
wireless sensor deployment [6], and many others. 
Due to the extensive use of the BSO, various 
modifications [4], [5] and hybridizations [10] of 
the BSO were proposed. 

The brainstorming process was simplified and 
generalized in order to implement the BSO 
algorithm. The simplification was made so that 
that brainstorming process still contains enough 
elements to implement optimization algorithm 
that has local and global search, i.e. exploitation 
and exploration, while the unimportant details 
were discarded.

In the brain storm optimization algorithm 
ideas represent the simple agents. Ideas are 
d-dimensional vectors. Brainstorming process 
starts by n initial random solutions and after this 
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initialization, ideas are clustered into m clusters. 
For clustering the solutions, k-means algorithm 
is usually used, but other algorithms can also be 
used. In each cluster the best idea, i.e. the solution 
with the best fitness function value is set to be the 
cluster’s center.

The iteration process generates new solutions 
built by combining existing solutions. After that, 
new and old solutions are compared and the 
better ones are kept for the next iteration. Based 
on the algorithm’s parameter p6b one or two of 
the existing solutions can be used for generating 
a new one. With the probability p6b one solution, 
xselected, is selected and based on it the new solution 
xnew is calculated by the following equation:

x x n
new selected

= + ⋅ς µ σ( , ), 	      (9)

where ),( σµn  is a random number generated 
from Gaussian distribution with mean µ
and variance σ , while ς  is a coefficient that 
controls the influence of the Gaussian random 
value which is calculated in each generation by 
the following equation:

ς =
−

log (( . *max

)/ )* ()

sig Iteration

currentIteration k rand

0 5

	    
(10)

where maxIteration and currentIteration are 
maximal number and the current number of 
iterations, respectively. Parameter k changes 
the logsig() function’s slope, where logsig is 
a logarithmic sigmoid transfer function, while 
rand() represents random value from uniform 
distribution within (0,1).

On the other hand, with the probability 1-p6b, 
two solutions will be chosen and combined to 
generate a new one as the average of the selected 
two solutions.

Exploration is controlled by another algorithm’s 
parameter, p5a and is implemented by replacing the 
cluster center with a new random solution. 

Besides the already mentioned parameters, the 
BSO procedure, described in the following 
Algorithm pseudo-code, has several more 
parameters that need to be determined.  Parameter 
p6bi refers to the cluster probability to be chosen 
for selecting the solution (idea) that will be used 
for generating a new solution and is proportional 
to the number of ideas in each cluster. Parameters 

p6bii and p6c are the probabilities of using cluster’s 
center or random solution from the chosen clusters.

Algorithm Pseudo-code of the BSO algorithm
Initialization 
Randomly generate n potential solutions.
repeat
   Cluster n solutions into m clusters.
   Rank solutions in each cluster and set the best one 
as cluster center.
   Randomly generate a value r between 0 and 1.
   if r<p5a
      Randomly select a cluster center.
      Randomly generate an individual to replace the       
selected cluster.
   end if
   repeat
      Generate new solutions.
      Randomly generate a value r between 0 and 1.
      if r<p6b
         Randomly select a cluster with probability p6bi.
         Randomly generate a value r1 between 0 and 1.
         if r_1<p6bii
            Select the cluster center and add random 
values to it in order to generate new individual. 
         else 
            Randomly select a solution from the chosen 
cluster and add random value to the solution to 
generate new one. 
         end if
      else
         Randomly select two clusters.
         Generate random value r2 between 0 and 1
         if r2<p6c
            Two cluster centers are combined to generate 
new solution.
         else
            Two solutions from each selected cluster are 
randomly chosen to be combined to generate new 
individual. 
         end if
      end if
      The newly generated solution is compared with 
the same solution index and the better one is kept.
   until n new solution is generated
until Maximal iteration number is reached.  

In this paper we propose the BSO for unmanned 
combat aerial vehicle path planning problem. 
During the flight UCAV should avoid threat 
areas while minimizing the fuel consumption. 
By reducing it, the threat degree can be increased 
and vice versa: in order to avoid threat areas path 
length can be increased which results in larger fuel 
consumption. Since these two objectives cannot be 
minimized at the same time, we used parameter λ  
that determines the influence of each of them. The 
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final objective function that need to be minimized 
by brain storm optimization algorithm is:

F PH F F
fuel threat

( ) ( ) .= + −λ λ1 	     (11)

5. Simulation results

Our proposed method for the UCAV path planning 
was implemented in Matlab R2016a and all the 
simulations were performed on the platform with 
Intel ® Core™ i7-3770K CPU at 4GHz, 8GB 
RAM, Windows 10 Professional OS.

In order to test the quality of our proposed method 
we compared it with the methods proposed in [24] 
and [23] and qualitatively with the one mentioned 
in [8]. In [24] a modified firefly algorithm (MFA) 
was used for solving unmanned combat aerial 
vehicle path planning problem. Modifications 
include adding Levy flight with dynamic 
parameter for generating new positions of the 
fireflies and adding information exchange between 
the fireflies with the best fitness function values. 
These modifications increased the local search 
and convergence speed. In [23] a bat algorithm 
with mutation (BAM) was proposed for the same 
problem as the one considered in this paper. A 
differential evolution mutation operator was 
added into the original bat algorithm with the aim 
to speed up the convergence of the algorithm. 
Besides the mutation operator, another change was 
to fix dynamic parameters of the bat algorithms.

In this paper we organized simulations in the 
same way as in [24] and [23] where one flight 
environment was considered. The parameter λ  of 
the fitness function was set to 0.5, the start position 
was set to (10, 10) while the target point had the 
coordinates (55, 100). Five threat zones are known 
in the field. All information, i.e. coordinates, threat 
radii and threat grades are listed in Table 1.

In [24] and [23] the proposed methods were 
compared with numerous nature inspired 
algorithms such as the genetic algorithm 
(GA), the stud genetic algorithm (SGA), the 
differential evolution (DE), the evolutionary 
strategy (ES), the particle swarm optimization 
(PSO), the ant colony optimization (ACO), the 
original bat algorithm (BA) and the original 
firefly algorithm (FA). In this paper we included 
these simulation results which encompassed 
performance analysis in two different cases: 
when maximal number of generation was 

changed and when different dimensionality of 
the problem was considered. Then, the reported 
results were normalized in the same way as it 
was done in [24] and [23] and obtained fitness 
function values were reduced by 50.

Table 1. Information about threats in the field

No. Location 
(km)

Threat radius 
(km)

Threat grade

1 (45,50) 10 2

2 (12,40) 10 10

3 (32,68) 8 1

4 (36,26) 12 2

5 (55,80) 9 3

Parameters for the brain storm optimization 
algorithm were set by conducting preliminary 
computational experiments. The probability for 
generating a new random solution p5a was set to 
0.2 and the parameter for selecting one cluster p6b 
was 0.8. In the case that one cluster was chosen, 
probability p6bii of using its center was 0.4, which 
was the same as the probability p6c of combining 
cluster centers. Probability p6bi referred to the 
probability of the cluster being chosen and it was 
proportional to the number of individuals in it. 

The first set of simulations included the changing 
of maximal number of fitness function evaluations. 
For these experiments, the dimension was set 
to 20, the maximal number of fitness function 
evaluation were 1500, 3000, 4500, 6000 and 7500, 
the same as in [24] and [23] and the population 
size for the BSO was 20. The comparison of the 
results for the best, average and the worst fitness 
function values obtained in 100 independent runs 
by methods from [24], [23] and our proposed 
method is presented in Table 2.

Our proposed algorithm found the best solution in 
all cases, except for the 3000 objective function 
evaluations. The bat algorithm with mutation 
found the best path for the UCAV for that case. 
Good results were also achieved by MFA, FA 
and DE, but with a higher number of objective 
function evaluations. The other algorithms were 
inferior. Our proposed algorithm showed constant 
improvements with the increase in maximal 
number of generations.

It is very important that when other algorithms 
started to stagnate, BSO made significant 
improvement by increasing the number of 
objective function evaluations to 7500.
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Average of fitness function values obtained in 100 
runs are also presented in Table 2. Our proposed 
BSO algorithm had the best mean values for 
4500, 6000 and 7500 fitness function evaluations, 
while for the 1500 and 3000 BAM obtained better 
results. BSO needed more generation to find the 
optimal solution, i.e. it had slower convergence 
but excellent ability of finding better solution.

Based on the worst fitness function values 
obtained in 100 runs presented in Table 2 it can 
be concluded that our proposed method exhibited 
relatively good performance in all cases. The 
worst solution was found by 1500 fitness 
function evaluations and it was 8.7150 but when 
the number of fitness function evaluation had 
been increased to 3000, the worst solution was 
significantly improved and it was 3.9941. All other 
algorithms, except MFA for 1500 and BAM for 
7500 evaluations, had larger difference between 
the best and the worst solution which proves the 
robustness of our proposed BSO method.

Standard deviation which would reveal the true 
robustness of the algorithms was not reported in 
[24] and [23]. Without that data we can just make 
a rough conclusion based on the best, the worst 
and mean results. Since our proposed algorithm 
had the smaller difference between the best and 
the worst solutions, it can be concluded that 
compared to the other mentioned nature inspired 
algorithms, our proposed BSO algorithm was the 
most stable one. 

The second set of experiments included testing 
the algorithm with different problem dimensions. 

Maximal number of fitness function evaluations 
was set to 6000 in order to make it comparable 
with other mentioned algorithms. Algorithms were 
tested for the dimensions 5, 10, 15, 20, 25, 30, 
35 and 40. The results obtained are presented in 
Table 3. 

Our proposed method found best solutions for the 
dimensions smaller than 35, i.e. dimensions 5, 10, 
15, 20, 25 and 30. When the problem dimensions 
was set to 35 and 40, the MFA achieved the 
best solutions. However, our proposed BSO 
algorithm outperformed even the MFS when the 
maximal number of fitness function evaluations 
was increased to 10,000. In that case, the 
proposed BSO algorithm found the best solutions 
0.4418 and 0.4502, for dimensions 35 and 40, 
respectively (the mean solutions were 1.1495 
for dimension 35 and 1.4210 for dimension 40). 
This is the consequence of the nature of the BSO 
algorithm which has the ability to work very 
well with multi-objective and large optimization 
problems, but it needs certain number of iterations 
which does not necessarily means to increase in 
computational time. 

On average, in 100 runs our proposed method 
was better for all the problem dimensions except 
in the case of the problem dimension 40 where 
the bat algorithm with modification had better 
performance. When for that problem dimension 
the number of fitness function evaluations was 
increased to 7000, the proposed BSO algorithm 
found better solution of 1.6892 which again 
showed its ability to improve when other 
algorithms stagnate.

Table 2. The best, mean and the worst normalized fitness function values obtained in 100 runs for different 
maximal number of generations

Ev. No. GA SGA DE ES PSO ACO FA MFA BA BAM BSO

1500 Best
Meant
Worst

1.2604
4.2541

10.2501

1.7370
4.5491

13.0102

2.4179
12.3797
25.3999

9.6276
20.5653
4109676

2.7827
10.076

28.6115

10.7202
16.3819
18.7099

1.4713
6.2034

28.0425

0.7030
1.9576
4.6726

4.0662
16.6782
39.0832

0.6208
1.4842

11.7494

0.6064
2.7838
8.7150

3000 Best
Meant
Worst

1.5073
3.5523
8.2047

1.3218
3.4353

11.0529

0.8503
6.0887

18.6288

10.6318
20.6706
38.5875

2.3469
9.1725

25.7065

10.8912
16.2884
18.4316

0.6577
4.3526

29.3022

0.5382
1.3048
4.5749

4.7582
14.9048
29.9962

0.4900
0.9337
9.7666

0.5314
1.2222
3.9941

4500 Best
Meant
Worst

1.0991
3.4269

10.5257

1.1559
3.1636

13.3517

0.5319
3.7267

13.8150

11.1469
20.1996
46.0828

2.3738
9.5459

29.6341

9.9096
16.1408
17.4223

0.5459
4.1809

27.8480

0.4857
0.9933
4.9631

4.1112
14.4874
31.1293

0.4724
0.9123
7.6952

0.4112
0.9062
2.9817

6000 Best
Meant
Worst

1.0792
3.0080
6.7466

0.7595
2.6434
7.5385

0.5047
2.6358

10.4226

11.2403
20.8610
31.3944

3.4276
8.9917

33.0709

12.3080
16.3976
17.214

0.4931
2.2791

26.5768

0.4661
0.8984
9.1502

3.1463
12.4323
24.9732

0.4590
0.8000
6.7334

0.4541
0.7533
2.1708

7500 Best
Meant
Worst

1.0640
2.9160
8.9162

1.0166
3.1409

13.5830

0.4792
1.9715
8.9560

12.3745
20.7600
34.8908

2.5221
7.8005

27.3858

7.1358
16.1958
16.9896

0.4753
2.2064

26.3005

0.4508
0.7025
3.6783

4.4072
11.4213
24.7175

0.4636
0.7422
3.3564

0.3744
0.7014
3.4103



http://www.sic.ici.ro

22 Edin Dolicanin, Irfan Fetahovic, Eva Tuba, Romana Capor-Hrosik, Milan Tuba

That result proves the quality of the proposed 
brain storm optimization algorithm for the 
UCAV path planning problem even for the larger 
dimensions. In these experiments, we fixed the 
number of objective function evaluations in order 
to fairly compare the results but it is well known 
that for larger problem dimensions more iterations 
are needed.

In most cases, our proposed algorithm had the 
smallest worst solution in 100 runs (see Table 
3). All algorithms except MFA, BAM and our 
BSO have very large worst solutions. For the 
dimensions 5, 10 and 15, the proposed BSO 
algorithm had significantly smaller worst solutions 
compared to BAM, while in other cases the 
difference was not so substantial. Compared to the 
MFA, the proposed BSO had significantly smaller 
worst solution just for the dimension 5, while for 
the dimension 35 and 40, the MFA obtained better 
worst solutions. In other cases, worst solutions 
were similar.

Additionally, we qualitatively compared our 
proposed BSO method with the method proposed 
in [8] where the artificial neural network (ANN) 
trained by imperialist competitive algorithm 
(ICA) was used for the UCAV path planning. That 
method was tested for two different environments 

and compared with the artificial bee colony 
algorithm (ABC). Simulation results showed that 
the proposed ICA-ANN algorithm was superior to 
the ABC algorithm. Optimal path was defined by 
the same fitness function as in this paper.

Two test environments were used in [8] with 7 
and 8 danger areas, but without exact coordinates 
reported so we approximated them from the 
picture. In both cases our proposed BSO algorithm 
found path as straight as possible while the ICA-
ANN algorithm had some unnecessary turns and 
arcs during the avoidance of the danger zones.

6. Conclusion

In this paper we adjusted the brain storm 
optimization algorithm for unmanned combat 
aerial vehicle path planning problem. The fuel 
consumption and safety of the UCAV were 
considered as criteria for the path optimality. 
The proposed method was experimented on 
test environments from literature with circular 
danger zones and different threat degrees and 
was compared to eleven other methods from 
literature. Based on the simulation results, it 
can be concluded that the proposed brain storm 
optimization algorithm exhibited very promising 

Table 3. The best, mean and the worst results obtained in 100 runs with different problem dimensions and 
6000 fitness function evaluations

D GA SGA DE ES PSO ACO FA MFA BA BAM BSO

5 Best
Mean
Worst

5.2471
10.5709
20.1888

9.9596
10.8836
22.6326

4.3568
8.0557
9.7959

12.3746
31.8202
62.1765

5.6082
10.0765
13.3267

10.1164
11.4856
12.6928

4.3585
8.7499
15.7395

4.3573
9.1673
12.4186

10.6909
56.4830
295.2557

4.3575
9.0542
10.2403

0.3843
0.3856
0.3873

10 Best
Mean
Worst

1.5716
2.3722
6.3799

1.5498
2.2813
5.7899

1.3952
3.1206
12.4821

8.0656
27.2252
74.6665

2.1101
7.2212
23.2604

7.4746
12.5333
18.2565

1.3990
2.1801
6.7095

1.3966
1.5740
3.7858

2.3600
19.4251
58.7386

1.3953
2.7075
10.7242

0.3690
0.4304
0.4372

15 Best
Mean
Worst

0.8299
2.1136
8.1499

0.9700
1.8973
9.9385

0.6204
2.3737
12.5250

7.7408
22.0792
50.3214

3.2257
7.7362
28.0228

9.8297
10.2484
10.9917

0.6172
2.8217
44.2763

0.6115
0.8967
3.8319

3.0757
13.6018
35.7454

0.6094
1.2318
10.1928

0.3774
0.4305
0.6771

20 Best
Mean
Worst

0.8600
2.9612
9.4820

0.8426
2.8621
11.6024

0.4913
3.0044
18.8897

9.6276
20.4717
38.7234

2.3738
9.9091
34.7133

10.0836
16.3303
17.0266

0.4626
3.7327
28.9142

0.4552
0.7004
2.0279

2.3950
13.6305
33.7068

0.4679
0.7609
3.7420

0.4541
0.7003
2.0108

25 Best
Mean
Worst

1.5243
3.7244
12.7971

1.3743
3.7238
16.0736

0.6265
4.6029
17.1415

12.3169
22.7244
33.4598

2.3740
10.3315
31.6741

11.5490
11.5842
12.2373

0.4908
3.9039
16.4518

0.4571
0.9987
3.7043

5.0173
14.9017
24.9265

0.4484
0.7093
3.5192

0.3929
0.6851
4.0914

30 Best
Mean
Worst

1.7026
5.3097
22.1291

1.5147
4.3798
14.0512

1.1301
11.4103
29.6529

18.0090
25.4016
37.4566

3.6751
12.7964
35.6656

13.8615
13.9422
14.4647

0.6828
4.9621
15.9757

0.5160
1.3568
8.3364

7.2470
16.6162
30.0844

0.4671
1.1067
10.2851

0.4411
1.0530
8.0677

35 Best
Mean
Worst

2.1602
6.0765
24.4790

1.5319
5.4943
15.6693

1.2849
19.1074
39.4435

16.8613
27.2172
46.6475

5.4765
13.8799
38.0578

16.9476
18.3452
18.7271

1.0829
5.9955
33.8871

0.4709
1.6009
5.8830

7.4484
17.7033
32.7374

0.4795
1.4617
8.8193

0.5979
1.4535
8.2009

40 Best
Mean
Worst

2.4178
7.6989
19.2098

1.9406
7.4237
22.5022

3.9617
28.7062
45.4130

19.8244
30.0177
44.3624

5.5384
15.1555
35.5090

17.6142
24.7642
27.0641

1.5225
7.8558
36.6626

0.4506
2.1978
7.7236

8.6500
19.9737
33.2634

0.6028
1.8769
8.4273

0.6003
2.0039
8.2159
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features. It had better performance for smaller 
problem dimensions, while for larger problem 
dimensions more iterations were needed. 
However, the results were further improved 
compared to other algorithms. A future work can 
include hybridization or modification of the brain 
storm optimization algorithm in order to improve 
the convergence speed and to adjust it for larger 
dimensional problems. The third dimension, i.e. 
UCAV altitude, can also be included. The BSO 
exhibited robust and superior performance in 

the tested cases. Yet, its potential is even greater 
considering its unique features of clustering 
results that can be exploited for more complex 
multi-objective formulations of the UCAV path 
planning problem.
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