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1. Introduction 

Generally speaking, a job shop scheduling 
problem (JSSP) is a decision-making process for 
time optimal assignment of some (limited) 
resources to some heterogeneous jobs consisting 
in many operations. The resources have to be 
available and the associated optimization 
problem is either mono-objective or multi-
objective. This kind of scheduling places the 
problem in the discrete-event systems (DES) 
domain, whose optimal control often involves 
computer simulation, at least in the large-scale 
real-world manufacturing systems. 

As shown in [11] the simulation-based 
optimization can be utilised in the decision-
making process for DES. For the specific JSSP 
case, there are two main aspects which make the 
decision difficult, namely: a) the constraints can 
not be explicitly expressed related to the 
decision variables, and b) the number of the 
decision alternatives in the search space is huge. 

Besides the trivial case when the number of 
decision alternatives is small to average, where 
simulation-based optimization consists in 
evaluating all alternatives to detect the one that 
provides the best value for the optimization 
criterion/criteria, the proper meaning of the 
simulation-based optimization refers to an ordered 
simulation sequence, determined by an algorithm, 
applied to different decision parameters until a 
(near) optimal solution is found [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This paper is concerned with simulation-based 
optimization appropriate to the Multi-objective 
Flexible JSSP (MOFJSSP). It is organised as 
follows. An extension of the classical 
formulation of JSSP to MOFJSSP is presented 
first. Next, the most used simulation-based 
optimization methods in the scheduling area are 
reviewed and a control method, based on a 
genetic algorithm, is proposed and the test 
results are presented.  

2. Multi-Objective Flexible JSSP 

MOFJSSP definition 

The flexible job shop scheduling is meant to 
properly handle the manufacturing process 
flexibility related to the structure either of the jobs 
or of the resources (processing machines and 
transportation vehicles) during the scheduling.  

In the flexible JSSP (FJSSP) of type I, there are 
a) jobs with alternative sequences of operations 
and b) operations which can be performed on 
sets of (identical or different) machines. In the 
FJSSP of type II, the jobs have fixed sequences 
of operations, but the routings of the jobs on 
the machines are flexible; in other words, there 
are operations which can be processed by any 
machine in a specified set [4]. 

There are various possible formulations for the 
(F)JSSP. The problem can be viewed either as 
combinatorial optimization problem or as 
constraint programming problem.  
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A combinatorial optimization problem has 
discrete solutions and is defined by objective 
and constraints. In this context, the (F)JSSP can 
be defined as integer linear programming. This 
formulation however hardly allows a practical 
method to attain the solutions [15]. Moreover 
such a formulation is computationally 
infeasible [14]. Though the mixed integer 
linear programming is another possible 
formulation, and a conceptually elegant one, 
according to [21], the number of integer 
variables grows exponentially with the instance 
dimension and it requires too many constraints 
to be satisfied. One of the most used 
formulations in this category is the disjunctive 
programming formulation where the solutions 
(schedules) are represented as disjunctive 
graphs. This is especially adequate to solving 
techniques based on graphs / trees, such as 
branch and bound methods. 

In the constraint programming formulation 
only the constraints to be satisfied are set. The 
solutions do not have to extremize any 
objective function and, consequently, to well 
define the problem, combining it with an 
optimization formulation is necessary. 

In this section an extension of the mathematical 
model of the deterministic predictive JSSP 
presented in [3] is made in order to include the 
type II flexibility. The definition of the FJSSP 
is approached as a combinatorial optimization 
formulation. The traditional assumptions are 
used, such as: a) the job release dates is time 
T=0, b) all the machines are available at time 
T=0, c) the number of machines and jobs are 
finite and constant in time (with respect to their 
characteristics), d) the processing times of the 
operations are finite and constant, and e) the 
probability for machine breakdowns and the 
setup times are statistically included in the 
processing times. 

The input data of FJSSP are: 

 a finite set M of m (mZ)  machines, where 
Z is the set of integers; 

 a finite set J of jobs, each job Ji  
consisting in an ordered sequence of ni 

operations, iji njo ,1,,  ; 

 for each operation ),1,(, iji njJio  , 

the set of machines which can perform it, 
MMA ji , , with 1)( , jiMAcard , where 

)( , jiMAcard  is the cardinality of the set 

jiMA , , and the processing times Zk
ji , , 

jiMAk ,  are given.  

Therefore, to each operation, oi,j, one can 
associate a set Di,j of processing times: 
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A candidate-solution is a valid schedule for J, 
which is defined as a collection of         
machine schedules: 
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which satisfies the constraints associated to the 
process to be stated in the sequel. A partial 
solution is a partial valid schedule which 
satisfies as well the constraints.  

An overall schedule is },1{ mksS k  ,  

where all the operations performed on all the 

machines mk ,1  are scheduled. The list of 
start times for the operations performed on every 

machine mkk ,1,  , specified by  functions 
(2), can be determined through various methods 
to obtain either a semi-active schedule, or an 
active one or a non-delay schedule. 

There are three constraints: a) the precedence 
constraint, b) the non-preemption constraint 
and c) the resource capacity constraint [19].  

The (F)JSSP solution is the overall schedule, S, 
which consists in all the operations of all the 
jobs on the machines, ordered by the positive 
integer values of the functions , 1,ks k m . To 
this schedule a performance measure, 

)(max SC , is assigned to be minimised: 
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The relation (7) computes the makespan as the 
maximum stopping time, considering all the 
operations in the schedule.   

Besides the makespan, which is the main 
subject of interest of the scheduling system, 
secondary aspects can be taken into 
consideration, such as: total workload on the 
machines, maximum workload, jobs flow time, 
the amount of work-in-process, machines 
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unused capacity, the average idle ratio 
(regarding the jobs or the machines), the 
number of late operations etc. and are related to 
the scheduling optimization criteria. 

The objective is to extremize a particular 
performance measure which indicates, from the 
point of view of temporal constraints, how well 
the scheduling is handled. More precisely, the 
primary objective consists in minimization of 
the makespan:  

))((min)( max}_{
*
max SCSC schedulesfeasibleS . (8) 

A schedule with minimum makespan is named 
optimal solution of the (F)JSSP.  

For the multi-objective FJSSP, the objective 
consists in the simultaneous optimization of 
many objectives, for example the output values 
mentioned before. Though the most natural 
(altough not simple) way to handle the multiple 
objectives is their aggregation into one single 
objective to consider further the mono-
objective problem, the Pareto optimality 
approach, which separately considers the 
objectives, proves to be more beneficial [7].  

MOFJSSP complexity   

The JSSP is a NP-hard combinatorial problem, 
for which the classical approaches, based on 
exhaustive search, have a limited success. The 
only polynomially solvable instances are those 
mono-objective unconstrained without 
flexibility involving maximum two jobs and 
two machines. Instances with higher 
dimensions are even strongly NP-hard, for 
example some instances with two or three jobs 
with recirculation, as it is stated in [25]. If, 
additionally, one considers multiple objectives 
and supplementary parameters, the problem 
becomes even more difficult. The practice 
showed that the JSSP are very difficult to solve 
even heuristically. Once supplemented with the 
flexibility feature, JSSP become more complex. 
A broder analysis of the complexity results for 
the (F)JSSP offer [19] and [25]. 

3. Simulation-based Optimization 
for MOFJSSP 

The research in the JSSP area in the last sixty 
years has shown several distinct phases. The 
first efforts were focused on the design of 
priority dispatch rules heuristics. A few 
examples of the many rules are: first-in-first-

out, shortest processing time, shortest 
remaining processing time, time-insystem [15, 
25, 8]. Every such rule sequences the jobs to be 
scheduled based the specific criterion and 
therefore a priority list for the jobs is created.  

The experience showed that for the big 
complex instances the simple priority dispatch 
rules do not lead to an adequate success. 
Therefore, some research was made to combine 
simple rules in weighted dispatching criteria. 
Such a result is the algorithm designed by Filip 
[10] for real time production control, based on 
parametric decomposition [11, 12]. The 
algorithm is designed to use either simple 
priority dispatching rules or a composite 
weighted priority rule to help to decide which 
is the most appropriate job to be assigned to a 
vacant machine. The set of dispatching rules 
used includes: a) the minimum duration of the 
next operation, b) the Carrol's rule, c) the 
maximum time spent in queues, d) the 
maximum remaining processing time/current 
processing time, e) first in first out, f) the 
estimated size of the next queue and g) an 
external priority. The efficiency of each 
schedule obtained through simulation is 
evaluated by an aggregated utility function 
calculated as a weighted sum of several 
performance measures such as: a) estimated 
delay of completing the job, b) estimated time 
for an early delivery, c) the waiting time spent 
in queues, d) total idle time of machines. The 
value of the aggregated performance measure 
serves to adjust the values of importance 
parameters of the composite dispatching rule 
through a pseudo-Newton algorithm. The 
method proved to be beneficial for middle-size 
multi-objective JSSP. The dynamic adjustment 
of weight parameters of the dispatching rules 
based on fast simulation allowed also for real 
time decisions to be made in the case of „crisis” 
situations (urgent unexpected orders, machine 
failures and so on).  

The dispatching rules have recently re-gained 
popularity in the context of dynamic scheduling 
for real-time assignment in supply chains [8].  

For the small to middle-size JSSP, the exact 
optimization methods are also suitable. They 
comprise, on the one hand, the enumerative 
methods (such as backtracking, branch and 
bound and dynamic programming), and on the 
other the calculus-based techniques, the 
Lagrangean relaxation and the decomposing 
strategies [19]. Though the exact optimization 
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methods can identify the global optimal 
solution(s), the JSSP instances over 15 jobs on 
15 machines exceed the solving power of these 
methods [20]. 

As opposed to the exact methods, the 
approximation methods are suitable to the 
larger and more complex instances of JSSP or 
MOFJSSP, though they do not guarantee the 
identification of the global optimal solution, if 
such a solution exists [6, 18, 19, 20, 25].  

Shifting bottleneck heuristic, iterative local 
search heuristics and metaheuristics (such as 
genetic algorithms, tabu search, simulated 
annealing and GRASP) also received high 
theoretical and practical interest in scheduling 
area [11, 18, 19, 20, 25].  

Among all such metods, the genetic algorithms 
(GA) have a low design cost, are easy to extend 
and to connect to the existing models and 
simulations, can be used in parallel processing 
and, the most important, they simultaneously 
operate on many candidate-solutions in a way 
that overcomes the issues in abrupt search 
spaces with many local optima. Thus, for certain 
complexity features of the big (MOF)JSSP, GA 
might provide the best performance.  

In the last 20 years the research was focused on 
agent-based techniques (mainly consisting in 
simulation of natural social optimizer 
behaviour, such as Ant Colony Optimization, 
Wasp Behavior Model and Particle Swarm 
Optimization), artificial neural networks, 
expert systems, knowledge based systems and 
fuzzy techniques [19, 20, 25].  

Also hybrid techniques prove for specific 
manufacturing contexts the ability to identify 
(near) optimal solutions in a reasonable amount of 
time [5]. A more ample discussion over the 
scheduling simulation-based optimization methods 
and the comparative analysis is made in [24]. 

The choice of appropriate representation for the 
schedules, the design for efficient search 
operators and the parameters tuning remain 
challenging issues for the most of the 
metaheuristics. The core interest should be given 
to the domain knowledge incorporation, to the 
constraints handling techniques, to the specialized 
operators and to the local search heuristics. 

Genetic algorithms 

A GA is a powerful weak adaptive optimization 
technique [16]. It is a weak method because a 

little information is necessary about the 
problem to use it, but in contrast with other 
weak methods, a GA exploits in a sophisticated 
manner this information with a relatively 
limited search effort, fact that gives to it the 
power feature.  

The first study on GA applied to scheduling 
was made 25 years ago, by Davis [6]. Since 
then, the most of the theoretical and practical 
research works have been  mainly focused on 
the mono-objective scheduling problems; the 
multi-objective flexible JSSP did not benefit of 
a similar attention.  

GAs have recently proved to be effective in 
scheduling applications in supply chain 
management and control [8] and disassembling 
line balancing [9, 22 ]. 

4. NSGA-II-DAR Optimization 
Control Model for MOFJSSP  

A direct consequence of applying No Free 
Lunch Theorem [26] in the GA case is that to 
search the best GA is senseless; instead of this, 
we can identify the best GA for a given 
instance and a given search space, from the NP-
completeness perspective. 

In this context, the GA under evaluation was 
designed for the difficult middle to high 
dimension MOFJSSPs and the search spaces 
formed by schedules encoded as permutations 
without repetitions of the operations to be 
scheduled set. The algorithm, NSGA-II-DAR 
(NSGA-II with dynamical application of genetic 
operators and population partial re-
initialization) comprises an adaptive heuristic 
procedure embedded in the NSGA-II algorithm 
proposed by Deb et al. [7]. 

Genetic encoding and performance 
evaluation  

For the candidate-solutions (individuals that are 
schedules in the GA), a genetic encoding as 
permutation without repetitions of the 
operations set is chosen:  

)},{(
,1,

jiOp
injJi 

   (9) 

Given this chromosome encoding, decoding a 
chromosome means to establish the scheduling 
sequence based on the start times of the 
operations in the chromosome. Start times are 
set according to the principle “to the first non-



Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 337

processed operation in the schedule, the 
necessary resource is assigned once it becomes 
available”. In other words, to the chromosome a 
semi-active decoding procedure is applied, 
where no operation can be started earlier without 
modifying the processing order or violating the 
technological constraints. The start time for an 
operation oi,j in chromosome is [2]: 



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In the above relation, which is the expression of 
the precedence constraint and the capacity 
constraint for FJSSP, atk is the availability time 
for the resource k which process the operation 

oi,,j and 1,1, )('   jijik
os   is the end time of the 

preceding operation (in job i) on the 
corresponding resource k’.  

Having set the start times for all the operations 
in the schedule, the performance assessment for 
the schedule (the fitness) is computed, in 
correlation with the objective function(s). 
According to the relation (7) in the FJSSP 
formulation and to the relation (10), the 
makespan of a schedule S is:  

}1max{)(max mkatSC k  . (11) 

Through the particular working methodology, a 
GA does not identify all the feasible schedules 
in the search space, but it evolves lower 
makespan schedules.  

DAR control strategy  

The performance of a GA, especially when 
applied to the multi-objective optimization, is 
preponderantly determined by the level of 
balance between population diversification and 
searching intensification. The better this 
balance maintained, the more efficient is the 
ability to avoid the premature convergence to 
local optima regions of the search space.  

The aim of the proposed strategy, named DAR, 
is to avoid the premature convergence of the 
genetic algorithm. This is achieved through  
two mechanisms:  

 dynamical application of crossover and 
mutation operators  (DA) and 

 population partial re-initialization (R). 

Both of them are based on the average progress 
of the genetic operators during the evolution.  

The first mechanism of the adaptive DAR 
control strategy dynamically selects in each 
generation of GA a crossover operator and a 
mutation operator to be applied located in two 
sets of operators.  

We used two crossover operators: UX 
(Uniform Order-Based Crossover) and PPX 
(Precedence Preservative Crossover) and three 
mutation operators: frame-shift, translocation 
and inversion. To note that any number of 
operators one uses, the procedure remains valid 
and applies with a relative similar complexity. 

The two operators that score the best average 
progress from the beginning of evolution are 
selected in the current generation, so that the 
overall evolution is reached by taking 
advantage of the best operators adequate to the 
considered instance. The progress of each 
operator determines a certain selection 
probability for the operator. With every 
application of an operator, its progress updates 
and consequently its selection probability is 
updated as well.  

In [1] a dynamical application of two mutation 
operators is proposed and tested on a bi-
objective flow shop scheduling problem and 
return good results.  

In the proposed approach a modified progress 
assignment for the mutation operators is used, 
which better takes into account the Pareto 
dominance relation and the crossover as well is 
dynamically applied. The formula for the 
crossover progress assignment accentuates the 
distinction between the offspring which 
dominates both parents and the offspring which 
dominate only one parent or none.  

Let S be the offspring resulted in generation t 
from the parents (S1, S2) by applying the 
crossover operator x. The progress of x is [24]:  

progress(x)= (12) 

 1, if S dominates S1 and S2 

 )5.0,
*

1max( 1

G

tk
 , if S dominates only        

a parent 

 0.5, if no dominance relation exists 
between S and S1, between S and S2 
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 )0,
*

5.0max( 2

G

tk
 , if S is dominated only 

by a parent and no dominance relation 
exists with the other  

 0, otherwise (if S is dominated by          
both parents) 

where G is the maximum number of 
generations of the evolution, and k1, k2 are the 
parameters which enforce the velocity of 
reducing the progress during the evolution. 
This reduction leads to a broader proliferation 
of the poor individuals in the first generations 
than in the latter ones, when the search follows 
a more stable direction. Moreover, giving 
chances to proliferate in the population to the 
offspring that dominate no parent but are 
dominated by both parents, the population 
becomes more diverse. 

In order to make the value (
G

tk *1
0.1  ) belong to 

the segment [0.5, 1] and (
G

tk *2
5.0  ) to [0, 0.5], 

the variation range for parameters k1 and k2  is 
bounded by 1 and G/2. Setting and tuning the 
values of k1 and k2 are made from two 
perspectives: a) the extent and b) the quality of 
the search space exploration. Hence, to get an 
extensive exploration (therefore a very diverse 
population), both parameters are set to low 
values (down to 0.5). The maximum exploration 
is attended when k1= k2 = 0.5; this is the most 
permissive way for the poor individuals to be 
accepted in the evolution. Such behaviour for 
the genetic strategy is desirable for the very 
difficult instances, with abrupt search space, 
when one should avoid loosing the hidden 
solutions. An extensive exploration is not 
convenient however to any instance, because the 
population diversification and searching 
intensification balance may be broken. 

When k1 and k2 are set to the maximum value, 
G/2, the poor individuals are the most restricted 
to be accepted in the population and the effects 
are reverse than in the previous case. It is 
advisable that k1 value to not exceed the k2 
value, because no one will accept to lose some 
offspring which dominate one parent and to 
keep some offspring that dominate no parent. 

Let x be a mutation operator applied to an 
individual S. The progress of x is [24]: 

progress(x)= (13) 

 1, if mut(S) dominates S 

 )5.0,
*

1max( 3

G

tk
 , if no dominance 

relation exists between mut(S) and S 

 0, if mut(S) is dominated by S 

where mut(S) is the candidate-solution  
obtained after x applies to S and k3 is the 
parameter which enforces the velocity of 
reducing the progress during the evolution. The 
second line in the above relation distinguishes 
this formula from the one proposed in [1]. 

The comments about k1 and k2 are also valid 
for k3. A low value of k3 leads to a vast 
exploration of the search space by mutation 
because individuals in the same Pareto front 
with S are allowed to enter the population.  

The selection for crossover and mutation 
operators to be applied in each stage of the 
algorithm is called by the DAR control strategy 
based on the selection probabilities of all the nr 
available operators in x’s class [1]:  

xxnr

l

x nr
lprogress

xprogress  
 

)*1(*
)(

)(

1

 (14) 

Here, )(lprogress  is the average progress per 

application of the operator l (l = 1,..,nr) and x is 
the minimum value of the selection probability 
of x. The value x  (0,1) allows one to use all 
the crossover and mutation operators during the 
evolution, even if some of them prove to be 
weak for the concerned instance. 

The relation (14) suggests that when the 
progress of an operator is high, the decision 
strategy provides a control to more frequently 
apply the operator.  

In the first generation, the selection of 
crossover and mutation operator is randomly 
performed, with equal probabilities: for the 
crossover this probability is 0.5 and for the 
mutation operator is 0.33. 

For the selected operator, if the result is 
feasible, the average progress per application is 
computed using [1]:  

nra

xprogress

xprogress

nra

i
i

 1

)(

)( , (15) 

where nra is the number of times the operator x 
was applied until the current generation and 
progresi(x) is the progress of x at application step i, 
computed according to the relation (12) and (13). 
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If the result remains unfeasible in ten trials, 
another operator in his class is selected to be 
applied and for this latter operator the progress 
is updated. We note that PPX and frame-shift 
operators do guarantee the result is feasible. 
For that we used the improved variant of 
frame-shift in [23]. 

As opposed to the DA (dynamical application 
of crossover and mutation operators) 
mechanism, the R mechanism, namely 
population partial re-initialization, is applied only 
when the risk to premature convergence in the 
current generation is considered high enough. It 
is considered this condition met when the 
average progresses of all the operators do not 
exceed a minimum threshold, pMin  [0,1].  

The re-initialization consists in replacing a part 
of the new generated population with some 
randomly generated individuals, in a proportion 
set by the pReinit parameter.  

Additionally, if the re-initialization is performed 
300 times in a run, the evolution will be stopped 
anyway, though the a priori set stop criteria are 
not satisfied. The reason for this is that many re-
initializations means poor chances there are to 
identify better solutions in the future. 

The two proposed mechanisms combine their 
effects in the DAR strategy through multiple 
direct and indirect interdependences of the 
associated parameters (as figure 1 shows).  

 

Figure 1. The interdependences between the DAR 
strategy parameters  

The strategy achieves a dynamical adaptive 
parameter control from a run to another: the 
feedback from the current search state 
determines the direction and the magnitude of 
the genetic alteration. 

Through DAR strategy, the GA permanently 
adapts to the population performance in order 
to identify the favourable regions in the search 
space. Hence, the algorithm is able to learn 
during the evolution what are the appropriate 
genetic operators for a particular instance, to 
promote the beneficial results of all the 

available operators, to maintain a good balance 
between the exploration and the exploitation of 
the search space and to extend the genetic 
search without loosing the direction, fact that 
avoid or delay the premature convergence of 
the algorithm. 

NSGA-II-DAR algorithm 

The NSGA-II algorithm is a GA proposed in 
[7] which proved to be more effective than 
other GAs especially for multi-objective 
complex optimization problems, with conflict 
objectives, as MOFJSSP is. 

The NSGA-II algorithm contains a fast 
procedure for Pareto dominance based sort 
(which returns the list of non-dominated fronts 
in the population). Also an estimate of the 
density of the individuals around a particular 
individual named crowding distance is made. 
This measure is used to define a comparing 
operator, designated as “n”, in order to 
identify the individuals in a Pareto front that 
are located in less dense regions. The reason for 
this stands in building a bias to uniformly 
distributed optimal Pareto fronts. 

Over the NSGA-II algorithm the DAR strategy 
is inserted to attain NSGA-II-DAR algorithm. In 
the first generation t = 0 the population Pt is 
pseudo-random initialized then fast sorted in 
order to assign to each individual the dominance 
level (in fact the front index where it is part). By 
applying the genetic operators (binary 
tournament selection, crossover and mutation) a 
new population Qt with N elements is obtained. 
The elitist procedure for a generation t, except 
the initial one, allows the parent solutions to be 
compared with offspring and a combined 
population Rt is created, having 2N elements. 
The fast sorting is applied to Rt and the list F of 
the non-dominated fronts is generated. The new 
parent population Pt+1 is formed by adding 
solutions in the best fronts until the dimension N 
is reached. For each individual in these fronts, 
the crowding distance is computed and the 
individuals in the last accepted front are sorted 
based on “n“ relation in order to select the best 
ones to complete the population Pt+1. On this 
parent population the genetic operators are 
further applied and the new offspring population 
Qt is obtained. If the risk for premature 
convergence is noticed at the current generation, 
Qt+1 is partially re-initialized according to the 
mechanism R of the DAR strategy. This step, 
along with the new population formation step 

k1, k2, k3 

i, i{1..5} pMin 

emergence  

pReinit 
amplitude  

 Re-initializations 
Operators 
progress 
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which supposes the dynamical application of the 
crossover and mutation, represent the difference 
between NSGA-II-DAR and NSGA-II.  

The solutions of the algorithm are the 
individuals in the first front in population Pt at 
the last generation (all the non-dominated 
schedules). To choose a final unique solution, 
one can use user preferences. Other output 
values of the control algorithm are: a) the 
number of different solutions, b) the number of 
performed re-initializations, c) the applying 
frequencies of genetic operators, and d) the 
average progress of the genetic operators in the 
last generation (in order to identify the 
appropriate operators for the instance). 

 

Computer Simulation Application 

To test NSGA-II-DAR algorithm a Java 
application was developed. It was designed to 
allow the control for any optimization process, 
not only scheduling. It comprises modules for 
providing many genetic encodings and modules 
for implementation any number of optimization 
criteria. By the generality feature, the 
application constitutes an autonomous 
intelligent control system, whose architecture 
integrates many selector blocks (see figure 2), 
which confers to it self-organizing attributes. 
Hence, the application is flexible related to the 
variety and the complexity of the instances. 

The selector blocks offers, on the one hand, a 
high level of control flexibility, it was noted 
before, and, on the other one, constitutes a good 
support for identification of the most 
appropriate encoding and the most appropriate 
GA for a specific instance. 

In the current version, the computer simulation 
application implements four genetic 
algorithms: NSGA-II, NSGA-II-DAR, an elitist 
GA and the canonical GA. 

5. Simulation Results 

The NSGA-II-DAR performance evaluation 
was made in multiple tests on a difficult FJSSP 
instance from pharmaceutical industry, called 
Pharm, both mono-objective and multi-
objective and the notorious ft10 JSSP test-
instance [13].  

In the Pharm instance, for a scheduling horizon 
of one month, 79 jobs of 16 different types 

 

 

 

 

 

 

 

 

 

 

 

 

have to be scheduled on 20 machines. The 
input data in table 1 indicate a total number of 
606 operations. Here, Prod means the type of 
product, NJ is number of jobs corresponding to 
every type of product and NOP is the number 
of operations in the job. The associated 
scheduling flexibility is of type II. 

A feasible schedule for the 606 operations may 
be the sequence  

(6,1)(76,1)(53,1) ... (69,3) ... (54,8)(60,8) 

ordered by the start times associated to the 
operations. In the pair (i,j) i is a job in J and j is 
an operation in the job i, according to the 
genetic encoding specified by relation (9).  

The measure unit for the makespan of a 
schedule is the eight-hour shift. Consequently, 
in relation (11), the value Cmax(S), which is 
expressed in minutes, is divided to 480 (8 hours 
x 60 minutes).  

 

Figure 2. Autonomous system architecture specific to the designed Java application.  
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In accordance with the human experience only, 
the minimum makespan corresponding to the 
given instance input data is 53 shifts. 

For the multi-objective case, when three 
objectives are considered, the original makespan 
minimization objective is supplemented with the 
following two objectives: 

 minimizing the number of late operations 
compared to 44 shifts value; 

 minimizing the average ratio of idle times 
in the workshop, computed as it follows 
(for a given schedule S): 

ns

dvirtual

dvirtualdreal

SR

ns

i i

ii

idle






 1)( , (16) 

where ns is the number of jobs to be scheduled, 
dreali is the time spent by a job, i, in the 
workshop (calculated as the difference between 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ending time of the last operation of the job and 
input time of the first operation) and dvirtuali is 
the processing effective duration of job i 
(calculated as a sum of  processing times of all 
operations in the job). 

The three objectives that are to be 
simultaneously minimized are handled through 
Pareto dominance relation. 

The search space of the Pharm instance is 
enormous (its dimension is of order 26*10388) 
and satisfies all the five difficulty criteria for 
the JSSP mentioned in [18] even in the case a 
single objective is pursued. 

In the mono-objective case, when one tries to 
find the optimal schedule so that the makespan 
is minimized, 50 tests were run with 17 different 
sets of parameters values, which are 
combinations of values of the table 2. Here N is 
the population dimension, G is the maximal 
number of generations, rm is the mutation rate, 

Table 1. Input data for the Pharm instance  

Routings of the jobs on the machines 
Machine / machines Prod NJ NOP 
Processing times (minutes) 

1 2 7 11,13 18 20     1 8 6 
5 10 476 200,167 800 113     
1 2 3 4 8 9,10 14 15 17 20 2 1 10 
5 15 20 30 320 685,342 394 137 253 120 
1 2 5,6 9,10 14 15 17 20   3 13 8 
5 20 150,206 325,313 684 214 341 188   
1 2 5,7 12 18 16 20    4 4 7 
5 20 120,222 133 500 300 75    
1 2 7 9,10 14 15 17 20   5 3 8 
5 20 315 263,225 560 150 239 132   
1 2 5,6 12 19 16 20    6 1 7 
5 10 83,105 67 250 84 38    
1 2 5,6 12 18 16 20    7 19 7 
5 10 83,105 67 108 84 38    
1 2 3 4 5,7 13 18 16 20  8 1 9 
5 10 10 20 120,159 200 400 150 38  
1 2 7 11,13 18 20     9 3 6 
5 10 360 286,222 800 150     
1 2 3 4 7 11,13 18 20   10 3 8 
5 10 355 120 65 357,278 700 188   
1 2 3 4 8 9,10 14 15 17 20 11 4 10 
5 20 45 30 554 605,510 567 172 316 150 
1 2 3 4 5 11 18 20   12 2 8 
5 10 43 38 180 230 600 113   
1 2 3 4               5 11 18 16 20  13 11 9 
5 10 28 46 280 230 290 150 113  
1 2 5,6 11 18 20     14 3 6 
5 10 424,457 366 970 375     
1 2 3 4 5 9,10 14 15 17 20 15 2 10 
5 15 32 31 60 375,188 450 136 173 113 
1 2 5 9,10 14 15 17 20   16 1 8 
8 15 120 425,363 305 272 346 225   
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pMin, pReinit, (k1,k2,k3) and (1, 2, 3, 4, 5) 
are the specific parameters to the DAR strategy. 

Table 2. Parameters values for the NSGA-II-DAR 

Values 
Parameter 

mono-objective  multi-objective 
N 300 300 

G 500 500 

rm 0.01, 0.05, 0.08, 
0.10 

0.01, 0.03, 0.05 

(k1, 
k2) 

(k1, 
k2, 
k3) 

(100, 200) 
(30, 50) 
(4, 10) 
(0.5, 1) 

(150,220,200)  
(100,200,100) 
(4,10,5) 

pMin 0.05, 0.2, 0.5,  
0.52, 0.6, 0.7  

0.3, 0.5 

pReinit 10%, 20%, 50% 10%, 20%, 50% 

(1, 2, 
3, 4, 
5) 

(0.2, 0.3, 0.05, 
0.05, 0.05) 
(0.5, 0.8, 0.05, 
0.01, 0.01) 
(0.5, 0.8, 0.1, 0.1, 
0.1) 
(0.8, 0.8, 0.1, 0.1, 
0.1) 

(0.2, 0.3, 0.05, 
0.05, 0.05) 
(0.5, 0.8, 0.05, 
0.01, 0.01) 

For the multi-objective case, six tests were run 
(with the parameters values of table 2) in order 
to find a Pareto optimal schedule to minimize 
the three objectives above mentioned. 

The results obtained by the proposed algorithm 
in contrast with the results of other three 
genetic algorithms (NSGA-II, an elitist GA, 
and the canonical GA, respectively) are 
analyzed with respect to several performance 
measures, as shown in table 3.  

 

Here, BP is the best performance (makespan), 
AvP is the average performance, WP is the 
worst performance, VRM is the makespan 
variation range (in shifts), Distr is the best 
solutions distribution in the objective space, 
DivSch is the diversity in the schedule space 
(measured in number of different solutions per 

test) and DivOb is the diversity in the objective 
space (measured as the variance of objective 
values). For the multi-objective case, where 
aggr. is specified, table 3 reports the 
aggregation values obtained with coefficients 
for the fixed set of weight values of objectives 
importance {0.5,0.1,0.4}. For the best 
performance is also reported the minimum 
makespan value of the best solutions.   

The NSGA-II-DAR algorithm obtained a 
makespan with 9.45% lower than in the human 
judgement-based methodology, meaning 40 
hours in a month. Also a high rate of good 
solutions in both cases (mono and multi-
objective) is obtained, well-distributed and 
diverse in the schedules space and in the 
objective space. The genetic operators 
appropriate to the instance are the inversion and 
PPX in the mono-objective case and the 
inversion and UX in the multi-objective case. 
Along with the frame-shift, these proved to be 
the most robust operators. 

The comparative analysis of the results 
indicates the superiority of the proposed 
algorithm against the other algorithms in the 
mono-objective case from all the considered 
perspectives: the solutions performance, 
diversity in the schedule space and the 
objective space, the best solutions distribution 
in the objective space. In the multi-objective 
case, NSGA-II-DAR obtained a better 
performance compared to the elitist GA and  

 

 

 

 

 

 

 

 

 

 

canonical GA, and a pretty similar performance 
with NSGA-II. Notice that the maximum 
diversity in the schedules space and the best 
distribution of the best solutions is provided by 
the NSGA-II ADR. 

Table 3. The comparative performance measures values of the four GA for the Pharm instance  

NSGA-
II- 

DAR 

NSGA-
II 

Elitist 
GA 

Canonic 
GA 

 NSGA-
II- 

DAR 

NSGA
-II 

Elitist 
GA 

Canonic 
GA Algorithm  

Measure 
mono-objective case multi-objective case 

min 
mksp 

48.10 48.08 48.24 56.40 
BP 47.99 48.16 48.56 58.25 

aggr. 29.66 29.29 29.97 43.76 

AvP 48.48 48.64 49.02 60.37 aggr. 31.15 29.57 29.30 51.16 
WP 48.99 49.23 50.05 68.27 aggr. 34.08 29.92 29.92 58.00 
VRM 1 1.7  1.49  10.02   3.7 3.94 3.55 5.89 

 mksp 78% 62% 64% 39% 
Distr  27% 24% 23% 10% 

aggr. 15% 28% 32% 12% 
DivSch 235.04 184.20 67.40 1.40  15.66 1.2 1.90 1.00 
DivObj 0.33 0.40 0.48 3.29 aggr. 0.70 0.23 0.27 5.06 
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The other three algorithms used for the 
comparative analysis were run with UX 
crossover, frame-shift mutation, N = 300, G = 
500 and rm = 0.01. 

The superiority of the NSGA-II-DAR against 
the other three algorithms for the ft10 instance 
is shown in table 4. For this instance, 41 tests 
were run with 14 different sets of parameter 
values, where N  [20,10000] and G  
[20,500].  

Based on the above mentioned asserts, one can 
conclude that the proposed control strategy is able 
to avoid the premature convergence of the genetic 
algorithm to the suboptimal regions, therefore 
achieving the purpose it was created for. 

Table 4. The comparative results of performance 
measures for the ft10 test-instance   

Alg. 
  

Measure 

NSGA-
II- 
DAR 

NSGA-
II 

Elitist 
GA 

Canon
ic GA 

BP 1013 1216 1054 1342 
AvP 1102 1265 1213 1384 
WP 1306 1345 1355 1553 
VRM 293 129 301 211 

Additionally, the control model proves to be 
viable from the point of view of performance 
criteria of the GA, namely: coverage and 
diversity of the search space and the objective 
search, complexity, quality of the solutions and 
convergence of the algorithm. 

6. Conclusions 

The investigation over the main simulation-
based optimization methods applied to the 
MOFJSSP led to designing the NSGA-II-DAR 
control algorithm. This optimization scheme is 
able to cope with scheduling flexibility and 
multiple objectives. It is scalable, generally 
applicable and inherits the advantages of the 
genetic algorithms, which is based on, namely 
[17]: it is easy to construct and extend, has a 
global perspective over the search space, 
simultaneously operates with many candidate-
solutions and provides many final solutions 
which do not dominates each other. 

The proposed algorithm reinforces the well-
known NSGA_II algorithm with an heuristic 
adaptive control strategy, named DAR, which is 
apparently efficient for any optimization 
problem. This strategy avoids the premature 
convergence of the algorithm to suboptimal 
regions and is able to learn the beneficial 

operational condition over a particular 
optimization instance, as the experimental 
results showed. This task is managed by two 
mechanisms: a) the dynamical application of 
many genetic crossover and mutation operators, 
which accomplishes the purpose during all the 
evolution and b) population partial re-
initialization which comes to an effect only 
when the risk for premature convergence 
occurs. The adaptation criterion for the DAR 
strategy is based on the average progress of the 
genetic operators for that assignment formulas 
are proposed.  

The comparative analysis of the results 
obtained by the NSGA_II-DAR algorithm was 
made against the results of other three genetic 
algorithms for a difficult big MOFJSSP in the 
pharmaceutical industry and for the ft10 test-
instance. The results show the superiority of 
NSGA-II-DAR over the other algorithms. 

Beyond the specifics of the scheduling 
framework, the proposed algorithm can be 
viewed as a general solver applicable to any 
optimization problem for which one can find an 
appropriate genetic encoding and to use any 
sequential GA. 
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