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1. Introduction

The expectation that people can simply talk to 
computers and receive spoken answers in their 
native language is nowadays commonplace 
among Artificial Intelligence (AI) public who 
has been exposed to science fiction movies 
and social media advertisements to a large 
extent. This impression is greatly amplified by 
the “intelligent” assistants which can be found 
on any smartphone and to which one can pose 
questions and get replies in spoken natural 
language. What most people do not realize right 
away is that the more complex the question gets, 
the more often the “default” answer is offered, 
such as a standard web search for the smartphone 
assistant or a type of a “Please rephrase the 
question” answer for a task-oriented dialog 
system. Furthermore, a coherent dialog with 
multiple discussion threads, tackling Natural 
Language Processing (NLP) problems such as 
ellipsis or coreference resolution is out of the 
scope of most commercially available dialog 
systems. It happens because their goal is not to 
advance the knowledge in the Natural Language 
Understanding (NLU) field of AI, but to fulfil 
the immediate (i.e. frequent as determined by the 
company owning the dialog system) needs which 
include setting reminders, reserving flights, 
retrieve information on specific subjects such as 
movies or celebrities and so on.

That is to say that, currently, there is no general 
purpose computer dialog system able to sustain a 
dialog on any given subject as a human can (though 
there are computer programs called “chatbots”, 
striving to achieve this goal, none of them is yet 

able to fool someone into thinking that she/he 
is speaking to another human being). But there 
are specialized, state-of-the-art computer dialog 
systems able to communicate on a given topic 
very well, close to human performance (termed 
“task-oriented dialog systems”; see Chapter 26 
of Jurafsky & Martin, 2019). For example, there 
are tutoring systems that can substitute a teacher 
explaining a student how to solve a physics 
problem (Rus et al., 2013) or dialog systems 
that can assist a doctor with clinical assessments 
(Campillos-Llanos et al., 2020).

The task-oriented dialog system presented in this 
paper is called ROBIN Dialog Manager (RDM) 
and it was (and actively is) developed in the 
ROBIN Dialog project (Tufiș et al., 2019; Anon, 
2018). This project concerns itself with Romanian 
language technologies deployment on the Pepper 
robot (SoftBank Mobile Corp., 2014; SoftBank 
Robotics Europe – SAS (Limited Company), 
2020), enabling it to perform certain tasks using 
interaction into spoken Romanian. A task is 
modeled by defining its universe of discourse in 
a micro-world which is basically a collection of 
logic definitions coupled with programmed robot 
behavior necessary to perform the task at hand. 
For instance, to provide orientation instructions 
to new visitors in a building, Pepper should know 
the location of different rooms on its internal map 
(e.g. programmed robot behavior that enables the 
robot to navigate to a specific room) together with 
a logic associated with rooms (e.g. what happens 
in each room). Thus, equipped with this micro-
world specification, Pepper can answer questions 
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such as “Where is the Python programming course 
taking place?” with e.g. “Room 209. Let me take 
you there.”

In what follows, Section 2 surveys the existing 
literature on task-oriented dialog systems using 
natural language to First-Order Logic (FOL) 
translation (the reasons why this strategy was 
adopted for RDM will be explained below). 
Section 3 presents possible dialog scenarios 
that were taken into consideration for RDM 
development while Section 4 briefly introduces 
the Automatic Speech Recognition (ASR) and 
the Text-To-Speech (TTS) modules for Romanian 
that enable Pepper to interact with users in spoken 
Romanian. Finally, Section 5 details the micro-
world composition and the inner loop of RDM.  
It includes the question analysis and logic 
predicate extraction and argument unification, 
augmenting the presentation with specific 
examples. Additionally, Section 5 explains how it 
maps the user’s request to a robot behavior which 
can be either verbalizing the response or executing 
a task related to the robot planning (e.g. going 
from one location to another). Section 6 provides 
the conclusion of this work and offers suggestions 
for a future research.

2. Related Work

One very recent research direction concerning 
Question Answering (QA) systems, amenable to 
be adapted to task-oriented dialog systems is the 
use of the pre-trained BERT language models 
(Devlin et al., 2019). BERT is a general-purpose 
sentence to a real vector deep neural network 
encoder (Vaswani et al., 2017), running with 
hundreds of millions of parameters. It is first pre-
trained to predict words in context on very large 
corpora and then, among other tasks, fine-tuned 
to predict the correct answer to a question in a 
given input text, on a quite big set of question/
answer pairs. For example, for the question 
“Who was Albert Einstein?” and the text 
snippet “Albert Einstein was a German-born 
theoretical physicist who developed the theory 
of relativity.”, the QA fine-tuned BERT is able 
to tag “a German-born theoretical physicist” as 
the correct answer for the question. BERT can, in 
principle, be used to implement a task-oriented, 
one-turn (only one question followed by the final 
answer), dialog system, provided that 1) the set 
of possible question/answers pairs for the task 

exists (and is large) and 2) the details of the task 
remain fixed and cannot be updated during the 
execution of the task.

The BERT-like approaches were considered for 
the design of RDM, but the lack of the question/
answer pairs dataset and the (soft) requirement 
that the universe of discourse could be updated on 
the fly, while the robot executes the task, pointed 
to a more traditional, yet more flexible approach: 
question analysis and its automatic translation to 
a predicate-argument structure followed by fuzzy 
predicate matching with true predicates in the 
universe of discourse. Thus, RDM draws from 
two frameworks for task-oriented dialog systems: 
Prolog-style theorem proving and, mainly, from 
slot-filling dialog systems.

(Smith et al., 1995) is a prototypical example 
on how Prolog-style theorem proving can work 
in a task-oriented dialog system: guiding the 
user to perform a complex task by exchanging 
clarification questions aimed at establishing the 
true facts about the state of affairs. Question 
analysis is done using a rigid grammar, 
specifically designed to map natural language 
assertions to FOL predicates. A task is defined in 
Prolog as a conjunction of subgoals that must be 
satisfied so that the task is successfully fulfilled. 
The dialog controller remembers which goal is 
currently being proven and an “Interruptible 
Prolog Simulator” keeps track of partially 
proven goals. Thus, goal fulfillment can be 
done as the dialog unfolds, not necessarily in a 
sequential manner.

The framework that RDM works with is the slot-
filling framework for task-oriented dialog systems 
(Henderson, 2015). Henderson defines a slot as 
being an attribute of an entity that can be stored 
in a database. Slots can be informable (can be 
used to constrain the search in the database) and 
requestable (the user wants to know the value of 
such a slot). Slots can take values in finite sets 
and the dialog state at a given turn consists of 
1) goal constraint – the set of assigned values of 
the informable slots, 2) requested slots – the list 
of slots which user wants to be informed about 
and 3) dialog search method – the way the user is 
interacting with the dialog system: by constraints 
(the user is trying to narrow down the search), 
by alternatives (the user is requesting alternative 
information if what she/he wants is not available) 
or finished (end of conversation).



	 413

ICI Bucharest © Copyright 2012-2020. All rights reserved

A Dialog Manager for Micro-Worlds

3. Dialog Scenarios

Characteristics

Programming a robot like Pepper to perform a 
task implies a first step of choosing the “scenery” 
for the task, defining the task and “teaching” the 
robot the necessary communication skills, when 
verbal interaction with people is required for the 
task to be performed. This mimics a screenplay: 
the actions are identified, the participants to the 
actions are specified, the circumstances of each 
activity are defined: place, time, relations between 
actions, etc. All actions of the robot are the result 
of a correct understanding of the human-robot 
communication. This screenplay is called a micro-
world: that is, the task formal definition (in the 
foreseen circumstances) together with the actions 
the robot can take, which are discrete and already 
inventoried in the planning component of the robot.

In the present use case, it is assumed that only one 
person can speak with Pepper at a time and Pepper 
will complete the task for the current interlocutor 
before greeting and helping another user. The 
identity of the interlocutor is irrelevant but the 
ASR system has to have the lowest word error 
rate (WER) possible, irrespective of the speaker, 
and has to be able to work in noisy conditions 
(although Pepper is equipped with directional 
microphones that, if spoken to properly, will 
eliminate most of the background noise).

Example screenplay 1: orientation 
assistant in a university building

One of the screenplays casts Pepper as host 
in one of the university buildings. The micro-
world contains information about the rooms in 
the building, their location within it, and it is 
expected to navigate from its current location in 
the building to a certain room. It also contains 
the timetable: titles of the courses taking place 
in each room, teachers of the courses, their 
dates, day and time, their structure (lectures, 
seminars, laboratories, exams, etc.) thus enabling 
it to answer questions about all of these. Besides 
courses, the administrative offices are also relevant 
for students. That is why, information about them 
(location, working hours, staff, etc.), as well as 
(about) the documents (and their electronic format 
or location) involved in the students’ interaction 
with these offices must also be accessible to the 
robot so as to answer questions and even make 

documents of interest available to interested 
parties. An example of a dialog in this micro-world 
could be the following, though in Romanian:

User: Hi, Pepper!

Pepper: Hello! How can I be of assistance?

User: Where is the Python programming course 
taking place?

Pepper (supposing that there are two such courses 
taking place at the same time, in different rooms): 
Who is your teacher?

User: Cristina Iacob.

Pepper (knowing where Cristina Iacob teaches 
her course): Room 209. Do you want me to show 
you where that is?

User: Yes! Thank you.

Example screenplay 2: sales assistant for 
laptop acquisition

In another micro-world Pepper is a sales agent 
in the laptops department of an electronics store.  
The screenplay imagined in this micro-world 
focuses on the dialog between the robot and a 
potential buyer, with Pepper verbalizing answers.

The dialog between Pepper and the customer is 
centred around three main cases. In the first case 
the customer already knows what she/he wants. 
In this situation the potential buyer will provide 
to Pepper the laptop specific model or the key 
characteristics that will identify the desired laptop 
and Pepper can inform the buyer if the laptop is 
in stock or not.

In the second case, the customer only knows 
partial details of the characteristics of the desired 
laptop. She/he will tell Pepper some details of 
the laptop. For instance, the customer can give 
a precise configuration for the laptop display, 
weight and battery autonomy from which Pepper 
will build a short list of several options. For other 
categories or specifications, the customer will 
give a description of what she/he needs such as 
the newest processor on the market available or 
the biggest RAM capacity. This will enable Pepper 
to filter down the list of laptops and come up with 
a recommendation.

In the third case, the customer does not really have 
a specific configuration in mind and can only give 
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an overall indication of her/his need. For instance, 
the customer might want a laptop for gaming or 
home use. What is specific in this situation is that 
Pepper will build a list of compatible laptops and 
will proceed with a laptop recommendation.

In all situations Pepper can help customers locate 
the items that they are looking for, call for help and 
answer FAQ, like the situations where the stock 
availability or the actual location are relevant for 
the buyer. An example dialog in this micro-world 
could be the following:

User: Hi, Pepper!

Pepper: Hello! How can I help you?

User: I want to buy a Dell laptop with Windows 10.

Pepper: What is the RAM specification?

User: 8 GB.

Pepper: Do you need a dedicated video card?

User: No, I don’t think so.

Pepper: I recommend the Dell Latitude 5480 that 
is in stock. 

User: Thanks! I will check it out.

4. Speech Interfaces

To hear and speak Romanian, Pepper needs access 
to Automatic Speech Recognition (ASR) and 
Text-To-Speech (TTS) modules. These modules 
will be briefly presented below. Currently, RDM 
uses the ASR and TTS modules as web services 
but they could be integrated into the Java codebase 
for better responsiveness.

ASR module

The ASR module used by RDM employs a classic 
Hidden Markov Model with Gaussian Mixture 
Models ASR algorithm that builds acoustic 
models and language models to Viterbi-decode 
the best transcription from speech. The module 
uses the Kaldi ASR toolkit (Povey et al., 2011).

The 3- and 4-grams language models (LMs) 
were trained on a 592 million words sub-corpus 
of CoRoLa: the 3-gram model was used for 
decoding and the 4-gram model was used for 
rescoring candidates. The language models 
were built with the SRILM language modeling 

toolkit (Stolcke et al., 2011), employing Chen and 
Goodman’s modified Kneser-Ney discounting and 
interpolation for all n-grams, offered as options 
by SRILM.

The acoustic model uses a phonetic lexicon 
of more than 2 million Romanian word forms 
extracted from the unigrams of the 4-gram LM. 
These word forms were phonetically transcribed 
using the algorithm described in (Stan et al., 
2011). There are 26 Romanian phonemes together 
with 4 “silence” phonemes. The training corpus 
has 73.4 hours of speech and the test corpus has 
24.6 hours of speech and both corpora come from 
our Romanian reference corpus CoRoLa (Barbu 
Mititelu et al., 2019). The word error rate (WER) 
of the ASR module is 30.2% on the test corpus, 
but about 10% when measured empirically on 
transcribing questions from the micro-worlds 
exemplified in Section 3.

The ASR module used by Pepper can work in 
two scenarios: online and offline. The one that 
is currently used in RDM is the offline scenario, 
which means that the entire audio file that needs 
to be transcribed is provided in one big chunk to 
the ASR system. This approach is best suited for 
short, concise phrases. The second one, the online 
decoding, would require more hardware resources, 
both in edge and cloud environments. This one is 
more fitted for live transcriptions and translation 
due to the streaming manner of generating and 
interpreting audio data by the ASR. The online 
decoding requires some spoken context until the 
first output block is generated, which can lead to 
a bigger first-time response of the system.

One much better alternative that is currently under 
experimentation is the end-to-end Romanian 
ASR module based on the Deep Speech 2 neural 
network (Avram et al., 2020). This ASR module, 
which is trained on a 230 hours Romanian 
speech corpus, manages to obtain a 9.9% WER 
on its test set, while it transcribes, on average, 
in 70 milliseconds per utterance. For comparison, 
the Kaldi ASR response time for average sized 
utterances (less than 15 spoken seconds) follows 
a 1:2 ratio (10 spoken seconds will delay the 
transcription by 20 seconds). The replacement 
of the Kaldi ASR module with the Deep Speech 
2-based one is subject for future work.

Besides the low WER and response time, one of 
the major challenges in usable ASR is the signal-
to-noise ratio of the utterance recording, given the 
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fact that the module is expected to work in noisy 
environments. This paper aims to solve this problem 
by using sensitive, unidirectional microphones 
installed on Pepper, coupled with training the Deep 
Speech 2 network on noisy recordings.

Another challenge for the ASR module is to 
correctly identify the brand names associated 
with different properties of computing hardware 
(e.g. a “Corsair” memory stick). Thus, to adapt 
the ASR module to the “sales assistant” scenario 
mentioned in Section 3, more than 200 questions 
were created, containing laptop properties (e.g. 
memory, storage, etc.) with their associated brand 
names (e.g. Corsair, SanDisk, etc.) The full set of 
questions has been audio recorded in six voices  
(3 males and 3 females) and then added to the ASR 
training corpus. All the considered brand names 
have Romanian phonetic transcriptions added 
to the phonetic lexicon (e.g. IBM – [aibiem],  
Dell – [del], etc.)

TTS module

The TTS module implements a two-step 
synthesis, similar with modern approaches such 
as Tacotron (Wang et al., 2017), Char2Wav 
(Sotelo et al., 2017) and ClariNet (Ping et al., 
2019). The two-step algorithm can be seen as 
an autoencoder, with the first step transforming 
the input (the text) into a hidden representation 
(Mel-frequency cepstral coefficients (Logan, 
2000)), while the second step transforms the 
hidden representation back into the input (or 
audio waveform in the case of TTS).

To achieve the first step, one-hot vector encodings 
for the characters in the text (both letters and 
special characters such as space, comma, and 
period) are created. The one-hot encoding of the 
current character goes through a Bidirectional 
Long Short-Term Memory (BiLSTM) layer 
and its output is concatenated with the speaker 
encoding, thus obtaining an intermediate vector 
representation. Lastly, a pipe of an LSTM layer 
and three Fully Connected (FC) layers (called the 
Sequence-To-Sequence (Seq2Seq) model) are used 
to predict the Mel-frequency cepstral coefficients 
from the intermediate vector representation.

The Seq2Seq model is enhanced by an Attention 
Block (AB) whose role is to focus the input 
sequence around the most important elements 
for the current prediction. For example, one 
does not need all the elements in the input to 

predict the beginning of the waveform, but only 
its first elements. More precisely, the AB is a 
neural network that receives the LSTM state and 
computes its probability of relevance, at time 
step t, for the current prediction. The attention-
enhanced, current LSTM state is obtained by 
scalar-multiplying the LSTM states at time steps 
1 to t with their corresponding probabilities given 
by AB and then summing all of them.

While AB was trained as previously described, 
at run-time the AB network is used in a different 
manner: always use consecutive, most relevant  
(as given by the AB block) LSTM states for 
inference (do not scalar-multiply and sum all 
LSTM states). If the previous, most relevant 
LSTM state was at time step s and the current, 
most relevant LSTM state is at time step s + 1, it 
is used, otherwise the LSTM state at time step s 
is still used for the current prediction. Using the 
consecutive condition greatly increases the quality 
of audio, but also the synthesis duration.

Finally, the previous attention-enhanced LSTM 
state and the previous prediction are used as 
input for the LSTM layer at present time step.  
The current attention-enhanced LSTM state is 
fed to a pipe of three FC layers to get the current 
prediction. During training, the neural network 
predicts until there are as many predictions as in the 
ground truth. However, during inference prediction 
is performed until the AB says, five times in a row, 
that the same LSTM state is the most relevant. The 
number five was chosen empirically, as AB says, on 
average, three times in a row that the same LSTM 
state is the most relevant.

For the second step the ClariNet implementation 
is used to obtain the audio waveform from the 
Mel-frequency cepstral coefficients.

The main advantage of this TTS module is that 
it is an end-to-end system that can synthesize 
words it was not trained with. Also, the fact that 
it uses character encodings instead of phone 
encodings provides an advantage since it does 
not need to compute any phonetic transcription 
of the input text. On the other hand, lacking 
the extra information provided by the phonetic 
transcription, some words may be wrongly 
synthesized. One such example is the mute/
whispered vowel “i” in words like “București” 
or “Ploiești” which can be fully heard in the 
synthesized speech, which effectively moved the 
accent to the last syllable. 
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The TTS module uses deep neural networks with 
a lot of parameters and, as such, it needs to be run 
on a GPU to produce results in real time. If so 
run, its synthesis time can take as much time as 
the time needed to utter the input text, again a 1:1 
ratio as with the ASR module.

5. ROBIN Dialog Manager

RDM (Ion, 2020a) is a Java-based dialog manager 
that automatically constructs its universe of 
discourse from a micro-world specification file. 
As stated before, a micro-world is a collection of 
definitions about the things one can speak of in 
that micro-world coupled with associated named 
robot behavior to be used in subsequent robot 
planning. The dialog manager is expected to 
infer and provide the contextually parametrized 
user intention to be used by the robot planning 
programming team to complete the action that 
is requested by the user. This action can be, for 
instance, simply a verbalization of the answer, 
tapping into the TTS module of Pepper or a more 
involved action that requires the robot to navigate 
somewhere, lift and offer objects, recognizing 
persons using facial recognition, delivering 
messages to them and so on. 

Micro-world file specification

A micro-world file (for example, look at the 
precis.mw file (Ion, 2020b) from the GitHub 
repository) contains the definitions of concepts 
and predicates one can speak of.

A concept is a common noun that is a typed set 
of known objects in the universe of discourse.  
A concept is defined as e.g.:

CONCEPT sală, laborator, cameră -> 
LOCATION

where the first word sală (English “hall”) is the 
canonical name (in lemma form) of the concept, 
followed by its possible synonyms (English 
“laboratory” and “room”). This “synset” (not 
exactly a synset in the WordNet (Fellbaum, 
1998) sense, but rather a semantic neighborhood, 
including synonyms, hyper- and hyponyms) 
is of type LOCATION, meaning that this type 
can be matched in questions such as “Unde se 
desfășoară…” (English “Where does the…”) or 
“În ce cameră se desfășoară…” (English “In what 
room does the…”).

The enumeration of the typed set introduced by 
the concept definition is done with the reference 
definition, such as:
REFERENCE sală sala 209 = S1
REFERENCE sală sala de consiliu = 
S3
REFERENCE curs laboratorul de in-
formatică = C1

Thus, for a concept identified by its canonical 
name (e.g. sală), instances are listed (e.g. “sala 
209”) together with aliases to be used in predicate 
definition (e.g. S1). These are specific phrases 
that the RDM expects to encounter/can offer as 
answers in a conversation in this micro-world.

There are three predefined types: LOCATION, 
PERSON and TIME together with a default type, 
WORD, which is, in fact, the concept canonical 
name as in e.g.:

CONCEPT curs, materie, seminar, la-
borator -> WORD

Thus, in a question such as “Unde se desfășoară 
cursul de sisteme de operare?” (English “Where 
is the OS course taking place?”) the noun phrase 
“cursul de sisteme de operare” is of type curs, as 
its head (in lemma form) is listed as a concept of 
type WORD.

References of types PERSON and TIME can be 
added separately, with definitions such as:

TIME marți la 8:00 = T1

PERSON Magda Vlad = P2

where the instance of the type PERSON (e.g. 
Magda Vlad) is followed by the reference alias 
(e.g. P2) to be used in the predicate definition. 
Similarly, the time instance “marți la 8:00” 
(English “Tuesday at 8:00”) is referenced by 
means of the alias T1.

The predicate is the unit of information that 
Pepper knows it is true. A predicate can hold true 
on a variable number of typed references, defined 
as previously described. Checking for types and 
number of arguments (order is not important) 
helps RDM to resolve ambiguities among 
predicates with the same name. Predicates are 
defined using alias names of previously defined 
references, e.g.:

TRUE ține C1 S1 T1 P2
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This means that the course C1 (“laboratorul de 
informatică”) of type curs takes place (predicate 
canonical name ține) in room S1 (“sala 209”) of 
type LOCATION at time T1 (“marți la 8:00”) 
of type TIME and it is lectured by professor P2 
(“Magda Vlad”) of type PERSON. Furthermore, 
to allow synonymic variation of the predicate 
name and to map predicates to users’ intentions, 
one may write e.g.:

PREDICATE ține, desfășura, preda -> 
SAY_SOMETHING

Here, ține is the canonical name of the predicate 
followed by a synonymic series of possible 
formulations, much as in the case of concept 
definitions. This predicate signals a user intent 
of learning some information, causing Pepper to 
verbalize its response (“SAY_SOMETHING”). 
This is the mechanism that maps predicate 
realization to actions that are accomplished by 
the planning component of the robot (SAY_
SOMETHING is the only action that is fulfilled 
by RDM, calling its TTS module and speaking 
the answer).

Question analysis

Question analysis is realized through  
1) pre-processing the input question by 
tokenizing, part-of-speech tagging, lemmatizing, 
and dependency parsing it and 2) analysing the 
predicate-argument structure induced by the 
parse tree.

Text pre-processing is offered by the TEPROLIN 
web service (Ion, 2018) which is integrated 
into the RELATE platform (Păiș et al., 2020a; 
Păiș, 2020b), a portal for the dissemination of 
Romanian language technologies. Following the 

pre-processing step, assuming there is only one 
main verb in the question, the question analysis step 
will attempt to construct a predicate from the user’s 
question by performing the following operations:

1.	 If there is no main verb in the question 
(either the user did not ask a complete 
question or the POS tagging failed to 
identify a main verb) and if there is no 
context (the dialog is just beginning) return 
a “Please rephrase the question” response.  
If the dialog manager stores a partially bound 
predicate from the previous question and the 
current question does not have a main verb, 
use the previously bound predicate to reply 
(see the example presented in the “Inference 
module” section below).

2.	 Identify the root of the question from the 
parse tree as the main verb. Take its lemma 
to be the canonical name of the predicate.

3.	 Take the list of noun, prepositional or 
adverbial phrases that are directly linked to 
the main verb as arguments of the predicate. 
Predicate arguments can only be introduced 
by dependency relations that designate 
subject, object, or complement dependents.

4.	 The argument that contains an interrogative 
adverb, determiner, or pronoun (in Romanian 
this is always the first phrase in the question) 
is the unbound (to be resolved) typed variable 
to be unified by the predicate matching 
algorithm. Its bound value is offered back as 
the answer to the question.

Take for instance the question “În ce sală se ține 
laboratorul de informatică?” (English “In what 
room is the informatics laboratory taking place?”) 
Given this question, the text pre-processor will 
parse it into the tree from Figure 1. 

Figure 1. The parse tree for the question “În ce sală se ține laboratorul de informatică?”
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The main verb of the question is ține which is the 
predicate name. Its arguments are the following:

1.	 The oblique prepositional phrase “În ce 
sală” which is the requested variable X 
of type LOCATION (see the concept sală 
defined above) because it is modified by the 
interrogative determiner “ce”.

2.	 The subject noun phrase “laboratorul de 
informatică” which is a reference of type curs 
(see reference definition with alias C1 above).

With this information, the question analysis 
module constructs the partially bound predicate 

ține ”laboratorul de informatică”/
curs X/LOCATION 

which it passes to the inference module whose job 
is to resolve the reference of X. 

Inference module

Presented with a partially bound predicate, it is the 
job of the inference module to find the appropriate 
answer to the posed question or ask supplementary, 
clarifying questions. This is accomplished within 
the main RDM question-answering loop.

Predicate and argument fuzzy matching, that is, the 
identification of the most likely predicate from the 
micro-word definition that was referred to in the 
user’s question, is done with the following algorithm:

1.	 The predicate name is searched for, 
either verbatim or through a synonym, 
in PREDICATE definitions of the micro-
world definitions and all predicates (TRUE 
definitions) that match the predicate name 
received from the question analysis module are 
retrieved. If no such predicate is found, return 
a “Please rephrase the question” response.

2.	 From the set of true predicates, select the one 
such that:

a.	 The sum of its arguments fuzzy-match 
scores is maximum, while strictly 
enforcing the type equality of the fuzzy-
matched arguments.

b.	 The unbound variable has the same type 
with an existing argument.

3.	 If Step 2 produced a predicate, answer with 
the bound value of the best matched predicate.

Given two lists of POS-tagged and lemmatized words 
D (description) and R (reference), the fuzzy-matching 
algorithm, mentioned at Step 2.a. above, works in the 

following way, for all word pairs di from D and rj 
from R such that both di and rj are content words  
(i.e. nouns, verbs, adjectives or adverbs) and i and 
j are the positions of words in their respective lists:

1.	 If lemma of di string-equals lemma of rj or if 
lemma of di loosely-equals lemma of rj , given 
the semantic neighborhoods (synonyms and 
direct hyper- and hyponyms as defined by 
the Romanian WordNet (Tufiș et al., 2013), 
accessed from the RELATE platform) of di 
and rj , add |i - j| + 1 to the matching score 
Sd→r and advance to the next i index.

2.	 If no matching can be found at Step 2 
and if lss is the Levenshtein similarity 
score between the lower-cased di and rj ,  
add lss ∙ (|i - j| + 1) to the matching score Sd→r 
and advance the next i index.

It follows that Sd→r (from description to the 
reference) cannot be larger than the size of the 
D list and the score Sr→d (in the reverse direction) 
cannot be larger than the size of the R list. Thus, 
the symmetrical matching score

S = 2 / (Sd→r + Sr→d)

is at most 1 when D and R are identical, with 
respect to their content words.

To exemplify the matching algorithm for the question 
“În ce sală se ține laboratorul de informatică?”, as 
already presented, the question analysis module 
retrieves the partially bound predicate

ține ”laboratorul de informatică”/
curs X/LOCATION

Considering that the micro-world contains the true 
predicate definition:

TRUE ține C1 S1 T1 P2

in which C1 is “laboratorul de informatică” of 
type curs (matching score S = 1) and S1 is “sala 
209” of type LOCATION, and strictly observing 
type matching, X can be unified with S1 and the 
response “Sala 209.” is available to the user.

The dialog manager loop always keeps track of 
the last, best-matching predicate and its argument 
bindings. If the user wants more information with 
respect to this predicate, subsequent predicate 
matching happens in this context. Resuming the 
given example, if the user’s next question would 
be “Cine îl predă?”, the question analysis module 
provides the analysis

preda Y/? X/PERSON
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in which any personal pronoun is transformed 
into an unknown type variable and the special 
interrogative pronoun “cine” (English “who”) is 
only applicable to persons. Now, because preda is 
a synonym of ține, the last best-matching predicate 
with bound arguments C1 and S1 is able to offer 
the answer because P2 has the same type as our 
requested variable X (PERSON): “Magda Vlad.” Y 
cannot be reliably bound as more detailed syntactic 
analysis would be needed. This is a simplified way 
of solving elliptic questions because it still requires 
the presence of a main verb. A further enhancing of 
this inferential process (but fuzzier) is to assume, 
in case no main verb is present in the question, that 
the previous best-matching predicate would apply. 
This way, the follow-up question “La ce oră?” 
(English “At what time?”) could be interpreted as:

ține X/TIME

Keeping track of the last best matching predicate 
and its argument bindings, the elliptic question 
will be correctly answered with “marți la 8:00”, 
as the best-matching predicate ține is able to bind 
its last argument to T1.

6. Conclusion

The ROBIN Dialog Manager is a Java-based, 
configurable dialog manager ready to be integrated 
into any application that requires interaction into 
spoken Romanian. One of its advantages is that, 
with its smartly abstracted class hierarchy, it can 
be extended to handle other languages, such as 
English. Thus, if the language pre-processing 
chain doing tokenization, part-of-speech tagging, 
lemmatization and dependency parsing is available 
along with ASR and TTS modules, RDM can 
work in any language, provided that the required 
Java implementations using the targeted language 
technologies are supplied.

Another advantage of RDM is the micro-world 
definition file with which it can handle a new dialog 
scenario, requiring the knowledge engineer to 
define concepts, concept references and predicates 
that are applicable to the new micro-world.  
The robot planning algorithm can utilize the 
resolved true predicate instance with its bound 
arguments in ways that are suitable for the actions 
to be performed following the conversation with 
the user. Furthermore, named robot behavior can 
be attached to any predicate definition in the micro-
world file to map speech to action taking.

One disadvantage of the proposed solution is that 
the knowledge engineer is tasked with the complete 
definition of the micro-world with the caveat that any 
incomplete specification (e.g. the right synonyms are 
not provided or not all the possible references are 
enumerated) will cause RDM to not work. While 
the solution to this problem is straightforward (just 
add the missing information), it is conceivable that 
a complete specification might never be attained.

RDM will receive some further improvements 
such as the ability to populate its universe of 
discourse from external sources. If the relevant 
information is stored in e.g. a database, the ability 
of creating predicate instances directly from the 
database, via an Internet connection, will be 
added. Thus, the knowledge base of RDM could 
be updated on the fly, without disrupting the 
functionality of the dialog manager.
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