
411

ICI Bucharest © Copyright 2012-2020. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

The expectation that people can simply talk to
computers and receive spoken answers in their
native language is nowadays commonplace
among Artificial Intelligence (AI) public who
has been exposed to science fiction movies
and social media advertisements to a large
extent. This impression is greatly amplified by
the “intelligent” assistants which can be found
on any smartphone and to which one can pose
questions and get replies in spoken natural
language. What most people do not realize right
away is that the more complex the question gets,
the more often the “default” answer is offered,
such as a standard web search for the smartphone
assistant or a type of a “Please rephrase the
question” answer for a task-oriented dialog
system. Furthermore, a coherent dialog with
multiple discussion threads, tackling Natural
Language Processing (NLP) problems such as
ellipsis or coreference resolution is out of the
scope of most commercially available dialog
systems. It happens because their goal is not to
advance the knowledge in the Natural Language
Understanding (NLU) field of AI, but to fulfil
the immediate (i.e. frequent as determined by the
company owning the dialog system) needs which
include setting reminders, reserving flights,
retrieve information on specific subjects such as
movies or celebrities and so on.

That is to say that, currently, there is no general
purpose computer dialog system able to sustain a
dialog on any given subject as a human can (though
there are computer programs called “chatbots”,
striving to achieve this goal, none of them is yet

able to fool someone into thinking that she/he
is speaking to another human being). But there
are specialized, state-of-the-art computer dialog
systems able to communicate on a given topic
very well, close to human performance (termed
“task-oriented dialog systems”; see Chapter 26
of Jurafsky & Martin, 2019). For example, there
are tutoring systems that can substitute a teacher
explaining a student how to solve a physics
problem (Rus et al., 2013) or dialog systems
that can assist a doctor with clinical assessments
(Campillos-Llanos et al., 2020).

The task-oriented dialog system presented in this
paper is called ROBIN Dialog Manager (RDM)
and it was (and actively is) developed in the
ROBIN Dialog project (Tufiș et al., 2019; Anon,
2018). This project concerns itself with Romanian
language technologies deployment on the Pepper
robot (SoftBank Mobile Corp., 2014; SoftBank
Robotics Europe – SAS (Limited Company),
2020), enabling it to perform certain tasks using
interaction into spoken Romanian. A task is
modeled by defining its universe of discourse in
a micro-world which is basically a collection of
logic definitions coupled with programmed robot
behavior necessary to perform the task at hand.
For instance, to provide orientation instructions
to new visitors in a building, Pepper should know
the location of different rooms on its internal map
(e.g. programmed robot behavior that enables the
robot to navigate to a specific room) together with
a logic associated with rooms (e.g. what happens
in each room). Thus, equipped with this micro-
world specification, Pepper can answer questions

Studies in Informatics and Control, 29(4) 411-420, December 2020

https://doi.org/10.24846/v29i4y202003

A Dialog Manager for Micro-Worlds
Radu ION, Valentin Gabriel BADEA, George CIOROIU, Verginica BARBU MITITELU,
Elena IRIMIA, Maria MITROFAN, Dan TUFIȘ*
Romanian Academy Research Institute for Artificial Intelligence “Mihai Drăgănescu”,
13 September 13 Street, Bucharest, 050711, Romania
radu@racai.ro, valentin.gabriel.badea@gmail.com, gcioroiu@racai.ro, vergi@racai.ro,
elena@racai.ro, maria@racai.ro, tufis@racai.ro (*Corresponding author)

Abstract: The paper describes the micro-world-based dialog manager which was developed in the ROBIN project. The
manager was designed to be loaded into the Pepper robot, used in real-world scenarios and interface with real-time automatic
speech recognition and synthesis for Romanian language. A strict requirement for the development of the dialog manager
was that it had to be configurable, with minimum user intervention, to a wide range of dialogue situations, such as assisting
the elderly in day to day routine tasks or providing orientation in a building for new visitors. Thus, the dialog manager was
programmed to configure itself from micro-world specification files containing definitions of the concepts one can speak
about and definitions of the first-order predicates that are true in the micro-world.

Keywords: Dialog manager, Micro-worlds, Pepper, Prolog, First-order logic, Fuzzy matching.

https://www.sic.ici.ro

412 Ion R., Badea V. G., Cioroiu G., Barbu Mititelu V., Irimia E., Mitrofan M., Tufiș D.

such as “Where is the Python programming course
taking place?” with e.g. “Room 209. Let me take
you there.”

In what follows, Section 2 surveys the existing
literature on task-oriented dialog systems using
natural language to First-Order Logic (FOL)
translation (the reasons why this strategy was
adopted for RDM will be explained below).
Section 3 presents possible dialog scenarios
that were taken into consideration for RDM
development while Section 4 briefly introduces
the Automatic Speech Recognition (ASR) and
the Text-To-Speech (TTS) modules for Romanian
that enable Pepper to interact with users in spoken
Romanian. Finally, Section 5 details the micro-
world composition and the inner loop of RDM.
It includes the question analysis and logic
predicate extraction and argument unification,
augmenting the presentation with specific
examples. Additionally, Section 5 explains how it
maps the user’s request to a robot behavior which
can be either verbalizing the response or executing
a task related to the robot planning (e.g. going
from one location to another). Section 6 provides
the conclusion of this work and offers suggestions
for a future research.

2. Related Work

One very recent research direction concerning
Question Answering (QA) systems, amenable to
be adapted to task-oriented dialog systems is the
use of the pre-trained BERT language models
(Devlin et al., 2019). BERT is a general-purpose
sentence to a real vector deep neural network
encoder (Vaswani et al., 2017), running with
hundreds of millions of parameters. It is first pre-
trained to predict words in context on very large
corpora and then, among other tasks, fine-tuned
to predict the correct answer to a question in a
given input text, on a quite big set of question/
answer pairs. For example, for the question
“Who was Albert Einstein?” and the text
snippet “Albert Einstein was a German-born
theoretical physicist who developed the theory
of relativity.”, the QA fine-tuned BERT is able
to tag “a German-born theoretical physicist” as
the correct answer for the question. BERT can, in
principle, be used to implement a task-oriented,
one-turn (only one question followed by the final
answer), dialog system, provided that 1) the set
of possible question/answers pairs for the task

exists (and is large) and 2) the details of the task
remain fixed and cannot be updated during the
execution of the task.

The BERT-like approaches were considered for
the design of RDM, but the lack of the question/
answer pairs dataset and the (soft) requirement
that the universe of discourse could be updated on
the fly, while the robot executes the task, pointed
to a more traditional, yet more flexible approach:
question analysis and its automatic translation to
a predicate-argument structure followed by fuzzy
predicate matching with true predicates in the
universe of discourse. Thus, RDM draws from
two frameworks for task-oriented dialog systems:
Prolog-style theorem proving and, mainly, from
slot-filling dialog systems.

(Smith et al., 1995) is a prototypical example
on how Prolog-style theorem proving can work
in a task-oriented dialog system: guiding the
user to perform a complex task by exchanging
clarification questions aimed at establishing the
true facts about the state of affairs. Question
analysis is done using a rigid grammar,
specifically designed to map natural language
assertions to FOL predicates. A task is defined in
Prolog as a conjunction of subgoals that must be
satisfied so that the task is successfully fulfilled.
The dialog controller remembers which goal is
currently being proven and an “Interruptible
Prolog Simulator” keeps track of partially
proven goals. Thus, goal fulfillment can be
done as the dialog unfolds, not necessarily in a
sequential manner.

The framework that RDM works with is the slot-
filling framework for task-oriented dialog systems
(Henderson, 2015). Henderson defines a slot as
being an attribute of an entity that can be stored
in a database. Slots can be informable (can be
used to constrain the search in the database) and
requestable (the user wants to know the value of
such a slot). Slots can take values in finite sets
and the dialog state at a given turn consists of
1) goal constraint – the set of assigned values of
the informable slots, 2) requested slots – the list
of slots which user wants to be informed about
and 3) dialog search method – the way the user is
interacting with the dialog system: by constraints
(the user is trying to narrow down the search),
by alternatives (the user is requesting alternative
information if what she/he wants is not available)
or finished (end of conversation).

	 413

ICI Bucharest © Copyright 2012-2020. All rights reserved

A Dialog Manager for Micro-Worlds

3. Dialog Scenarios

Characteristics

Programming a robot like Pepper to perform a
task implies a first step of choosing the “scenery”
for the task, defining the task and “teaching” the
robot the necessary communication skills, when
verbal interaction with people is required for the
task to be performed. This mimics a screenplay:
the actions are identified, the participants to the
actions are specified, the circumstances of each
activity are defined: place, time, relations between
actions, etc. All actions of the robot are the result
of a correct understanding of the human-robot
communication. This screenplay is called a micro-
world: that is, the task formal definition (in the
foreseen circumstances) together with the actions
the robot can take, which are discrete and already
inventoried in the planning component of the robot.

In the present use case, it is assumed that only one
person can speak with Pepper at a time and Pepper
will complete the task for the current interlocutor
before greeting and helping another user. The
identity of the interlocutor is irrelevant but the
ASR system has to have the lowest word error
rate (WER) possible, irrespective of the speaker,
and has to be able to work in noisy conditions
(although Pepper is equipped with directional
microphones that, if spoken to properly, will
eliminate most of the background noise).

Example screenplay 1: orientation
assistant in a university building

One of the screenplays casts Pepper as host
in one of the university buildings. The micro-
world contains information about the rooms in
the building, their location within it, and it is
expected to navigate from its current location in
the building to a certain room. It also contains
the timetable: titles of the courses taking place
in each room, teachers of the courses, their
dates, day and time, their structure (lectures,
seminars, laboratories, exams, etc.) thus enabling
it to answer questions about all of these. Besides
courses, the administrative offices are also relevant
for students. That is why, information about them
(location, working hours, staff, etc.), as well as
(about) the documents (and their electronic format
or location) involved in the students’ interaction
with these offices must also be accessible to the
robot so as to answer questions and even make

documents of interest available to interested
parties. An example of a dialog in this micro-world
could be the following, though in Romanian:

User: Hi, Pepper!

Pepper: Hello! How can I be of assistance?

User: Where is the Python programming course
taking place?

Pepper (supposing that there are two such courses
taking place at the same time, in different rooms):
Who is your teacher?

User: Cristina Iacob.

Pepper (knowing where Cristina Iacob teaches
her course): Room 209. Do you want me to show
you where that is?

User: Yes! Thank you.

Example screenplay 2: sales assistant for
laptop acquisition

In another micro-world Pepper is a sales agent
in the laptops department of an electronics store.
The screenplay imagined in this micro-world
focuses on the dialog between the robot and a
potential buyer, with Pepper verbalizing answers.

The dialog between Pepper and the customer is
centred around three main cases. In the first case
the customer already knows what she/he wants.
In this situation the potential buyer will provide
to Pepper the laptop specific model or the key
characteristics that will identify the desired laptop
and Pepper can inform the buyer if the laptop is
in stock or not.

In the second case, the customer only knows
partial details of the characteristics of the desired
laptop. She/he will tell Pepper some details of
the laptop. For instance, the customer can give
a precise configuration for the laptop display,
weight and battery autonomy from which Pepper
will build a short list of several options. For other
categories or specifications, the customer will
give a description of what she/he needs such as
the newest processor on the market available or
the biggest RAM capacity. This will enable Pepper
to filter down the list of laptops and come up with
a recommendation.

In the third case, the customer does not really have
a specific configuration in mind and can only give

https://www.sic.ici.ro

414 Ion R., Badea V. G., Cioroiu G., Barbu Mititelu V., Irimia E., Mitrofan M., Tufiș D.

an overall indication of her/his need. For instance,
the customer might want a laptop for gaming or
home use. What is specific in this situation is that
Pepper will build a list of compatible laptops and
will proceed with a laptop recommendation.

In all situations Pepper can help customers locate
the items that they are looking for, call for help and
answer FAQ, like the situations where the stock
availability or the actual location are relevant for
the buyer. An example dialog in this micro-world
could be the following:

User: Hi, Pepper!

Pepper: Hello! How can I help you?

User: I want to buy a Dell laptop with Windows 10.

Pepper: What is the RAM specification?

User: 8 GB.

Pepper: Do you need a dedicated video card?

User: No, I don’t think so.

Pepper: I recommend the Dell Latitude 5480 that
is in stock.

User: Thanks! I will check it out.

4. Speech Interfaces

To hear and speak Romanian, Pepper needs access
to Automatic Speech Recognition (ASR) and
Text-To-Speech (TTS) modules. These modules
will be briefly presented below. Currently, RDM
uses the ASR and TTS modules as web services
but they could be integrated into the Java codebase
for better responsiveness.

ASR module

The ASR module used by RDM employs a classic
Hidden Markov Model with Gaussian Mixture
Models ASR algorithm that builds acoustic
models and language models to Viterbi-decode
the best transcription from speech. The module
uses the Kaldi ASR toolkit (Povey et al., 2011).

The 3- and 4-grams language models (LMs)
were trained on a 592 million words sub-corpus
of CoRoLa: the 3-gram model was used for
decoding and the 4-gram model was used for
rescoring candidates. The language models
were built with the SRILM language modeling

toolkit (Stolcke et al., 2011), employing Chen and
Goodman’s modified Kneser-Ney discounting and
interpolation for all n-grams, offered as options
by SRILM.

The acoustic model uses a phonetic lexicon
of more than 2 million Romanian word forms
extracted from the unigrams of the 4-gram LM.
These word forms were phonetically transcribed
using the algorithm described in (Stan et al.,
2011). There are 26 Romanian phonemes together
with 4 “silence” phonemes. The training corpus
has 73.4 hours of speech and the test corpus has
24.6 hours of speech and both corpora come from
our Romanian reference corpus CoRoLa (Barbu
Mititelu et al., 2019). The word error rate (WER)
of the ASR module is 30.2% on the test corpus,
but about 10% when measured empirically on
transcribing questions from the micro-worlds
exemplified in Section 3.

The ASR module used by Pepper can work in
two scenarios: online and offline. The one that
is currently used in RDM is the offline scenario,
which means that the entire audio file that needs
to be transcribed is provided in one big chunk to
the ASR system. This approach is best suited for
short, concise phrases. The second one, the online
decoding, would require more hardware resources,
both in edge and cloud environments. This one is
more fitted for live transcriptions and translation
due to the streaming manner of generating and
interpreting audio data by the ASR. The online
decoding requires some spoken context until the
first output block is generated, which can lead to
a bigger first-time response of the system.

One much better alternative that is currently under
experimentation is the end-to-end Romanian
ASR module based on the Deep Speech 2 neural
network (Avram et al., 2020). This ASR module,
which is trained on a 230 hours Romanian
speech corpus, manages to obtain a 9.9% WER
on its test set, while it transcribes, on average,
in 70 milliseconds per utterance. For comparison,
the Kaldi ASR response time for average sized
utterances (less than 15 spoken seconds) follows
a 1:2 ratio (10 spoken seconds will delay the
transcription by 20 seconds). The replacement
of the Kaldi ASR module with the Deep Speech
2-based one is subject for future work.

Besides the low WER and response time, one of
the major challenges in usable ASR is the signal-
to-noise ratio of the utterance recording, given the

	 415

ICI Bucharest © Copyright 2012-2020. All rights reserved

A Dialog Manager for Micro-Worlds

fact that the module is expected to work in noisy
environments. This paper aims to solve this problem
by using sensitive, unidirectional microphones
installed on Pepper, coupled with training the Deep
Speech 2 network on noisy recordings.

Another challenge for the ASR module is to
correctly identify the brand names associated
with different properties of computing hardware
(e.g. a “Corsair” memory stick). Thus, to adapt
the ASR module to the “sales assistant” scenario
mentioned in Section 3, more than 200 questions
were created, containing laptop properties (e.g.
memory, storage, etc.) with their associated brand
names (e.g. Corsair, SanDisk, etc.) The full set of
questions has been audio recorded in six voices
(3 males and 3 females) and then added to the ASR
training corpus. All the considered brand names
have Romanian phonetic transcriptions added
to the phonetic lexicon (e.g. IBM – [aibiem],
Dell – [del], etc.)

TTS module

The TTS module implements a two-step
synthesis, similar with modern approaches such
as Tacotron (Wang et al., 2017), Char2Wav
(Sotelo et al., 2017) and ClariNet (Ping et al.,
2019). The two-step algorithm can be seen as
an autoencoder, with the first step transforming
the input (the text) into a hidden representation
(Mel-frequency cepstral coefficients (Logan,
2000)), while the second step transforms the
hidden representation back into the input (or
audio waveform in the case of TTS).

To achieve the first step, one-hot vector encodings
for the characters in the text (both letters and
special characters such as space, comma, and
period) are created. The one-hot encoding of the
current character goes through a Bidirectional
Long Short-Term Memory (BiLSTM) layer
and its output is concatenated with the speaker
encoding, thus obtaining an intermediate vector
representation. Lastly, a pipe of an LSTM layer
and three Fully Connected (FC) layers (called the
Sequence-To-Sequence (Seq2Seq) model) are used
to predict the Mel-frequency cepstral coefficients
from the intermediate vector representation.

The Seq2Seq model is enhanced by an Attention
Block (AB) whose role is to focus the input
sequence around the most important elements
for the current prediction. For example, one
does not need all the elements in the input to

predict the beginning of the waveform, but only
its first elements. More precisely, the AB is a
neural network that receives the LSTM state and
computes its probability of relevance, at time
step t, for the current prediction. The attention-
enhanced, current LSTM state is obtained by
scalar-multiplying the LSTM states at time steps
1 to t with their corresponding probabilities given
by AB and then summing all of them.

While AB was trained as previously described,
at run-time the AB network is used in a different
manner: always use consecutive, most relevant
(as given by the AB block) LSTM states for
inference (do not scalar-multiply and sum all
LSTM states). If the previous, most relevant
LSTM state was at time step s and the current,
most relevant LSTM state is at time step s + 1, it
is used, otherwise the LSTM state at time step s
is still used for the current prediction. Using the
consecutive condition greatly increases the quality
of audio, but also the synthesis duration.

Finally, the previous attention-enhanced LSTM
state and the previous prediction are used as
input for the LSTM layer at present time step.
The current attention-enhanced LSTM state is
fed to a pipe of three FC layers to get the current
prediction. During training, the neural network
predicts until there are as many predictions as in the
ground truth. However, during inference prediction
is performed until the AB says, five times in a row,
that the same LSTM state is the most relevant. The
number five was chosen empirically, as AB says, on
average, three times in a row that the same LSTM
state is the most relevant.

For the second step the ClariNet implementation
is used to obtain the audio waveform from the
Mel-frequency cepstral coefficients.

The main advantage of this TTS module is that
it is an end-to-end system that can synthesize
words it was not trained with. Also, the fact that
it uses character encodings instead of phone
encodings provides an advantage since it does
not need to compute any phonetic transcription
of the input text. On the other hand, lacking
the extra information provided by the phonetic
transcription, some words may be wrongly
synthesized. One such example is the mute/
whispered vowel “i” in words like “București”
or “Ploiești” which can be fully heard in the
synthesized speech, which effectively moved the
accent to the last syllable.

https://www.sic.ici.ro

416 Ion R., Badea V. G., Cioroiu G., Barbu Mititelu V., Irimia E., Mitrofan M., Tufiș D.

The TTS module uses deep neural networks with
a lot of parameters and, as such, it needs to be run
on a GPU to produce results in real time. If so
run, its synthesis time can take as much time as
the time needed to utter the input text, again a 1:1
ratio as with the ASR module.

5. ROBIN Dialog Manager

RDM (Ion, 2020a) is a Java-based dialog manager
that automatically constructs its universe of
discourse from a micro-world specification file.
As stated before, a micro-world is a collection of
definitions about the things one can speak of in
that micro-world coupled with associated named
robot behavior to be used in subsequent robot
planning. The dialog manager is expected to
infer and provide the contextually parametrized
user intention to be used by the robot planning
programming team to complete the action that
is requested by the user. This action can be, for
instance, simply a verbalization of the answer,
tapping into the TTS module of Pepper or a more
involved action that requires the robot to navigate
somewhere, lift and offer objects, recognizing
persons using facial recognition, delivering
messages to them and so on.

Micro-world file specification

A micro-world file (for example, look at the
precis.mw file (Ion, 2020b) from the GitHub
repository) contains the definitions of concepts
and predicates one can speak of.

A concept is a common noun that is a typed set
of known objects in the universe of discourse.
A concept is defined as e.g.:

CONCEPT sală, laborator, cameră ->
LOCATION

where the first word sală (English “hall”) is the
canonical name (in lemma form) of the concept,
followed by its possible synonyms (English
“laboratory” and “room”). This “synset” (not
exactly a synset in the WordNet (Fellbaum,
1998) sense, but rather a semantic neighborhood,
including synonyms, hyper- and hyponyms)
is of type LOCATION, meaning that this type
can be matched in questions such as “Unde se
desfășoară…” (English “Where does the…”) or
“În ce cameră se desfășoară…” (English “In what
room does the…”).

The enumeration of the typed set introduced by
the concept definition is done with the reference
definition, such as:
REFERENCE sală sala 209 = S1
REFERENCE sală sala de consiliu =
S3
REFERENCE curs laboratorul de in-
formatică = C1

Thus, for a concept identified by its canonical
name (e.g. sală), instances are listed (e.g. “sala
209”) together with aliases to be used in predicate
definition (e.g. S1). These are specific phrases
that the RDM expects to encounter/can offer as
answers in a conversation in this micro-world.

There are three predefined types: LOCATION,
PERSON and TIME together with a default type,
WORD, which is, in fact, the concept canonical
name as in e.g.:

CONCEPT curs, materie, seminar, la-
borator -> WORD

Thus, in a question such as “Unde se desfășoară
cursul de sisteme de operare?” (English “Where
is the OS course taking place?”) the noun phrase
“cursul de sisteme de operare” is of type curs, as
its head (in lemma form) is listed as a concept of
type WORD.

References of types PERSON and TIME can be
added separately, with definitions such as:

TIME marți la 8:00 = T1

PERSON Magda Vlad = P2

where the instance of the type PERSON (e.g.
Magda Vlad) is followed by the reference alias
(e.g. P2) to be used in the predicate definition.
Similarly, the time instance “marți la 8:00”
(English “Tuesday at 8:00”) is referenced by
means of the alias T1.

The predicate is the unit of information that
Pepper knows it is true. A predicate can hold true
on a variable number of typed references, defined
as previously described. Checking for types and
number of arguments (order is not important)
helps RDM to resolve ambiguities among
predicates with the same name. Predicates are
defined using alias names of previously defined
references, e.g.:

TRUE ține C1 S1 T1 P2

	 417

ICI Bucharest © Copyright 2012-2020. All rights reserved

A Dialog Manager for Micro-Worlds

This means that the course C1 (“laboratorul de
informatică”) of type curs takes place (predicate
canonical name ține) in room S1 (“sala 209”) of
type LOCATION at time T1 (“marți la 8:00”)
of type TIME and it is lectured by professor P2
(“Magda Vlad”) of type PERSON. Furthermore,
to allow synonymic variation of the predicate
name and to map predicates to users’ intentions,
one may write e.g.:

PREDICATE ține, desfășura, preda ->
SAY_SOMETHING

Here, ține is the canonical name of the predicate
followed by a synonymic series of possible
formulations, much as in the case of concept
definitions. This predicate signals a user intent
of learning some information, causing Pepper to
verbalize its response (“SAY_SOMETHING”).
This is the mechanism that maps predicate
realization to actions that are accomplished by
the planning component of the robot (SAY_
SOMETHING is the only action that is fulfilled
by RDM, calling its TTS module and speaking
the answer).

Question analysis

Question analysis is realized through
1) pre-processing the input question by
tokenizing, part-of-speech tagging, lemmatizing,
and dependency parsing it and 2) analysing the
predicate-argument structure induced by the
parse tree.

Text pre-processing is offered by the TEPROLIN
web service (Ion, 2018) which is integrated
into the RELATE platform (Păiș et al., 2020a;
Păiș, 2020b), a portal for the dissemination of
Romanian language technologies. Following the

pre-processing step, assuming there is only one
main verb in the question, the question analysis step
will attempt to construct a predicate from the user’s
question by performing the following operations:

1.	 If there is no main verb in the question
(either the user did not ask a complete
question or the POS tagging failed to
identify a main verb) and if there is no
context (the dialog is just beginning) return
a “Please rephrase the question” response.
If the dialog manager stores a partially bound
predicate from the previous question and the
current question does not have a main verb,
use the previously bound predicate to reply
(see the example presented in the “Inference
module” section below).

2.	 Identify the root of the question from the
parse tree as the main verb. Take its lemma
to be the canonical name of the predicate.

3.	 Take the list of noun, prepositional or
adverbial phrases that are directly linked to
the main verb as arguments of the predicate.
Predicate arguments can only be introduced
by dependency relations that designate
subject, object, or complement dependents.

4.	 The argument that contains an interrogative
adverb, determiner, or pronoun (in Romanian
this is always the first phrase in the question)
is the unbound (to be resolved) typed variable
to be unified by the predicate matching
algorithm. Its bound value is offered back as
the answer to the question.

Take for instance the question “În ce sală se ține
laboratorul de informatică?” (English “In what
room is the informatics laboratory taking place?”)
Given this question, the text pre-processor will
parse it into the tree from Figure 1.

Figure 1. The parse tree for the question “În ce sală se ține laboratorul de informatică?”

https://www.sic.ici.ro

418 Ion R., Badea V. G., Cioroiu G., Barbu Mititelu V., Irimia E., Mitrofan M., Tufiș D.

The main verb of the question is ține which is the
predicate name. Its arguments are the following:

1.	 The oblique prepositional phrase “În ce
sală” which is the requested variable X
of type LOCATION (see the concept sală
defined above) because it is modified by the
interrogative determiner “ce”.

2.	 The subject noun phrase “laboratorul de
informatică” which is a reference of type curs
(see reference definition with alias C1 above).

With this information, the question analysis
module constructs the partially bound predicate

ține ”laboratorul de informatică”/
curs X/LOCATION

which it passes to the inference module whose job
is to resolve the reference of X.

Inference module

Presented with a partially bound predicate, it is the
job of the inference module to find the appropriate
answer to the posed question or ask supplementary,
clarifying questions. This is accomplished within
the main RDM question-answering loop.

Predicate and argument fuzzy matching, that is, the
identification of the most likely predicate from the
micro-word definition that was referred to in the
user’s question, is done with the following algorithm:

1.	 The predicate name is searched for,
either verbatim or through a synonym,
in PREDICATE definitions of the micro-
world definitions and all predicates (TRUE
definitions) that match the predicate name
received from the question analysis module are
retrieved. If no such predicate is found, return
a “Please rephrase the question” response.

2.	 From the set of true predicates, select the one
such that:

a.	 The sum of its arguments fuzzy-match
scores is maximum, while strictly
enforcing the type equality of the fuzzy-
matched arguments.

b.	 The unbound variable has the same type
with an existing argument.

3.	 If Step 2 produced a predicate, answer with
the bound value of the best matched predicate.

Given two lists of POS-tagged and lemmatized words
D (description) and R (reference), the fuzzy-matching
algorithm, mentioned at Step 2.a. above, works in the

following way, for all word pairs di from D and rj
from R such that both di and rj are content words
(i.e. nouns, verbs, adjectives or adverbs) and i and
j are the positions of words in their respective lists:

1.	 If lemma of di string-equals lemma of rj or if
lemma of di loosely-equals lemma of rj , given
the semantic neighborhoods (synonyms and
direct hyper- and hyponyms as defined by
the Romanian WordNet (Tufiș et al., 2013),
accessed from the RELATE platform) of di
and rj , add |i - j| + 1 to the matching score
Sd→r and advance to the next i index.

2.	 If no matching can be found at Step 2
and if lss is the Levenshtein similarity
score between the lower-cased di and rj ,
add lss ∙ (|i - j| + 1) to the matching score Sd→r
and advance the next i index.

It follows that Sd→r (from description to the
reference) cannot be larger than the size of the
D list and the score Sr→d (in the reverse direction)
cannot be larger than the size of the R list. Thus,
the symmetrical matching score

S = 2 / (Sd→r + Sr→d)

is at most 1 when D and R are identical, with
respect to their content words.

To exemplify the matching algorithm for the question
“În ce sală se ține laboratorul de informatică?”, as
already presented, the question analysis module
retrieves the partially bound predicate

ține ”laboratorul de informatică”/
curs X/LOCATION

Considering that the micro-world contains the true
predicate definition:

TRUE ține C1 S1 T1 P2

in which C1 is “laboratorul de informatică” of
type curs (matching score S = 1) and S1 is “sala
209” of type LOCATION, and strictly observing
type matching, X can be unified with S1 and the
response “Sala 209.” is available to the user.

The dialog manager loop always keeps track of
the last, best-matching predicate and its argument
bindings. If the user wants more information with
respect to this predicate, subsequent predicate
matching happens in this context. Resuming the
given example, if the user’s next question would
be “Cine îl predă?”, the question analysis module
provides the analysis

preda Y/? X/PERSON

	 419

ICI Bucharest © Copyright 2012-2020. All rights reserved

A Dialog Manager for Micro-Worlds

in which any personal pronoun is transformed
into an unknown type variable and the special
interrogative pronoun “cine” (English “who”) is
only applicable to persons. Now, because preda is
a synonym of ține, the last best-matching predicate
with bound arguments C1 and S1 is able to offer
the answer because P2 has the same type as our
requested variable X (PERSON): “Magda Vlad.” Y
cannot be reliably bound as more detailed syntactic
analysis would be needed. This is a simplified way
of solving elliptic questions because it still requires
the presence of a main verb. A further enhancing of
this inferential process (but fuzzier) is to assume,
in case no main verb is present in the question, that
the previous best-matching predicate would apply.
This way, the follow-up question “La ce oră?”
(English “At what time?”) could be interpreted as:

ține X/TIME

Keeping track of the last best matching predicate
and its argument bindings, the elliptic question
will be correctly answered with “marți la 8:00”,
as the best-matching predicate ține is able to bind
its last argument to T1.

6. Conclusion

The ROBIN Dialog Manager is a Java-based,
configurable dialog manager ready to be integrated
into any application that requires interaction into
spoken Romanian. One of its advantages is that,
with its smartly abstracted class hierarchy, it can
be extended to handle other languages, such as
English. Thus, if the language pre-processing
chain doing tokenization, part-of-speech tagging,
lemmatization and dependency parsing is available
along with ASR and TTS modules, RDM can
work in any language, provided that the required
Java implementations using the targeted language
technologies are supplied.

Another advantage of RDM is the micro-world
definition file with which it can handle a new dialog
scenario, requiring the knowledge engineer to
define concepts, concept references and predicates
that are applicable to the new micro-world.
The robot planning algorithm can utilize the
resolved true predicate instance with its bound
arguments in ways that are suitable for the actions
to be performed following the conversation with
the user. Furthermore, named robot behavior can
be attached to any predicate definition in the micro-
world file to map speech to action taking.

One disadvantage of the proposed solution is that
the knowledge engineer is tasked with the complete
definition of the micro-world with the caveat that any
incomplete specification (e.g. the right synonyms are
not provided or not all the possible references are
enumerated) will cause RDM to not work. While
the solution to this problem is straightforward (just
add the missing information), it is conceivable that
a complete specification might never be attained.

RDM will receive some further improvements
such as the ability to populate its universe of
discourse from external sources. If the relevant
information is stored in e.g. a database, the ability
of creating predicate instances directly from the
database, via an Internet connection, will be
added. Thus, the knowledge base of RDM could
be updated on the fly, without disrupting the
functionality of the dialog manager.

Acknowledgements

The research described in this article was
supported by a grant of the Romanian National
Authority for Scientific Research and Innovation,
CNCS – UEFISCDI, project number PN-III
72PCCDI ⁄ 2018, ROBIN – “Roboții și Societatea:
Sisteme Cognitive pentru Roboți Personali și
Vehicule Autonome”.

REFERENCES

Anon, (2018). Website of the ROBIN Project. Available
at: <http://aimas.cs.pub.ro/robin/robin-dialog/>, last
accessed: October 25th, 2020.

Avram, A. M., Păiș, V. & Tufiș, D. (2020). Towards
a Romanian end-to-end automatic speech recognition
based on Deep Speech 2. In Proceedings of the
Romanian Academy, Series A, Volume 21(4). ISBN
1454-9069, in print.

Barbu Mititelu, V., Tufiș, D., Irimia, E., Păiș, V., Ion,
R., Diewald, N., Mitrofan, M. & Mihaela, O. (2019).
Little Strokes Fell Great Oaks. Creating CoRoLa, The
Reference Corpus of Contemporary Romanian, Revue
roumaine de linguistique, LXIV(3), 227–240.

Campillos-Llanos, L., Thomas, C., Bilinski, É,
Zweigenbaum, P. & Rosset, S. (2020). Designing a
virtual patient dialogue system based on terminology-
rich resources: Challenges and evaluation, Natural
Language Engineering, 26(2), 183–220.

https://www.sic.ici.ro

420 Ion R., Badea V. G., Cioroiu G., Barbu Mititelu V., Irimia E., Mitrofan M., Tufiș D.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K.
(2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,
arXiv:1810.04805 [cs.CL].

Fellbaum, Ch. (1998, ed.). WordNet: An Electronic
Lexical Database. Cambridge, MA: MIT Press.

Henderson, M. (2015). Machine learning for dialog
state tracking: A review, In Proceedings of The First
International Workshop on Machine Learning in
Spoken Language Processing, September 19–20,
Aizu, Fukushima, Japan. Available at: <https://
research.google/pubs/pub44018/>.

Ion, R. (2018). TEPROLIN: An Extensible, Online
Text Preprocessing Platform for Romanian. In
Proceedings of the International Conference on
Linguistic Resources and Tools for Processing
Romanian Language (ConsILR 2018), November 22-
23, 2018, Iași, Romania (pp. 69-76).

Ion, R. (2020a). ROBIN Dialog Manager, Open-
source software. Available at: <https://github.com/
racai-ai/ROBINDialog>.

Ion, R. (2020b). An example micro-world file. Available
at: <https://github.com/racai-ai/ROBINDialog/blob/
master/src/main/resources/precis.mw>.

Jurafsky, D. & Martin, J. H. (2019). Speech and
Language Processing, 3rd ed. draft. Available at:
<https://web.stanford.edu/~jurafsky/slp3/>.

Logan, B. (2000). Mel Frequency Cepstral
Coefficients for Music Modeling. In Proceedings of
the International Symposium on Music Information
Retrieval (ISMIR), October 2000, Plymouth, USA
(pp. 1-11).

Păiș, V., Tufiș, D. & Ion, R. (2020a). A Processing
Platform Relating Data and Tools for Romanian
Language. In Proceedings of the 12th Language
Resources and Evaluation Conference, European
Language Resources Association, Marseille, France
(pp. 81–88).

Păiș, V. (2020b). The RELATE website. Available at:
<https://relate.racai.ro>.

Ping, W., Peng, K. & Chen, J. (2019). ClariNet:
Parallel wave generation in end-to-end text-to-speech,
arXiv preprint arXiv:1807.07281.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L.,
Glembek, O., Goel, N., Hannemann, M., Motlicek,
P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G.
& Vesely, K. (2011). The Kaldi Speech Recognition
Toolkit. In Proceedings of the IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding,
Hilton Waikoloa Village, Big Island, Hawaii, US, IEEE
Catalog No.: CFP11RW-USB. Available at: <http://
www.danielpovey.com/files/2011_asru_kaldi.pdf>.

Rus, V., D’Mello, S., Hu, X. & Graesser, A. (2013).
Recent Advances in Conversational Intelligent
Tutoring Systems, AI Magazine, 34(3), 42–54.

Smith, R. W., Biermann, A. W. & D. Richard Hipp,
D. R. (1995). An Architecture for Voice Dialog
Systems based on Prolog-Style Theorem Proving,
Computational Linguistics, 21(3), 281–320.

SoftBank Mobile Corp (2014). SoftBank Mobile
and Aldebaran Unveil “Pepper” – the World’s First
Personal Robot That Reads Emotions. Available at:
<https://www.softbank.jp/en/corp/group/sbm/news/
press/2014/20140605_01/>, last accessed: October
25th, 2020.

SoftBank Robotics Europe - SAS (Limited Company)
(2020). Pepper robot presentation website.
Available at: <https://www.softbankrobotics.com/
emea/en/pepper>, last accessed: October 25th, 2020.

Sotelo, J., Mehri, S., Kumar, K., Santos, J. F., Kastner,
K., Courville, A. C. & Bengio, Y. (2017). Char2Wav:
End-to-End Speech Synthesis. In Proceedings of the
International Conference on Learning Representations
– ICLR 2017 (pp. 1-6).

Stan, A., Yamagishi, J., King, S. & Aylett, M.
(2011). The Romanian Speech Synthesis (RSS)
corpus: building a high quality HMM-based speech
synthesis system using a high sampling rate, Speech
Communication, 53, 442–450. DOI: 10.1016/j.
specom.2010.12.002

Stolcke, A., Zheng, J., Wang, W. & Abrash, V.
(2011). SRILM at Sixteen: Update and Outlook. In
Proceedings of IEEE Automatic Speech Recognition
and Understanding Workshop, Dec. 2011, Vol. 5.

Tufiș, D., Barbu Mititelu, V., Irimia, E., Mitrofan,
M. Ion, R. & Cioroiu, G. (2019). Making Pepper
Understand and Respond in Romanian. In Proceedings
of the 22nd International Conference on Control
Systems and Computer Science (pp. 682 – 688).
DOI: 10.1109/ CSCS47589.2019

Tufiș, D., Barbu Mititelu, V., Ștefănescu, D. & Ion, R.
(2013). The Romanian Wordnet in a Nutshell, Language
Resources and Evaluation, 47(4), 1305–1314.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. & Polosukhin, I.
(2017). Attention is all you need. In Proceedings of the
31st Conference on Neural Information Processing
Systems - NIPS 2017, Long Beach, CA, USA
(pp. 6000–6010).

Wang, Y., Skerry-Ryan, R. J., Stanton, D., Wu, Y.,
Weiss, R. J., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z.,
Bengio, S., Le, Q., Agiomyrgiannakis, Y., Clark, R. &
Saurous, R. A. (2017). Tacotron: Towards end-to-end
speech synthesis, arXiv preprint arXiv:1703.10135.

