
Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 333

1. Introduction

Generally speaking, a job shop scheduling
problem (JSSP) is a decision-making process for
time optimal assignment of some (limited)
resources to some heterogeneous jobs consisting
in many operations. The resources have to be
available and the associated optimization
problem is either mono-objective or multi-
objective. This kind of scheduling places the
problem in the discrete-event systems (DES)
domain, whose optimal control often involves
computer simulation, at least in the large-scale
real-world manufacturing systems.

As shown in [11] the simulation-based
optimization can be utilised in the decision-
making process for DES. For the specific JSSP
case, there are two main aspects which make the
decision difficult, namely: a) the constraints can
not be explicitly expressed related to the
decision variables, and b) the number of the
decision alternatives in the search space is huge.

Besides the trivial case when the number of
decision alternatives is small to average, where
simulation-based optimization consists in
evaluating all alternatives to detect the one that
provides the best value for the optimization
criterion/criteria, the proper meaning of the
simulation-based optimization refers to an ordered
simulation sequence, determined by an algorithm,
applied to different decision parameters until a
(near) optimal solution is found [11].

This paper is concerned with simulation-based
optimization appropriate to the Multi-objective
Flexible JSSP (MOFJSSP). It is organised as
follows. An extension of the classical
formulation of JSSP to MOFJSSP is presented
first. Next, the most used simulation-based
optimization methods in the scheduling area are
reviewed and a control method, based on a
genetic algorithm, is proposed and the test
results are presented.

2. Multi-Objective Flexible JSSP

MOFJSSP definition

The flexible job shop scheduling is meant to
properly handle the manufacturing process
flexibility related to the structure either of the jobs
or of the resources (processing machines and
transportation vehicles) during the scheduling.

In the flexible JSSP (FJSSP) of type I, there are
a) jobs with alternative sequences of operations
and b) operations which can be performed on
sets of (identical or different) machines. In the
FJSSP of type II, the jobs have fixed sequences
of operations, but the routings of the jobs on
the machines are flexible; in other words, there
are operations which can be processed by any
machine in a specified set [4].

There are various possible formulations for the
(F)JSSP. The problem can be viewed either as
combinatorial optimization problem or as
constraint programming problem.

Simulation-based Optimization Using Genetic
Algorithms for Multi-objective Flexible JSSP

Elena Simona NICOARĂ1, Florin Gheorghe FILIP2,3, Nicolae PARASCHIV1
1 Petroleum-Gas University,

39, Bucureşti Blvd., Ploieşti, 100520, Romania,
snicoara@upg-ploiesti.ro

2 Romanian Academy - INCE and BAR,
125, Calea Victoriei, Bucharest 010071, Romania,
filipf@acad.ro

3
National Institute for Research & Development in Informatics –ICI Bucharest,
8-10, Maresal Al. Averescu Blvd., Bucharest 011455, Romania

Abstract: The fast technological progress, along with growing requirements in the manufacturing systems have led in the
last decades to a true revolution regarding the optimization methods for job shop scheduling problem (JSSP), which
regularly has the greatest impact on the global optimality from the temporal perspective. An extension to the mathematical
framework associated to the JSSP for multi-objective flexible JSSP (MOFJSSP) is proposed; here, the flexibility of type II,
where the routings of the jobs on the resources are not fixed is considered. Also, a short review of the most used simulation-
based optimization methods for (MOF)JSSP is made and a genetic algorithm-based control system is proposed. This is then
tested on a complex real-world MOFJSS instance and the ft10 test-instance.

Keywords: Multi-objective Flexible Job Shop Scheduling Problem, Simulation-based Optimization, Genetic Algorithm,
GA-based Control, NSGA-II

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 334

A combinatorial optimization problem has
discrete solutions and is defined by objective
and constraints. In this context, the (F)JSSP can
be defined as integer linear programming. This
formulation however hardly allows a practical
method to attain the solutions [15]. Moreover
such a formulation is computationally
infeasible [14]. Though the mixed integer
linear programming is another possible
formulation, and a conceptually elegant one,
according to [21], the number of integer
variables grows exponentially with the instance
dimension and it requires too many constraints
to be satisfied. One of the most used
formulations in this category is the disjunctive
programming formulation where the solutions
(schedules) are represented as disjunctive
graphs. This is especially adequate to solving
techniques based on graphs / trees, such as
branch and bound methods.

In the constraint programming formulation
only the constraints to be satisfied are set. The
solutions do not have to extremize any
objective function and, consequently, to well
define the problem, combining it with an
optimization formulation is necessary.

In this section an extension of the mathematical
model of the deterministic predictive JSSP
presented in [3] is made in order to include the
type II flexibility. The definition of the FJSSP
is approached as a combinatorial optimization
formulation. The traditional assumptions are
used, such as: a) the job release dates is time
T=0, b) all the machines are available at time
T=0, c) the number of machines and jobs are
finite and constant in time (with respect to their
characteristics), d) the processing times of the
operations are finite and constant, and e) the
probability for machine breakdowns and the
setup times are statistically included in the
processing times.

The input data of FJSSP are:

 a finite set M of m (mZ) machines, where
Z is the set of integers;

 a finite set J of jobs, each job Ji
consisting in an ordered sequence of ni

operations, iji njo ,1,,  ;

 for each operation),1,(, iji njJio  ,

the set of machines which can perform it,
MMA ji , , with 1)(, jiMAcard , where

)(, jiMAcard is the cardinality of the set

jiMA , , and the processing times Zk
ji , ,

jiMAk , are given.

Therefore, to each operation, oi,j, one can
associate a set Di,j of processing times:

},,1

,{

,

,,

jii

k
jiji

MAknj

JiZD



 
 (1)

A candidate-solution is a valid schedule for J,
which is defined as a collection of
machine schedules:

mkZ

njJiMAkos ijijik

,1,

},1,,{: ,,




 (2)

which satisfies the constraints associated to the
process to be stated in the sequel. A partial
solution is a partial valid schedule which
satisfies as well the constraints.

An overall schedule is },1{ mksS k  ,

where all the operations performed on all the

machines mk ,1 are scheduled. The list of
start times for the operations performed on every

machine mkk ,1,  , specified by functions
(2), can be determined through various methods
to obtain either a semi-active schedule, or an
active one or a non-delay schedule.

There are three constraints: a) the precedence
constraint, b) the non-preemption constraint
and c) the resource capacity constraint [19].

The (F)JSSP solution is the overall schedule, S,
which consists in all the operations of all the
jobs on the machines, ordered by the positive
integer values of the functions , 1,ks k m . To
this schedule a performance measure,

)(max SC , is assigned to be minimised:

))((max

)(

,,,1,,1,

max

niiniikmknjJi
os

SC

i






 (7)

The relation (7) computes the makespan as the
maximum stopping time, considering all the
operations in the schedule.

Besides the makespan, which is the main
subject of interest of the scheduling system,
secondary aspects can be taken into
consideration, such as: total workload on the
machines, maximum workload, jobs flow time,
the amount of work-in-process, machines

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 335

unused capacity, the average idle ratio
(regarding the jobs or the machines), the
number of late operations etc. and are related to
the scheduling optimization criteria.

The objective is to extremize a particular
performance measure which indicates, from the
point of view of temporal constraints, how well
the scheduling is handled. More precisely, the
primary objective consists in minimization of
the makespan:

))((min)(max}_{
*
max SCSC schedulesfeasibleS . (8)

A schedule with minimum makespan is named
optimal solution of the (F)JSSP.

For the multi-objective FJSSP, the objective
consists in the simultaneous optimization of
many objectives, for example the output values
mentioned before. Though the most natural
(altough not simple) way to handle the multiple
objectives is their aggregation into one single
objective to consider further the mono-
objective problem, the Pareto optimality
approach, which separately considers the
objectives, proves to be more beneficial [7].

MOFJSSP complexity

The JSSP is a NP-hard combinatorial problem,
for which the classical approaches, based on
exhaustive search, have a limited success. The
only polynomially solvable instances are those
mono-objective unconstrained without
flexibility involving maximum two jobs and
two machines. Instances with higher
dimensions are even strongly NP-hard, for
example some instances with two or three jobs
with recirculation, as it is stated in [25]. If,
additionally, one considers multiple objectives
and supplementary parameters, the problem
becomes even more difficult. The practice
showed that the JSSP are very difficult to solve
even heuristically. Once supplemented with the
flexibility feature, JSSP become more complex.
A broder analysis of the complexity results for
the (F)JSSP offer [19] and [25].

3. Simulation-based Optimization
for MOFJSSP

The research in the JSSP area in the last sixty
years has shown several distinct phases. The
first efforts were focused on the design of
priority dispatch rules heuristics. A few
examples of the many rules are: first-in-first-

out, shortest processing time, shortest
remaining processing time, time-insystem [15,
25, 8]. Every such rule sequences the jobs to be
scheduled based the specific criterion and
therefore a priority list for the jobs is created.

The experience showed that for the big
complex instances the simple priority dispatch
rules do not lead to an adequate success.
Therefore, some research was made to combine
simple rules in weighted dispatching criteria.
Such a result is the algorithm designed by Filip
[10] for real time production control, based on
parametric decomposition [11, 12]. The
algorithm is designed to use either simple
priority dispatching rules or a composite
weighted priority rule to help to decide which
is the most appropriate job to be assigned to a
vacant machine. The set of dispatching rules
used includes: a) the minimum duration of the
next operation, b) the Carrol's rule, c) the
maximum time spent in queues, d) the
maximum remaining processing time/current
processing time, e) first in first out, f) the
estimated size of the next queue and g) an
external priority. The efficiency of each
schedule obtained through simulation is
evaluated by an aggregated utility function
calculated as a weighted sum of several
performance measures such as: a) estimated
delay of completing the job, b) estimated time
for an early delivery, c) the waiting time spent
in queues, d) total idle time of machines. The
value of the aggregated performance measure
serves to adjust the values of importance
parameters of the composite dispatching rule
through a pseudo-Newton algorithm. The
method proved to be beneficial for middle-size
multi-objective JSSP. The dynamic adjustment
of weight parameters of the dispatching rules
based on fast simulation allowed also for real
time decisions to be made in the case of „crisis”
situations (urgent unexpected orders, machine
failures and so on).

The dispatching rules have recently re-gained
popularity in the context of dynamic scheduling
for real-time assignment in supply chains [8].

For the small to middle-size JSSP, the exact
optimization methods are also suitable. They
comprise, on the one hand, the enumerative
methods (such as backtracking, branch and
bound and dynamic programming), and on the
other the calculus-based techniques, the
Lagrangean relaxation and the decomposing
strategies [19]. Though the exact optimization

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 336

methods can identify the global optimal
solution(s), the JSSP instances over 15 jobs on
15 machines exceed the solving power of these
methods [20].

As opposed to the exact methods, the
approximation methods are suitable to the
larger and more complex instances of JSSP or
MOFJSSP, though they do not guarantee the
identification of the global optimal solution, if
such a solution exists [6, 18, 19, 20, 25].

Shifting bottleneck heuristic, iterative local
search heuristics and metaheuristics (such as
genetic algorithms, tabu search, simulated
annealing and GRASP) also received high
theoretical and practical interest in scheduling
area [11, 18, 19, 20, 25].

Among all such metods, the genetic algorithms
(GA) have a low design cost, are easy to extend
and to connect to the existing models and
simulations, can be used in parallel processing
and, the most important, they simultaneously
operate on many candidate-solutions in a way
that overcomes the issues in abrupt search
spaces with many local optima. Thus, for certain
complexity features of the big (MOF)JSSP, GA
might provide the best performance.

In the last 20 years the research was focused on
agent-based techniques (mainly consisting in
simulation of natural social optimizer
behaviour, such as Ant Colony Optimization,
Wasp Behavior Model and Particle Swarm
Optimization), artificial neural networks,
expert systems, knowledge based systems and
fuzzy techniques [19, 20, 25].

Also hybrid techniques prove for specific
manufacturing contexts the ability to identify
(near) optimal solutions in a reasonable amount of
time [5]. A more ample discussion over the
scheduling simulation-based optimization methods
and the comparative analysis is made in [24].

The choice of appropriate representation for the
schedules, the design for efficient search
operators and the parameters tuning remain
challenging issues for the most of the
metaheuristics. The core interest should be given
to the domain knowledge incorporation, to the
constraints handling techniques, to the specialized
operators and to the local search heuristics.

Genetic algorithms

A GA is a powerful weak adaptive optimization
technique [16]. It is a weak method because a

little information is necessary about the
problem to use it, but in contrast with other
weak methods, a GA exploits in a sophisticated
manner this information with a relatively
limited search effort, fact that gives to it the
power feature.

The first study on GA applied to scheduling
was made 25 years ago, by Davis [6]. Since
then, the most of the theoretical and practical
research works have been mainly focused on
the mono-objective scheduling problems; the
multi-objective flexible JSSP did not benefit of
a similar attention.

GAs have recently proved to be effective in
scheduling applications in supply chain
management and control [8] and disassembling
line balancing [9, 22].

4. NSGA-II-DAR Optimization
Control Model for MOFJSSP

A direct consequence of applying No Free
Lunch Theorem [26] in the GA case is that to
search the best GA is senseless; instead of this,
we can identify the best GA for a given
instance and a given search space, from the NP-
completeness perspective.

In this context, the GA under evaluation was
designed for the difficult middle to high
dimension MOFJSSPs and the search spaces
formed by schedules encoded as permutations
without repetitions of the operations to be
scheduled set. The algorithm, NSGA-II-DAR
(NSGA-II with dynamical application of genetic
operators and population partial re-
initialization) comprises an adaptive heuristic
procedure embedded in the NSGA-II algorithm
proposed by Deb et al. [7].

Genetic encoding and performance
evaluation

For the candidate-solutions (individuals that are
schedules in the GA), a genetic encoding as
permutation without repetitions of the
operations set is chosen:

)},{(
,1,

jiOp
injJi 

  (9)

Given this chromosome encoding, decoding a
chromosome means to establish the scheduling
sequence based on the start times of the
operations in the chromosome. Start times are
set according to the principle “to the first non-

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 337

processed operation in the schedule, the
necessary resource is assigned once it becomes
available”. In other words, to the chromosome a
semi-active decoding procedure is applied,
where no operation can be started earlier without
modifying the processing order or violating the
technological constraints. The start time for an
operation oi,j in chromosome is [2]:

















1 if,

1 if

),)(,max(

)(

1,1,

,

'

jat

nj

osat

os

k

i

jijikk

jik


. (10)

In the above relation, which is the expression of
the precedence constraint and the capacity
constraint for FJSSP, atk is the availability time
for the resource k which process the operation

oi,,j and 1,1,)('   jijik
os  is the end time of the

preceding operation (in job i) on the
corresponding resource k’.

Having set the start times for all the operations
in the schedule, the performance assessment for
the schedule (the fitness) is computed, in
correlation with the objective function(s).
According to the relation (7) in the FJSSP
formulation and to the relation (10), the
makespan of a schedule S is:

}1max{)(max mkatSC k  . (11)

Through the particular working methodology, a
GA does not identify all the feasible schedules
in the search space, but it evolves lower
makespan schedules.

DAR control strategy

The performance of a GA, especially when
applied to the multi-objective optimization, is
preponderantly determined by the level of
balance between population diversification and
searching intensification. The better this
balance maintained, the more efficient is the
ability to avoid the premature convergence to
local optima regions of the search space.

The aim of the proposed strategy, named DAR,
is to avoid the premature convergence of the
genetic algorithm. This is achieved through
two mechanisms:

 dynamical application of crossover and
mutation operators (DA) and

 population partial re-initialization (R).

Both of them are based on the average progress
of the genetic operators during the evolution.

The first mechanism of the adaptive DAR
control strategy dynamically selects in each
generation of GA a crossover operator and a
mutation operator to be applied located in two
sets of operators.

We used two crossover operators: UX
(Uniform Order-Based Crossover) and PPX
(Precedence Preservative Crossover) and three
mutation operators: frame-shift, translocation
and inversion. To note that any number of
operators one uses, the procedure remains valid
and applies with a relative similar complexity.

The two operators that score the best average
progress from the beginning of evolution are
selected in the current generation, so that the
overall evolution is reached by taking
advantage of the best operators adequate to the
considered instance. The progress of each
operator determines a certain selection
probability for the operator. With every
application of an operator, its progress updates
and consequently its selection probability is
updated as well.

In [1] a dynamical application of two mutation
operators is proposed and tested on a bi-
objective flow shop scheduling problem and
return good results.

In the proposed approach a modified progress
assignment for the mutation operators is used,
which better takes into account the Pareto
dominance relation and the crossover as well is
dynamically applied. The formula for the
crossover progress assignment accentuates the
distinction between the offspring which
dominates both parents and the offspring which
dominate only one parent or none.

Let S be the offspring resulted in generation t
from the parents (S1, S2) by applying the
crossover operator x. The progress of x is [24]:

progress(x)= (12)

 1, if S dominates S1 and S2

)5.0,
*

1max(1

G

tk
 , if S dominates only

a parent

 0.5, if no dominance relation exists
between S and S1, between S and S2

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 338

)0,
*

5.0max(2

G

tk
 , if S is dominated only

by a parent and no dominance relation
exists with the other

 0, otherwise (if S is dominated by
both parents)

where G is the maximum number of
generations of the evolution, and k1, k2 are the
parameters which enforce the velocity of
reducing the progress during the evolution.
This reduction leads to a broader proliferation
of the poor individuals in the first generations
than in the latter ones, when the search follows
a more stable direction. Moreover, giving
chances to proliferate in the population to the
offspring that dominate no parent but are
dominated by both parents, the population
becomes more diverse.

In order to make the value (
G

tk *1
0.1 ) belong to

the segment [0.5, 1] and (
G

tk *2
5.0 ) to [0, 0.5],

the variation range for parameters k1 and k2 is
bounded by 1 and G/2. Setting and tuning the
values of k1 and k2 are made from two
perspectives: a) the extent and b) the quality of
the search space exploration. Hence, to get an
extensive exploration (therefore a very diverse
population), both parameters are set to low
values (down to 0.5). The maximum exploration
is attended when k1= k2 = 0.5; this is the most
permissive way for the poor individuals to be
accepted in the evolution. Such behaviour for
the genetic strategy is desirable for the very
difficult instances, with abrupt search space,
when one should avoid loosing the hidden
solutions. An extensive exploration is not
convenient however to any instance, because the
population diversification and searching
intensification balance may be broken.

When k1 and k2 are set to the maximum value,
G/2, the poor individuals are the most restricted
to be accepted in the population and the effects
are reverse than in the previous case. It is
advisable that k1 value to not exceed the k2
value, because no one will accept to lose some
offspring which dominate one parent and to
keep some offspring that dominate no parent.

Let x be a mutation operator applied to an
individual S. The progress of x is [24]:

progress(x)= (13)

 1, if mut(S) dominates S

)5.0,
*

1max(3

G

tk
 , if no dominance

relation exists between mut(S) and S

 0, if mut(S) is dominated by S

where mut(S) is the candidate-solution
obtained after x applies to S and k3 is the
parameter which enforces the velocity of
reducing the progress during the evolution. The
second line in the above relation distinguishes
this formula from the one proposed in [1].

The comments about k1 and k2 are also valid
for k3. A low value of k3 leads to a vast
exploration of the search space by mutation
because individuals in the same Pareto front
with S are allowed to enter the population.

The selection for crossover and mutation
operators to be applied in each stage of the
algorithm is called by the DAR control strategy
based on the selection probabilities of all the nr
available operators in x’s class [1]:

xxnr

l

x nr
lprogress

xprogress  
 

)*1(*
)(

)(

1

 (14)

Here,)(lprogress is the average progress per

application of the operator l (l = 1,..,nr) and x is
the minimum value of the selection probability
of x. The value x  (0,1) allows one to use all
the crossover and mutation operators during the
evolution, even if some of them prove to be
weak for the concerned instance.

The relation (14) suggests that when the
progress of an operator is high, the decision
strategy provides a control to more frequently
apply the operator.

In the first generation, the selection of
crossover and mutation operator is randomly
performed, with equal probabilities: for the
crossover this probability is 0.5 and for the
mutation operator is 0.33.

For the selected operator, if the result is
feasible, the average progress per application is
computed using [1]:

nra

xprogress

xprogress

nra

i
i

 1

)(

)(, (15)

where nra is the number of times the operator x
was applied until the current generation and
progresi(x) is the progress of x at application step i,
computed according to the relation (12) and (13).

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 339

If the result remains unfeasible in ten trials,
another operator in his class is selected to be
applied and for this latter operator the progress
is updated. We note that PPX and frame-shift
operators do guarantee the result is feasible.
For that we used the improved variant of
frame-shift in [23].

As opposed to the DA (dynamical application
of crossover and mutation operators)
mechanism, the R mechanism, namely
population partial re-initialization, is applied only
when the risk to premature convergence in the
current generation is considered high enough. It
is considered this condition met when the
average progresses of all the operators do not
exceed a minimum threshold, pMin  [0,1].

The re-initialization consists in replacing a part
of the new generated population with some
randomly generated individuals, in a proportion
set by the pReinit parameter.

Additionally, if the re-initialization is performed
300 times in a run, the evolution will be stopped
anyway, though the a priori set stop criteria are
not satisfied. The reason for this is that many re-
initializations means poor chances there are to
identify better solutions in the future.

The two proposed mechanisms combine their
effects in the DAR strategy through multiple
direct and indirect interdependences of the
associated parameters (as figure 1 shows).

Figure 1. The interdependences between the DAR
strategy parameters

The strategy achieves a dynamical adaptive
parameter control from a run to another: the
feedback from the current search state
determines the direction and the magnitude of
the genetic alteration.

Through DAR strategy, the GA permanently
adapts to the population performance in order
to identify the favourable regions in the search
space. Hence, the algorithm is able to learn
during the evolution what are the appropriate
genetic operators for a particular instance, to
promote the beneficial results of all the

available operators, to maintain a good balance
between the exploration and the exploitation of
the search space and to extend the genetic
search without loosing the direction, fact that
avoid or delay the premature convergence of
the algorithm.

NSGA-II-DAR algorithm

The NSGA-II algorithm is a GA proposed in
[7] which proved to be more effective than
other GAs especially for multi-objective
complex optimization problems, with conflict
objectives, as MOFJSSP is.

The NSGA-II algorithm contains a fast
procedure for Pareto dominance based sort
(which returns the list of non-dominated fronts
in the population). Also an estimate of the
density of the individuals around a particular
individual named crowding distance is made.
This measure is used to define a comparing
operator, designated as “n”, in order to
identify the individuals in a Pareto front that
are located in less dense regions. The reason for
this stands in building a bias to uniformly
distributed optimal Pareto fronts.

Over the NSGA-II algorithm the DAR strategy
is inserted to attain NSGA-II-DAR algorithm. In
the first generation t = 0 the population Pt is
pseudo-random initialized then fast sorted in
order to assign to each individual the dominance
level (in fact the front index where it is part). By
applying the genetic operators (binary
tournament selection, crossover and mutation) a
new population Qt with N elements is obtained.
The elitist procedure for a generation t, except
the initial one, allows the parent solutions to be
compared with offspring and a combined
population Rt is created, having 2N elements.
The fast sorting is applied to Rt and the list F of
the non-dominated fronts is generated. The new
parent population Pt+1 is formed by adding
solutions in the best fronts until the dimension N
is reached. For each individual in these fronts,
the crowding distance is computed and the
individuals in the last accepted front are sorted
based on “n“ relation in order to select the best
ones to complete the population Pt+1. On this
parent population the genetic operators are
further applied and the new offspring population
Qt is obtained. If the risk for premature
convergence is noticed at the current generation,
Qt+1 is partially re-initialized according to the
mechanism R of the DAR strategy. This step,
along with the new population formation step

k1, k2, k3

i, i{1..5} pMin

emergence

pReinit
amplitude

 Re-initializations
Operators
progress

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 340

which supposes the dynamical application of the
crossover and mutation, represent the difference
between NSGA-II-DAR and NSGA-II.

The solutions of the algorithm are the
individuals in the first front in population Pt at
the last generation (all the non-dominated
schedules). To choose a final unique solution,
one can use user preferences. Other output
values of the control algorithm are: a) the
number of different solutions, b) the number of
performed re-initializations, c) the applying
frequencies of genetic operators, and d) the
average progress of the genetic operators in the
last generation (in order to identify the
appropriate operators for the instance).

Computer Simulation Application

To test NSGA-II-DAR algorithm a Java
application was developed. It was designed to
allow the control for any optimization process,
not only scheduling. It comprises modules for
providing many genetic encodings and modules
for implementation any number of optimization
criteria. By the generality feature, the
application constitutes an autonomous
intelligent control system, whose architecture
integrates many selector blocks (see figure 2),
which confers to it self-organizing attributes.
Hence, the application is flexible related to the
variety and the complexity of the instances.

The selector blocks offers, on the one hand, a
high level of control flexibility, it was noted
before, and, on the other one, constitutes a good
support for identification of the most
appropriate encoding and the most appropriate
GA for a specific instance.

In the current version, the computer simulation
application implements four genetic
algorithms: NSGA-II, NSGA-II-DAR, an elitist
GA and the canonical GA.

5. Simulation Results

The NSGA-II-DAR performance evaluation
was made in multiple tests on a difficult FJSSP
instance from pharmaceutical industry, called
Pharm, both mono-objective and multi-
objective and the notorious ft10 JSSP test-
instance [13].

In the Pharm instance, for a scheduling horizon
of one month, 79 jobs of 16 different types

have to be scheduled on 20 machines. The
input data in table 1 indicate a total number of
606 operations. Here, Prod means the type of
product, NJ is number of jobs corresponding to
every type of product and NOP is the number
of operations in the job. The associated
scheduling flexibility is of type II.

A feasible schedule for the 606 operations may
be the sequence

(6,1)(76,1)(53,1) ... (69,3) ... (54,8)(60,8)

ordered by the start times associated to the
operations. In the pair (i,j) i is a job in J and j is
an operation in the job i, according to the
genetic encoding specified by relation (9).

The measure unit for the makespan of a
schedule is the eight-hour shift. Consequently,
in relation (11), the value Cmax(S), which is
expressed in minutes, is divided to 480 (8 hours
x 60 minutes).

Figure 2. Autonomous system architecture specific to the designed Java application.

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 341

In accordance with the human experience only,
the minimum makespan corresponding to the
given instance input data is 53 shifts.

For the multi-objective case, when three
objectives are considered, the original makespan
minimization objective is supplemented with the
following two objectives:

 minimizing the number of late operations
compared to 44 shifts value;

 minimizing the average ratio of idle times
in the workshop, computed as it follows
(for a given schedule S):

ns

dvirtual

dvirtualdreal

SR

ns

i i

ii

idle






 1)(, (16)

where ns is the number of jobs to be scheduled,
dreali is the time spent by a job, i, in the
workshop (calculated as the difference between

ending time of the last operation of the job and
input time of the first operation) and dvirtuali is
the processing effective duration of job i
(calculated as a sum of processing times of all
operations in the job).

The three objectives that are to be
simultaneously minimized are handled through
Pareto dominance relation.

The search space of the Pharm instance is
enormous (its dimension is of order 26*10388)
and satisfies all the five difficulty criteria for
the JSSP mentioned in [18] even in the case a
single objective is pursued.

In the mono-objective case, when one tries to
find the optimal schedule so that the makespan
is minimized, 50 tests were run with 17 different
sets of parameters values, which are
combinations of values of the table 2. Here N is
the population dimension, G is the maximal
number of generations, rm is the mutation rate,

Table 1. Input data for the Pharm instance

Routings of the jobs on the machines
Machine / machines Prod NJ NOP
Processing times (minutes)

1 2 7 11,13 18 20 1 8 6
5 10 476 200,167 800 113
1 2 3 4 8 9,10 14 15 17 20 2 1 10
5 15 20 30 320 685,342 394 137 253 120
1 2 5,6 9,10 14 15 17 20 3 13 8
5 20 150,206 325,313 684 214 341 188
1 2 5,7 12 18 16 20 4 4 7
5 20 120,222 133 500 300 75
1 2 7 9,10 14 15 17 20 5 3 8
5 20 315 263,225 560 150 239 132
1 2 5,6 12 19 16 20 6 1 7
5 10 83,105 67 250 84 38
1 2 5,6 12 18 16 20 7 19 7
5 10 83,105 67 108 84 38
1 2 3 4 5,7 13 18 16 20 8 1 9
5 10 10 20 120,159 200 400 150 38
1 2 7 11,13 18 20 9 3 6
5 10 360 286,222 800 150
1 2 3 4 7 11,13 18 20 10 3 8
5 10 355 120 65 357,278 700 188
1 2 3 4 8 9,10 14 15 17 20 11 4 10
5 20 45 30 554 605,510 567 172 316 150
1 2 3 4 5 11 18 20 12 2 8
5 10 43 38 180 230 600 113
1 2 3 4 5 11 18 16 20 13 11 9
5 10 28 46 280 230 290 150 113
1 2 5,6 11 18 20 14 3 6
5 10 424,457 366 970 375
1 2 3 4 5 9,10 14 15 17 20 15 2 10
5 15 32 31 60 375,188 450 136 173 113
1 2 5 9,10 14 15 17 20 16 1 8
8 15 120 425,363 305 272 346 225

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 342

pMin, pReinit, (k1,k2,k3) and (1, 2, 3, 4, 5)
are the specific parameters to the DAR strategy.

Table 2. Parameters values for the NSGA-II-DAR

Values
Parameter

mono-objective multi-objective
N 300 300

G 500 500

rm 0.01, 0.05, 0.08,
0.10

0.01, 0.03, 0.05

(k1,
k2)

(k1,
k2,
k3)

(100, 200)
(30, 50)
(4, 10)
(0.5, 1)

(150,220,200)
(100,200,100)
(4,10,5)

pMin 0.05, 0.2, 0.5,
0.52, 0.6, 0.7

0.3, 0.5

pReinit 10%, 20%, 50% 10%, 20%, 50%

(1, 2,
3, 4,
5)

(0.2, 0.3, 0.05,
0.05, 0.05)
(0.5, 0.8, 0.05,
0.01, 0.01)
(0.5, 0.8, 0.1, 0.1,
0.1)
(0.8, 0.8, 0.1, 0.1,
0.1)

(0.2, 0.3, 0.05,
0.05, 0.05)
(0.5, 0.8, 0.05,
0.01, 0.01)

For the multi-objective case, six tests were run
(with the parameters values of table 2) in order
to find a Pareto optimal schedule to minimize
the three objectives above mentioned.

The results obtained by the proposed algorithm
in contrast with the results of other three
genetic algorithms (NSGA-II, an elitist GA,
and the canonical GA, respectively) are
analyzed with respect to several performance
measures, as shown in table 3.

Here, BP is the best performance (makespan),
AvP is the average performance, WP is the
worst performance, VRM is the makespan
variation range (in shifts), Distr is the best
solutions distribution in the objective space,
DivSch is the diversity in the schedule space
(measured in number of different solutions per

test) and DivOb is the diversity in the objective
space (measured as the variance of objective
values). For the multi-objective case, where
aggr. is specified, table 3 reports the
aggregation values obtained with coefficients
for the fixed set of weight values of objectives
importance {0.5,0.1,0.4}. For the best
performance is also reported the minimum
makespan value of the best solutions.

The NSGA-II-DAR algorithm obtained a
makespan with 9.45% lower than in the human
judgement-based methodology, meaning 40
hours in a month. Also a high rate of good
solutions in both cases (mono and multi-
objective) is obtained, well-distributed and
diverse in the schedules space and in the
objective space. The genetic operators
appropriate to the instance are the inversion and
PPX in the mono-objective case and the
inversion and UX in the multi-objective case.
Along with the frame-shift, these proved to be
the most robust operators.

The comparative analysis of the results
indicates the superiority of the proposed
algorithm against the other algorithms in the
mono-objective case from all the considered
perspectives: the solutions performance,
diversity in the schedule space and the
objective space, the best solutions distribution
in the objective space. In the multi-objective
case, NSGA-II-DAR obtained a better
performance compared to the elitist GA and

canonical GA, and a pretty similar performance
with NSGA-II. Notice that the maximum
diversity in the schedules space and the best
distribution of the best solutions is provided by
the NSGA-II ADR.

Table 3. The comparative performance measures values of the four GA for the Pharm instance

NSGA-
II-

DAR

NSGA-
II

Elitist
GA

Canonic
GA

 NSGA-
II-

DAR

NSGA
-II

Elitist
GA

Canonic
GA Algorithm

Measure
mono-objective case multi-objective case

min
mksp

48.10 48.08 48.24 56.40
BP 47.99 48.16 48.56 58.25

aggr. 29.66 29.29 29.97 43.76

AvP 48.48 48.64 49.02 60.37 aggr. 31.15 29.57 29.30 51.16
WP 48.99 49.23 50.05 68.27 aggr. 34.08 29.92 29.92 58.00
VRM 1 1.7 1.49 10.02 3.7 3.94 3.55 5.89

 mksp 78% 62% 64% 39%
Distr 27% 24% 23% 10%

aggr. 15% 28% 32% 12%
DivSch 235.04 184.20 67.40 1.40 15.66 1.2 1.90 1.00
DivObj 0.33 0.40 0.48 3.29 aggr. 0.70 0.23 0.27 5.06

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 343

The other three algorithms used for the
comparative analysis were run with UX
crossover, frame-shift mutation, N = 300, G =
500 and rm = 0.01.

The superiority of the NSGA-II-DAR against
the other three algorithms for the ft10 instance
is shown in table 4. For this instance, 41 tests
were run with 14 different sets of parameter
values, where N  [20,10000] and G 
[20,500].

Based on the above mentioned asserts, one can
conclude that the proposed control strategy is able
to avoid the premature convergence of the genetic
algorithm to the suboptimal regions, therefore
achieving the purpose it was created for.

Table 4. The comparative results of performance
measures for the ft10 test-instance

Alg.

Measure

NSGA-
II-
DAR

NSGA-
II

Elitist
GA

Canon
ic GA

BP 1013 1216 1054 1342
AvP 1102 1265 1213 1384
WP 1306 1345 1355 1553
VRM 293 129 301 211

Additionally, the control model proves to be
viable from the point of view of performance
criteria of the GA, namely: coverage and
diversity of the search space and the objective
search, complexity, quality of the solutions and
convergence of the algorithm.

6. Conclusions

The investigation over the main simulation-
based optimization methods applied to the
MOFJSSP led to designing the NSGA-II-DAR
control algorithm. This optimization scheme is
able to cope with scheduling flexibility and
multiple objectives. It is scalable, generally
applicable and inherits the advantages of the
genetic algorithms, which is based on, namely
[17]: it is easy to construct and extend, has a
global perspective over the search space,
simultaneously operates with many candidate-
solutions and provides many final solutions
which do not dominates each other.

The proposed algorithm reinforces the well-
known NSGA_II algorithm with an heuristic
adaptive control strategy, named DAR, which is
apparently efficient for any optimization
problem. This strategy avoids the premature
convergence of the algorithm to suboptimal
regions and is able to learn the beneficial

operational condition over a particular
optimization instance, as the experimental
results showed. This task is managed by two
mechanisms: a) the dynamical application of
many genetic crossover and mutation operators,
which accomplishes the purpose during all the
evolution and b) population partial re-
initialization which comes to an effect only
when the risk for premature convergence
occurs. The adaptation criterion for the DAR
strategy is based on the average progress of the
genetic operators for that assignment formulas
are proposed.

The comparative analysis of the results
obtained by the NSGA_II-DAR algorithm was
made against the results of other three genetic
algorithms for a difficult big MOFJSSP in the
pharmaceutical industry and for the ft10 test-
instance. The results show the superiority of
NSGA-II-DAR over the other algorithms.

Beyond the specifics of the scheduling
framework, the proposed algorithm can be
viewed as a general solver applicable to any
optimization problem for which one can find an
appropriate genetic encoding and to use any
sequential GA.

REFERENCES

1. BASSEUR, K.M., F. SEYNHAEVE, E.
TALBI, Design of Multi-objective
Evolutionary Algorithms: Application to
the Flow-shop Scheduling Problem, Proc.
of the 2002 Congress on Evolutionary
Computation (CEC), Hawaii, IEEE Press,
vol. 2, 2002, pp. 1151-1156.

2. BIERWIRTH, C., D. C. MATTFELD,
Production Scheduling and Rescheduling
with Genetic Algorithms, Evolutionary
Computation 7(1), 1999, pp. 1-17.

3. BRUCKER, P., R. SCHLIE, Job-shop
Scheduling with Multi-purpose Machines,
Computing 45(4), 1990, pp. 369-375.

4. CHAN, F. T. S., T. C. WONG, L. Y. CHAN,
Flexible Job-Shop Scheduling Problem
under Resource Constraints, Intl. J. of
Production Research 44(11), 2006,
pp. 2071-2089.

5. CHENG, R. W, M. GEN, Y. TSUJIMURA,
A Tutorial Survey of Job Shop
Scheduling Problems using Genetic
Algorithms: Part II: Hybrid Genetic
Search Strategies, Intl. J. of Computers

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 344

and Industrial Engineering 36, 1999,
pp.343-364.

6. DAVIS, L., Job Shop Scheduling with
Genetic Algorithms, Proc. of the Intl.
Conference on Genetic Algorithms and
their Applications, San Mateo, Morgan
Kaufmann, 1985, pp. 136-149.

7. DEB, K., S. AGRAWAL, A. PRATAP, T.
MEYARIVAN, A Fast and Elitist Multi-
objective Genetic Algorithm for Multi-
objective Optimization: NSGA-II, Proc. of
VI-th Parallel Problem Solving from Nature
Conference, Paris, 2000, pp. 849-858.

8. DOLGUI, A., J.-M. PROTH, Supply
Chain Engineering: Useful Methods and
Techniques, Springer-Verlag, London, 2010.

9. DUŢĂ, L., F. G. FILIP, J. M. HENRIOUD,
C. POPESCU, Disassembly Line
Scheduling with Genetic Algorithms, Int.
J. of Computer Communication and Control,
3(3) , 2008, pp. 270-280

10. FILIP, F. G., Contributions to
Hierarchical Control of Complex
Systems, Ph.D. Thesis, Polytechnic Institute
of Bucharest, Romania, 1981 (in Romanian).

11. FILIP, F. G., Decizie Asistată de
Calculator: Decizii, Decidenţi - Metode
de Bază şi Instrumente Informatice
Asociate (“Computer Aided Decision
making; Methods and Associated
Information Tools”). second edition, Ed.
Tehnică, Bucureşti, 2005 (in Romanian)

12. FILIP, F. G., G. NEAGU, D. A.
DONCIULESCU, Job Shop Scheduling
Optimization in Real-time Production
Control, Computers in Industry 4,
Elsevier, 1983, pp. 395-403.

13. FISHER, H., G. L. THOMPSON,
Probabilistic Learning Combinations of
Local Job-Shop Scheduling Rules,
Industrial Scheduling, J. F. Muth & G. L.
Thompson (Eds.), Prentice-Hall, Englewood
Cliffs, NJ. French, 1963, pp. 225-251.

14. FRENCH, S., Sequencing and
Scheduling: An Introduction to the
Mathematics of the Job-Shop, Chichester,
England, Ellis Horwood Ltd., 1982.

15. GIFFLER, B., G. L. THOMPSON,
Algorithms for Solving Production
Scheduling Problems, Operations
Research 8(4), 1960, pp. 487-503.

16. GREFENSTETTE, J. J., Incorporating
Problem Specific Knowledge into Genetic
Algorithms, in L. Davis (Ed.) Genetic
Algorithms and Simulated Annealing,
Morgan Kaufmann , 1987, pp. 42-60.

17. HOLLAND, J. H., Genetic Algorithms,
Scientific American 267(1), 1992, pp. 44-50.

18. JAIN, A. S., S. MEERAN, Deterministic
Job Shop Scheduling: Past, Present and
Future, European Journal of Operational
Research 113(2), 1998.

19. JAIN, A. S., S. MEERAN, A State-of-the-
Art Review of Job-Shop Scheduling
Techniques, European Journal of Operations
Research 113, 1999, pp. 390-434.

20. JONES, A., L. C. RABELO, Survey of
Job-Shop Scheduling Techniques, M. Sc.
dissertation, NISTIR, Gaithersburg, MSID
Publications, 1998.

21. KAUFMANN, M., Methods and Models
of Operations Research, vol. II, Ed.
Ştiinţifică şi Enciclopedică, Bucureşti,
1975 (in Romanian).

22. MCGOVERN, S. M., S. M. GUPTA, The
Disassembly Line: Balancing and
Modeling, McGraw-Hill, New York, 2011.

23. NICOARĂ, E. S., Mechanisms to Avoid
the Premature Convergence of Genetic
Algorithms, Petroleum – Gas University of
Ploieşti Bulletin, Math. – Info. – Phys.
Series, vol. LXI, 1/2009, pp.87-96.

24. NICOARĂ, E. S, GA-based Control of
Multi-objective Flexible Job Shop
Scheduling Processes, Ph.D. Thesis,
Petroleum-Gas University of Ploieşti, 2011
(in Romanian).

25. PINEDO, M. L., Scheduling. Theory,
Algorithms, and Systems, 3rd ed.,
Springer, New York, 2008

26. WOLPERT, D. H., W. G. MACREADY,
No Free Lunch Theorems for
Optimization, IEEE Trans. on Evolutionary
Computation 1(1), 1997, pp. 67-82.

