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1. Introduction

(Bio)-chemical industrial processes are procedures 
involving chemical and biochemical reactions in 
the manufacturing of items, which are useful for 
everyday use or serve as input for other industrial 
processes, usually carried out on a huge scale. 
The chemical process industries broadly include 
organic and inorganic chemical industries, the 
petroleum industry, and the petrochemical industry 
(Turton et al., 2008). Biotechnological industries 
comprise the food and biopharmaceutical 
industries (Kondakci & Zhou, 2017; Hong et al., 
2018). Moreover, biotechnological industries offer 
solutions to a broad spectrum of current challenges, 
including remediation of environmental pollution, 
sustainable food and energy production, and 
the supply of bulk chemicals (Gavrilescu &  
Chisti, 2005).

Batch and fed-batch processes are widely 
employed in order to produce fine chemicals, 
pharmaceutical products, polymers, and many 
other materials (Hong et al., 2018). Advantages 
of the batch and fed-batch operation include 
simplicity of equipment, the ability to clean 
completely between batches, and years of 
operational experience. Nevertheless, because 
of their higher long-term production and better 
quality control, continuous processes are 
preferable (Calabrese & Pissavini, 2011; Moulijn, 
Makkee, & Van Diepen, 2013). 

The most common operation of continuous 
processes for achieving the desired product quality 
is steady-state. However, continuous processes 
are very challenging to operate. Indeed, process 
variables are usually unknown, slow attainment of 
the steady-state, potential instability of operation, 
and the complexity of the underlying (bio)-
chemical reactions (Bequette, 2003; van Impe, 
Vanrolleghem & Iserentant, 2013). Moreover, 
even in normal operational conditions, several 
disturbances may occur which may degrade 
process performance. Hence, advanced control 
design is of utmost relevance for keeping the 
system performance as close as possible to the 
desired one.

Most (bio)-chemical processes display nonlinear 
behavior due to complex interactions between 
transport and reaction phenomena (Bequette, 
2003; van Impe, Vanrolleghem & Iserentant, 
2013). For control design purposes around a 
steady-state point, a linear model, obtained either 
by linearization or identification, is frequently 
used. Linear-based methods have been addressed 
using PID-type controllers, model predictive 
controllers (MPC), and H∞ control. 

For a highly nonlinear behavior, as in the case 
of (bio)-chemical processes, a linear controller is 
inadequate for assuring stability and the closed-
loop performance. Indeed, neglecting system 
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nonlinearities may lead to instability because 
of disturbances or setpoint variations (Bequette, 
2003; Hangos et al., 2006).

Most advanced control algorithms rely on a 
process model to compute the control actions. 
Nonlinear model-based controllers applied in 
(bio)-chemical processes include Lyapunov-based 
methods, nonlinear H∞ control, sliding mode 
control approaches (SMC) (Bouyahia et al., 2020), 
nonlinear MPC (Lee & Lee, 2014), extremum 
seeking control (Dewasme & Vande Wouwer, 
2020), and optimal approaches (Hangos et al., 2006; 
Iqbal et al., 2017). However, these approaches 
often rely on complicated design procedures and 
computationally demanding algorithms which are 
preventing their practical application (Saltık et al., 
2018; Sariyildiz et al., 2019). 

Model-based control of (bio)-chemical processes 
is also a challenging problem due to uncertainty 
related to the mathematical models of such 
systems. Although it is often possible to derive a 
phenomenological nonlinear model of the process, 
it can be imprecise due to uncertainties and lack of 
perfect knowledge (Mišković &  Hatzimanikatis, 
2011; Sharifian et al., 2019). Moreover, detailed 
nonlinear models are impractical for control design 
purposes due to their high order, nonlinearities, 
computational demand, and model uncertainties. 
Thus, low-order models have been commonly 
used (Bequette, 2003; Smith & Corripio, 2005).

Thus, despite industrial (bio)-chemical processes 
being nonlinear, many advanced control designs 
are based on linear models. Several authors have 
used linear step-response models. Internal model 
control (IMC) approaches use a first-order plus 
time delay model to design an optimal IMC 
(Grimholt & Skogestad, 2018). SMC design 
for chemical processes uses a first-order plus 
time delay transfer function (Camacho & Smith, 
2000). Linear models in different regions have 
also been considered for an H∞ controller design  
(Galán et al., 2000). MPC uses linear 
identification of an input-output model and 
linearized approximations of the nonlinear 
model (Lee, 2011; Juneja & Murthy, 2018).  
Recent contributions addressing models with 
uncertainties are as follows.  In (Letchindjio et 
al., 2019), block-oriented systems are introduced 
to approximate a class of non-linear systems and 
design an adaptable extremum seeking approach.  
Bhadra et al. (2019) present a non-inferential 

type of nonlinear controller enhanced with an 
estimation scheme to compensate for the external 
disturbances and measurement noises. A linearized 
robust NMPC approach based on predicted 
outputs through a linear approximation of the non-
linear model was proposed by Benattia, Tebbani 
& Dumur (2020) to reduce the computational time 
of min-max robust NMPC approaches.    

Departing from modeling error compensation ideas 
(Alvarez-Ramirez, 1999), this paper introduces a 
simple, systematic, and novel robust model-based 
control framework for a class of (bio)-chemical 
processes. Based on an extended input-output model 
with uncertainty estimation, simple, robust feedback 
controllers are derived. The resulting control 
framework allows a systematic consideration of 
uncertainty providing high robustness capabilities 
against bounded and additive uncertainties in the 
input-output model approximation. Moreover, 
simple tuning rules are proposed. A benchmark 
case study of microalgae production, which has 
been used by the control engineering community 
in several control studies (Bernard, 2011; Telen 
et al., 2017), is used for illustrating the versatility, 
simple design, as well as the tuning of the proposed 
control framework. Furthermore, to compare the 
performance of the proposed controllers, two of 
the most widely accepted control designs are also 
applied: a classical PI controller tuned with IMC 
rules and a nonlinear MPC. Numerical simulations 
show an acceptable closed-loop performance of the 
proposed controller with high robustness capabilities 
despite the simplicity of the controller designs.

This paper is organized as follows. Section 2 
presents the extended input-output model with 
uncertainty estimation. In Section 3, three robust 
model-based controllers are derived from the 
extended model. In Section 4, a case study is 
described, and numerical studies illustrate the 
performance of the proposed robust feedback 
control framework. In Section 5, concluding 
remarks are provided.

2. Simple Input-Output Model 
Enhanced with Model  
Error estimation

For model-based control design, simple models 
describing the dominant input-output dynamics 
are highly desirable. Due to its simplicity and the 
capability of representing the dominant process 
dynamics, a first-order input-output model 
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has been commonly used for controller design 
purposes (Bequette, 2003; Smith and Corripio, 
2005). The first-order input-output model can be 
obtained using different identification methods. 
However, since uncertainties are not considered 
in the input-output identification process, the 
inaccurate model obtained can lead to a poorly 
designed controller, resulting in unsatisfactory 
control performance. 

Consider a first-order input-output model for the 
nominal linear dynamics given by,

0

( )( )
( ) 1

p
p

kY sG s
U s sτ

= =
+                                     

(1)

Where kp is the steady-state process gain, and τ0 
is the process time constant. For control design 
purposes, the basic first-order model has proved 
to be the simplest one, but significant uncertainties 
are neglected in its formulation. Thus, the 
following assumption is introduced: 

A1. The input-output model representation 
given by equation (1) is affected by unmodelled 
nonlinearities ξ(y), with bounded variation, i.e., 

1 2( )y yξ ι ι≤ + , where 1ι and 2ι are positive 
constants. Moreover, external disturbances 
π(t) can be either constant or persistent with 
bounded variation. 

Then, under A1, equation (1) in the time-domain 
can be represented as:

1 1
0 0

( ) ( ) ( ) ( )p
dy t y t k u t t

dt
τ τ η− −= − + +

                
(2)

where ( ) ( ( )) ( )t y t tη ξ π= + , represents  
model uncertainties. 

Thus, the uncertainty η(t) is seen as an unknown 
state. Based on the model structure given by 
equation (2), the uncertain state can be reconstructed 
from the input u(t) and output y(t) signals. 

Hence, to account for such uncertainties for control 
design purposes, the model given by equation (2), 
enhanced with a model uncertainty estimation is 
considered. To this end, the following reduced-
order observer is considered,

1( ) ( ( ) ( ))e
d t t t

dt
η τ η η−= −




                                  
(3)

where τe is an estimator parameter, and ( )tη is the 
estimation of the real modeling error η(t). The 
estimator in equation (3) provides an estimation of 

real uncertain terms using only the available output 
and input. After simple algebraic manipulations, 
the estimator can be written as follows:

1 1
0 0

( ) ( ) ( ) ( )p
dw t y t k u t t

dt
τ τ η− −= − − 

                  
(4)

with,
1( ) ( ( ) ( ))et w t y tη τ −= +                                      (5)

The reduced observer in equation (4) can be 
considered as a signal estimator, where the 
modeling error signal is an extended state of the 
nominal model (Alvarez-Ramirez, 1999). Hence, 
the modeling error estimation endows the control 
system with robustness capabilities against 
model-matched uncertainties. The estimator 
parameter τe, which determines the convergence 
rate of the modeling error estimation, can be 
selected as τe < 0.5τ0.

The practical enhanced input-output model with 
uncertainty estimation is written then as follows,

1 1
0 0

( ) ( ) ( ) ( )p
dy t y t k u t t

dt
τ τ η− −= − + + 

                
(6)

which in conjunction with the estimator given 
by equations (4) and (5), leads to a practical 
and straightforward way of considering  
model uncertainties. 

The following comments are appropriate:

	- A1 is a realistic assumption. Indeed, according 
to Mišković & Hatzimanikatis (2011) and 
Sharifian et al. (2019), uncertainties arise: 
(i) when the dynamics of actuators is not 
considered in the control design stage, (ii) in 
case of neglected high-order dynamics due 
to the approximation of input-output transfer 
function models, and (iii) in case of neglected 
small time-delays;

	- Two main streams of robust process control 
for characterizing the model uncertainties 
are: (i) to quantify the uncertainty in terms 
of the bound of its gain (represented by using 
system norms) (Morari & Zafiriou, 1989); (ii) 
to accommodate uncertainty in the process 
model parameters using a set of uncertainty 
realizations based on deterministic or 
stochastic approaches (Lee & Lee, 2014). 
In this paper, the robustness properties 
are against lumped uncertain parameters 
in the approximated input-output model 
and neglected nonlinearities with bounded 
variations and of additive nature, which is 
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the case of most nonlinear functionalities 
modeling (bio)-chemical processes (Bequette, 
2003; Hangos et al., 2006); 

	- For model-based robust control designs, the 
proposed uncertainty framework captures 
external perturbations and uncertainties in a 
simple way, and it is mathematically tractable.

3. Robust Control Designs Based on 
Enhanced Input-Output Models

In this section, three control designs departing 
from the extended input-output model with 
uncertainty estimation are derived. First, a general 
control problem is stated, and some assumptions 
for control design purposes are introduced.

3.1 Control Problem

Without loss of generality, the control objective 
is the regulation or tracking of a desired output 
variable y(t) to the desired reference yref(t), of the 
class of (bio)-chemical processes modeled by 
equation (6) manipulating the control variable 
u(t), despite model uncertainties and external 
disturbances estimated with the estimator given 
by equations (4) and (5). 

The following additional assumptions are made:

A2. The control input u(t) is subjected to 
saturation, i.e., umin ≤ u(t) ≤ umax.

A3. The output variable y(t) is measured 
continuously without measurement delay.

A4. The desired reference yref(t) and its time 
derivative are available and bounded.

The following two observations can be made: 

	- For practical implementation purposes, the 
control input u(t), which in several (bio)-
chemical processes is restricted to different 
flow rates, is physically limited; 

	- Assumption A3 is realistic. Indeed, main 
on-line and instantaneously measurable 
variables in (bio)-chemical processes include 
temperature, pH, conductivity, flow rates, 
and chemical compositions. Moreover, even 
in the absence of an on-line measurement of 
the desired controlled variable y(t), a state 
estimator design can be considered (Hangos 
et al., 2006).  

3.2 Simple Robust Model-based Control

Consider a desired first-order asymptotically 
closed-loop behavior. The following inverse 
feedback function for the control input is proposed  
(Alvarez-Ramirez, 1999),

0

0

1 1 ( )( ) ( ) ( )
p c

de tu t e t t
k dt
τ

η
τ τ

   = − + −  
   



         
(7)

where τc > 0 is a controller parameter. Under 
the proposed controller, a first-order dynamics 
of the regulation error is obtained, such that 
asymptotic convergence e(t) → 0, and so  
y(t) → yref(t) is guaranteed. 

Tuning of parameter τc can be made to attain a 
satisfactory closed-loop response following the 
simple rule (Alvarez-Ramirez, 1999): τe < τc < τ0.

3.3 Extended Sliding Mode Control

Sliding mode control is a powerful, robust 
control method suitable for dealing with model 
nonlinearity and parameter uncertainties. The 
control design is derived in two-steps (Slotine & 
Li, 1991): 

1.	 Sliding phase: Design a sliding surface s(t), 
such that s(t) = 0 and ds(t)/dt = 0, along which the 
controlled variable slides to its desired value. A 
continuous control action is obtained; 

2.	 Reaching phase: Design a discontinuous 
control action that forces the controlled state to 
the sliding surface when s(t) ≠ 0.  

Several modifications have been introduced 
and applied in (bio)-chemical processes to 
improve the robustness capabilities against 
structured uncertainties and reduce chattering 
effects (Kanthalakshmi & Annal, 2018; Utkin  
et al., 2020). 

Departing from the ideas introduced by Slotine 
and Li (1991), the sliding surface is proposed as,

0
( ) ( ) ( )

t
s t e t e dλ τ τ= + ∫                                     

(8)

Based on a first-order input-output model, Abu-
Rmileh et al. (2010) introduce a simple controller, 
which is extended with the proposed control 
framework as follows, 

0

0

1( ) ( ) ( ) ( ) ( ( ))D
p

u t e t y t t k sign s t
k
τ

λ η
τ

 
= − + − + 

 


 
(9)
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where kD and λ are controller parameters, which, 
based on the input-output model, are proposed as 
kD = 0.1/kp and λ = 0.5/τ0  (Abu-Rmileh et al., 2010). 

3.4 Extended Generic Model Control

The standard Generic Model Control (GMC) 
consists in matching PI control actions with a 
nonlinear process model (Lee & Sullivan, 1988). 
Using concepts from differential geometry and 
a Luenberger-type nonlinear state estimator, an 
extended GMC controller was introduced by 
Jana (2013). 

Consider the extended dynamic simple model 
given by equation (6) with the reference system 
given by,

1 2 0

( )
( ) ( )

trefdy t
K e t K e d

dt
τ τ= + ∫                      

(10)

The extended GMC is formulated as the standard 
GMC, i.e., the dynamics of the process output 
given by equation (6), follows the desired 
reference system given by equation (10). Thus,

1 2 0
0 0

1 ( ) ( ) ( ) ( ) ( )
tpk

y t u t t K e t K e dη τ τ
τ τ

− + + = + ∫

 
(11)

and solving u(t) yields,

0
1 2 0

0

1( ) ( ) ( ) ( ) ( )
t

p

u t y t t K e t K e d
k
τ

η τ τ
τ
 

= − + + 
 

∫

 
(12)

Two approaches for calculating controller 
parameters K1 and K2 are as follows (Lee & 
Sullivan, 1988). 

The first approach is by using the following formulas,
1 2

1 22 ,c cK Kτ ξ τ− −= =                                  (13)

where the parameters ξ and τc can be set in two 
steps: (i) determine to give the desired shape of 
the closed-loop response, and (ii) choose τc to 
modulate the timing of the closed-loop response 
concerning the open-loop rate of response τ0.

The second approach is to examine the 
characteristic equation of the closed-loop system, 
given by,

2
1 2s K s K+ +                                                  (14)

and set the location of the two closed-loop poles 
to solve equation (14) for K1 and K2.

3.5 Extension to a Second-orden Input-
Output Model

In the preceding sections, the simple robust control 
framework was formulated for a first-order input-
output model. Consider a second-order system 
given as, 

2 2
0 0

( )( )
( ) 2 1

p
p

kY sG s
U s s sτ ετ

= =
+ +                   

(15)

where ɛ is a damping coefficient. Second-order 
input-output models can describe several (bio)-
chemical processes, including first-order time-
delayed input-output models with a first-order 
Taylor series approximation to the time-delay term 
(Camacho & Smith, 2000; Bequette, 2003).

In the time-domain, the second-order uncertain 
model can be written as,

( ) ( )dy t z t
dt

=
                                                    

(16)

2 2
0 0 0

( ) 2 1( ) ( ) ( ) ( )pkdz t z t y t u t t
dt

ε η
τ τ τ

= − − + +
  
(17)

In this case, the simultaneous estimation of 
z(t) and the lumped uncertainties η(t), from the 
available output y(t) are given as,

1
2 2

0 0 0

( ) 2 1 2( ) ( ) ( ) ( ) ( )p

e

kdw t z t y t u t t z t
dt

ε η
τ τ τ τ

= − − + + −
 

 
(18)

2
2

( ) 1 ( )
e

dw t z t
dt τ

= − 

                                         
(19)

with, 
2

2( ) ( ) ( )et w t y tη τ −= +

1
1( ) ( ) 2 ( )ez t w t y tτ −= +

Hence, previous control designs can be 
formulated using a second-order model with 
uncertainty estimation.

3.6 Robustness and Stability Issues

Although formal robustness and stability analysis 
are beyond the scope of this paper, the closed-
loop system can be analyzed using stability results 
from singular perturbation systems (Khalil, 1992), 
where the dynamics of the estimation error, 

( ) ( ) ( )ee t t tη η= −  , is the fast dynamics. Moreover, 
its reduced model is the closed-loop system 
resulting from the base version of the extended 
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control designs formulated in this paper. Finally, 
robustness properties of the closed-loop system 
are provided by the estimation and cancelation of 
uncertain terms in each control design.

3.7 Nonlinear MPC

For comparison purposes, the standard NMPC 
is considered. NMPC is a powerful control 
method for controlling nonlinear, constrained, 
and uncertain chemical and biological processes 
(Lee, 2011; Piceno-Díaz et al., 2020).

The objective of an NMPC formulation is to find 
the best control sequence (until a given control 
horizon, M) such that a given cost function is 
minimized. The corresponding optimization 
problem relies on predicting future behavior in a 
given prediction horizon (N). 

The standard NMPC can be formulated as follows 
(Lee & Lee, 2014):

2 2

1 2
0 0

min
k

N M

k j ref k ju j j
J y y uγ γ+ +

= =

= − + ∆∑ ∑
   

(20)

subject to,

1

min max

min max

( , , )

( , , ) 0
k k k

k k

k

k

x f x u

h x u
x x x
u u u

θ

θ
+ =

≤
≤ ≤
≤ ≤





                                          

(21)

where yk+j is the predicted value of the controlled 
variable using the non-linear process model, yref 
is the desired reference, uk denotes the sequence 
of control inputs and Δuk+j is the control move at 
instant k+j, i.e., uk+j - uk+j-1. γ1 and γ2 are weighting 
factors used to set the ratio of importance between 
costs due to deviation from desired states and 
costs due to control moves. Nominal parameter 
values are denoted as θ .It can also be mentioned 
that function f in (21) represents the discretized 
nonlinear dynamical model of the system and h is 
the set of process system constraints. Moreover, k 
is the sampling instant, which relates to processing 
time t via t = kTs, where Ts is the sampling time. 
Controller parameters are the prediction horizon 
N, the control horizon M, the sampling time Ts, and 
the weighting factors γ1 and γ2. 

The standard NMPC algorithm has acceptable 
robustness capabilities. Indeed, the correction 
of the model´s future prediction and the actual 
system´s response in each iterative step of the 

NMPC algorithm alleviates slight model mismatch 
providing some degree of robustness. 

The simultaneous full-discretization approach 
is pursued to implement the NMPC algorithm, 
leading to a nonlinear programming (NLP) 
problem at each time interval (Biegler, 2007). To 
this end, both the state and control profiles are 
discretized by means of orthogonal collocation on 
finite elements using Legendre polynomials with 
three internal collocation points (Finlayson, 1980). 
The resulting NLP optimization problem was 
programmed in Matlab using the fmincon function 
with the interior point optimization method.

4. Numerical Example

In this section, the derived robust model-based 
control schemes in the above section are evaluated 
using a benchmark case study of microalgae 
production. First, the case study is described. 
Then, the optimal steady-state condition is 
computed. Finally, the robust model-based control 
schemes are applied and evaluated under external 
disturbances and set-point changes. Furthermore, 
a comparison with a classical PI controller and an 
NMPC controller is presented.  

4.1 Microalage Growth

The recently renewed interest in microalgae 
production stems from its capacity to accumulate 
large amounts of carbohydrates and neutral lipids, 
which can be used as a feedstock for biorefineries 
(Li et al., 2008).  

Consider a biological chemostat of volume V, 
made of a transparent material. The source of light 
for the microalgae growth is provided via external 
lamps surrounding the chemostat. The input 
stream with a volumetric flow rate (F) contains 
the input organic substrate (Sin). The output stream 
comprises the non-consumed substrate (S) and the 
produced microalgae biomass (X). 

A simple non-structured, non-segregated 
model of three main species is considered for 
the continuous microalgae production in the 
chemostat (Bernard, 2011). 

Model assumptions are (Droop, 1983; Darvehei, 
Bahri & Moheimani, 2018): (i) Homogeneous 
conditions. (ii) Constant volume, external light 
intensity, and temperature. (iii) The organic load 
is lumped in a single kind of substrate, S. (iv)  
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The microalgae biomass is lumped in a single 
state, X. (v) the kinetics of the microalgae growth 
is described with the Droop model, which 
considers an internal substrate (nutrients) pool 
within the cells, denoted as the internal quota QN. 

The mathematical model is given by:

( )

( )

( ) ( ) ( ) 1 ( )
( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )
( )

Q

N

N
m N Q

s

in m
s

KdX t D t X t X t
dt Q t

dQ t S t Q t K
dt k S t

dS t S tD t S S t X t
dt k S t

µ

ρ µ

ρ

 
= − + − 

 

= − −
+

= − −
+

(22)

where S(t) (µmol/L), X(t) (µm3/L), and QN(t) 
(µmol/ µm3) represent the concentrations of 
substrate, microalgae biomass, and the internal 
quota, respectively. The input substrate is  
Sin (µmol/L). The dilution rate is D(t)=F(t)/V (day-1).  
Droop kinetic parameters are the maximum kinetic 
growths ρm (µmol/µm3day) and µ  (day-1) for the 
substrate consumption and the internal quota, 
respectively. KQ (µmol/µm3) is the minimum growth 
constant for biomass growth. ks (µmol/L) is the 
saturation constant for the substrate consumption.

The nominal or base operation is simulated 
with the parameter values given by Sin = 100 
µmol/L, ks = 0.105 µmol/L, KQ = 1.8 µmol/µm3, 
μ =2 1/day,  ρm = 9.3 µmol/µm3day, and D =1.3 
day-1. A single steady-state which is given by  
[S, QN, X]*=[0.268 µmol/L, 5.142 μmol/μm³, 
19.392 µm3/L] is obtained with the above 
parameter values. Moreover, standard linear 
stability analysis of the equilibrium point was 
performed to corroborate the stable behavior.

Figure 1 shows a step-change in the dilution rate 
to derive the input-output first-order model. Note 
that a smooth response is obtained. Based on the 
input-output response the first-order parameters  
kp = -31.7 and τ0 = 2 are obtained.
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Figure 1. Step identification of the Droop model

4.2 Control Problem

The control problem is set as the regulation 
of the microalgae biomass concentration  
y(t) = X(t), at the optimal productivity condition, 
using as the manipulated variable the dilution 
rate, u(t)=D(t). 

Linear and nonlinear MPC approaches were 
applied to similar control problems for optimal 
microalgae growth using the Droop model 
(Benattia, Tebbani & Dumur, 2020) and a simple 
three-state experimentally validated model (Juneja 
& Murthy, 2018).    

The optimal conditions are obtained by solving the 
following nonlinear optimization problem:
min J DX= −                                                  (23)

subject to,

( )

( )

0 1

0

0

Q

N

m N Q
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s

K
DX X

Q
S Q K

k S
SD S S X

k S
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ρ µ

ρ

 
= − + − 

 

= − −
+

= − −
+                         

(24)

inS S≤                                                             (25)

min maxD D D≤ ≤                                              (26)

Constraints of the optimization problem 
correspond to the steady-state model equations 
(24), the upper limit of the input substrate given 
by equation (25), and minimum and maximum 
constraints on the decision variable given by 
equation (26), with Dmin = 0.1 day-1, and Dmax = 
5 day-1.

The resulting optimization problem is nonlinear 
and constrained. In this case, the interior-point 
algorithm available in Matlab for solving the NLP 
optimization problem was applied. The resulting 
optimal steady-state is given by [S, QN, X, D]
op=[3.59 µmol/L, 0.066 μmol/μm³, 27.8 µm3/L, 1 
1/day], which correspond to a 10 % increase in the 
nominal biomass microalgae productivity. 

The control action is activated at t = 100 days. 
An external perturbation on the input substrate is 
applied at t = 200 days. Finally, a set-point change 
is applied at t = 300 days.  
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4.3 Simple Robuts Control Design

Figure 2 shows the closed-loop behavior using 
the simple robust model-based control design and 
three sets of controller parameters chosen according 
to the tuning guidelines described in the section 
above. The comparison with a PI controller with 
IMC-PI tuning parameters is also illustrated.

Figure 2 shows that the proposed robust model-
based controller can regulate the output despite 
the presence of the input substrate disturbance. 
It can also be seen that the change of set point is 
achieved with an acceptable control effort. The 
best closed-loop performance is obtained for the 
first set of controller parameters, τe = 1.0, τc = 1.5.
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Figure 2. Closed-loop performance of the simple 
robust model-based controller for the Droop model

Lower values of the controller parameters lead 
to a more aggressive control action. On the oth-
er hand, higher values for controller parameters 
lead to a smoother but also slower closed-loop 
response. However, as it is shown in Figure 2, the 
proposed simple robust model-based controllers 
display a superior performance to that of the PI 
for the control input saturation at its lower value 
when the controller is activated at 100 days. 

4.4 Extended Sliding Mode Control

The closed-loop performance of the extended 
SMC approach is shown in Figure 3. 
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Figure 3. Closed-loop performance of the extended 

SMC for the Droop model

It can be noticed that the proposed extended 
SMC is able to regulate the microalgae biomass 

concentration with acceptable closed-loop 
behavior. Moreover, the original SMC approach 
is unable to achieve the desired reference. It is to 
be noted that for the original SMC approach, the 
tuning parameters were performed using a trial-
and-error procedure instead of the tuning rules 
described in the above section. However, for the 
extended SMC approach that rules were applied 
leading to the illustrated closed-loop behavior. 

4.5 Extended Generic Model Control

The extended GMC was implemented using three 
sets of parameter values of K1 and K2 with the 
pole placement approach. 

Figure 4 illustrates the numerical simulations of 
the closed-loop behavior of the extended GMC. 
It is to be noted that the closed-loop performance 
is similar to that of PI controller.
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Figure 4. Closed-loop performance of the extended 
GMC for the Droop model

The poor performance of both controller 
approaches can be related to the effect of the 
integral action producing an initial aggressive 
control action that saturates the control input 
to its lower limit. However, after this transitory 
dynamics, and when the disturbances are applied 
along with the set-point change, the closed-loop 
performance displays an acceptable behavior.  

4.6 NMPC

Figure 5 shows the numerical results of the 
NMPC implementation and the comparison 
with the simple robust model-based controller 
and the extended SMC. NMPC parameters are  
[Δt, Ts, N, M, γ1, γ2] = [1, 0.5, 2, 1, 10, 1].   

It can be noticed that the NMPC approach displays 
the best closed-loop behavior with more pronounced 
peaks at the activation of the control action and 
the setpoint change. The NMPC approach is also 
able to reject the external perturbation on the input 
substrate. However, despite the simplicity of its 
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implementation the proposed robust model-based 
controller and the extended SMC show similar 
closed-loop performances. Moreover, it is to be 
noted that the NMPC formulation uses the nonlinear 
model for the control design and requires the full 
state measurement for implementation purposes in 
the current applied formulation.   
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Figure 5. Closed-loop performance of the NMPC for 
the Droop model

5. Conclusion

This paper presents a simple robust control 
framework for regulating a class of (bio)-chemical 

processes. The robust control framework is 
formulated in three steps: (i) step identification 
of a low first-order model, (ii) derivation of an 
enhanced first-order model, with the estimation 
of model uncertainties associated with the model 
reduction and external disturbances, and (iii) 
the design of robust control schemes based on 
the enhanced model. The resulting controllers 
have a simple structure with simple tuning 
rules based on the process time constant. The 
proposed robust control framework is applied to 
a benchmark case study of microalgae biomass 
production. The effectiveness of the proposed, 
approach is demonstrated with the derivation of 
three robust control designs with a good closed-
loop performance despite external perturbations. 
Moreover, the comparison with a NMPC design 
shows similar closed-loop performance without 
the requirements of a full state measurement and 
a bigger computational effort. 
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