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1. Introduction

Network intrusion detection is currently done 
through a combination of automated and manual 
techniques. Automated tools use near-real-time 
data sources, such as host-based and network-
based activity logs, along with a variety of 
detection strategies based on IOCs, rules, anomaly 
detection, and machine learning to trigger alerts for 
potentially malicious activity that cybersecurity 
analysts must investigate. These alerts are good 
at identifying new attacks but have a high false 
positive rate. Manual analysis of alerts requires 
a high level of skill and is resource intensive. 
The analysts must be skilled at collecting and 
examining a wide variety of data including disk 
and memory artifacts, logs, and raw network 
packet data to determine if an alert is valid. 
Large CSOCs must analyze tens of thousands of 
security incidents per day. Not only that there are 
not enough cybersecurity analysts available but 
the average cost of a cybersecurity analyst keeps 
going up.

This paper presents a novel approach to the 
detection of APTs, where an expert cybersecurity 
analyst directly teaches (rather than programs) a 
cognitive agent how to investigate cybersecurity 
alerts. Section 2 summarizes this approach and 

presents the overall architecture of the instructable 
agent. Then Section 3 presents the instantiation of 
this approach into ADONIS that detects malware 
based on its behavior expressed in terms of the 
employed tactics and techniques. Section 4 
presents a complementary instantiation of this 
approach into CAAPT that detects malware based 
on combinations of weak IOCs. Section 5 presents 
the evaluation of CAAPT. Finally, Section 6 
compares ADONIS and CAAPT, and discusses 
the expected benefits of the proposed approach to 
intrusion detection.

2. Instructable Agents for  
APT Detection

An instructable agent for APT detection is a 
cognitive agent that is directly taught how to 
investigate cybersecurity alerts by an expert 
cybersecurity analyst, as the analyst would 
teach a student, through explained examples 
of investigations. Once trained, this agent can 
investigate alerts as the human analyst would, 
both autonomously to allow an “on the loop” 
supervision by an analyst, and interactively with 
the user “in the loop,” as a trusted collaborator. 

Studies in Informatics and Control, 29(3) 269-282, September 2020

https://doi.org/10.24846/v29i3y202001

Complementary Approaches to Instructable Agents  
for Advanced Persistent Threats Detection

Juan HUANG1,2, Zhemin AN1,2, Steven MECKL1, Gheorghe TECUCI1,2*, Dorin MARCU1

1 Learning Agents Center 
2 Department of Computer Science, George Mason University, Fairfax, Virginia, 22030, USA 

jhuang21@gmu.edu, zan2@gmu.edu, smeckl@gmu.edu, tecuci@gmu.edu (*Corresponding author), 
dmarcu@gmu.edu

Abstract: Large CSOCs (cybersecurity operation centers) must analyze tens of thousands of security incidents per day.  
Not only that there are not enough cybersecurity analysts available but the average cost of a cybersecurity analyst keeps 
going up. This paper presents a novel approach to the detection of APTs (advanced persistent threats), where an expert cyber-
security analyst directly teaches (rather than programs) a cognitive agent how to investigate cybersecurity alerts, as the ana-
lyst would teach a student, through explained examples of investigations. It then presents two complementary instantiations 
of this approach, as implemented in ADONIS (Automating the ATT&CKTM-based Detection Of Novel Network Intrusions 
System) and CAAPT (Cognitive Agent for APT detection). ADONIS detects adversary’s behavior in terms of MITRE’s 
ATT&CK (Adversarial Tactics, Techniques & Common Knowledge), independent of specific malware and tools. It can 
therefore detect novel intrusions, but is expected to be less efficient because of the multitude of tactics and techniques that can 
be employed. CAAPT only detects known malware based on combinations of weak IOCs (indicators of compromise) and, 
as demonstrated by the experimental results, is efficient. Therefore, once a new malware is detected with ADONIS, its IOCs 
can be identified and CAAPT can be trained to rapidly detect it. This instructable agents approach promises to significantly 
reduce the cost of operating the CSOCs and improve their detection performance by automating much of the analysts’ inves-
tigative activity. It increases the probability of detecting intrusion activity and reduces the false positive detections presented 
to the analysts who can spend their time on more complex tasks and on teaching the agents.

Keywords: Cybersecurity, Intrusion detection, Instructable agent, Evidence-based reasoning, Artificial intelligence.



https://www.sic.ici.ro

270 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

This approach builds directly on the research on 
a computational theory and technology for the 
development of instructable cognitive agents 
that are taught rather than programmed (Tecuci, 
1988; Tecuci 1998; Boicu et al., 2000; Tecuci et 
al., 2000; Boicu et al., 2001; Tecuci et al., 2002a; 
Tecuci et al., 2016a). These cognitive agents can 
learn complex problem-solving expertise directly 
from human experts, can support experts and 
non-experts in problem solving and decision 
making, can autonomously perform the learned 
tasks, and can teach their problem-solving 
expertise to students. Because the resulting agent 
learns to replicate the problem-solving behavior 
of its human expert, it is called a Disciple 
agent. Exemplary Disciple agents have been 
demonstrated in many domains, including critical 
thinking education (Tecuci & Keeling, 1999), 
course of action critiquing (Tecuci et al., 2001), 
center of gravity analysis (Tecuci et al., 2002b; 
Tecuci et al., 2005; Tecuci, Boicu & Comello, 
2008), intelligence analysis (Tecuci et al., 2008; 
Tecuci et al., 2011; Tecuci et al., 2016b; Tecuci 
et al., 2018), and intelligence, surveillance and 
reconnaissance (Tecuci et al., 2019).

The instructable agent has two main components, 
a Mixed-Initiative Learning and Reasoning 
Assistant shown in Figure 1, and an Autonomous 
Multi-Agent Reasoner shown in Figure 2.
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Figure 1. Mixed-initiative teaching and learning
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Figure 2. Autonomous intrusion detection

A cybersecurity analyst directly teaches the 
Learning and Reasoning Assistant how to 
investigate cybersecurity alerts and the assistant 
develops the Reference Knowledge Base (KB), 
enabling it to automatically perform similar 
investigations. The analyst demonstrates the 
investigation of a specific cybersecurity alert by 
following the scientific method of hypothesis 
generation and testing used in intelligence analysis 
(Tecuci et al., 2016b). First, during alert-driven 
hypothesis generation, the analyst employs 
abductive reasoning that shows that something is 
possibly true, to imagine the possible malicious 
and non-malicious (regular) activities that may 
have caused the alert. Then, during hypothesis-
driven evidence discovery, the analyst employs 
deductive reasoning that shows that something 
is necessarily true, to successively decompose 
each of these hypothesized activities into 
simpler and simpler hypotheses. The simplest 
hypotheses point to evidence that may support 
either their truthfulness or their falsehood. 
After that, specialized collection agents are 
invoked to look for this evidence on the host and 
network computers. Finally, during evidence-
based hypothesis testing, the analyst employs 
inductive reasoning that shows that something is 
probably true, to test each hypothesis based on the 
discovered evidence. 

The Mixed-Initiative Learning and Reasoning 
Assistant learns rules for generating 
hypotheses, rules for evidence collection, and 
rules for analyzing hypotheses, as ontology-
based generalizations of the reasoning steps 
demonstrated by the analyst (Tecuci et al., 
2016a). These rules are stored into the Reference 
Knowledge Base.

This instructable agent approach is based 
on apprenticeship learning from examples 
demonstrated by the instructor. However, as 
opposed to other instructable agent approaches, 
such as PLOW (Allen et al., 2007) or LIA 
(Azaria, Krishnamurthy & Mitchell, 2016) that 
rely on inductive learning and natural language 
processing, this approach employs multistrategy 
learning (Tecuci, 1993; Michalski & Tecuci, 1994) 
that synergistically integrates inductive learning 
from examples, learning from explanations, and 
learning by analogy, in the context of a multi-
agent architecture.
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3. Intrusion Detection Based on 
Attacker Tactics and Techniques

A transformative development in intrusion 
detection is represented by MITRE’s ATT&CK 
framework that identifies the tactics and 
techniques employed by adversaries (Strom et 
al., 2017). The tactics represent the adversary’s 
objectives for performing its actions, such 
as persist on the attacked system, escalate 
privileges, evade detection, access credentials, 
discover information, move laterally, execute 
files, collect information, exfiltrate data, and 
command and control.

The techniques describe the actions adversaries 
take to achieve their tactical objectives. Within 
each tactic category, such as that of executing 
files, there are a finite number of actions that 
will enable the adversary to achieve its objective, 
such as service execution, Windows management 
instrumentation, and scheduled task. Many of 
the ATT&CK techniques are legitimate system 
functions that can also be used for malicious 
purposes, as opposed to IOCs that are indications 
of actions known to be caused by, or under the 
influence of an adversary. Moreover, the ATT&CK 
techniques represent behavior exhibited by an 
adversary through remote access tools, scripts, 
or interaction with a command-line interface, 
independent of specific adversary malware and 
tools that are likely to change over time (Strom 
et al., 2017).

During an intrusion, an adversary decides at 
every step which technique to use based on 
its knowledge, information obtained about 
the target environment, information needed 
for future actions, and capabilities currently 
available (Strom et al., 2017). This provides 
the opportunity to detect patterns of adversary 
behavior as combinations of specific tactics 
and techniques. As illustrated in the following 
sections, a cybersecurity expert can instruct 
ADONIS to automatically detect such patterns.

3.1 Cybersecurity Ontology

When the cybersecurity analyst models the 
detection process for a specific malware, s/
he (assisted by a knowledge engineer) also 
identifies the ontological knowledge needed by 
the assistant to automatically perform the same 
analysis. This results in an ontology specification. 
An initial ontology is then developed based on this 
ontology specification, existing cyber ontologies 
(Obrst, Chase & Markeloff, 2012), CSOC’s 
network configuration, and threat intelligence. 
The ontology language is an extension of the 
Resource Description Framework Schema, or 
RDFS (Allemang & Hendler, 2011; W3C, 2014) 
with additional features to facilitate learning and 
evidence representation (Tecuci et al.,, 2016a). 
Figure 3 shows a fragment of the ontology of 
ADONIS that is used both as a generalization 
hierarchy for learning, and for reasoning in 
conjunction with learned ontology-based rules. 

object

communicationpattern time event

network event

network transfer event

SMB transfer event

network object

connection

network protocol

application layer protocol

SMB transfer protocol

network address

IP address

IPv6 address

IPv4 address

port

system object

process

command

file system object

computer file system object

path 

absolute path

file

executable file

… system API 

system tool

program

scheduled task

…
…

…

…

…

…

…………

…

…

Windows process
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3.2 Hypothesis Generation  
and Learning

The agent’s instruction starts with a cybersecurity 
alert. These alerts can come from a variety of IDSs 
(intrusion detection systems), including network-
based and host-based IDSs, anti-virus software, 
endpoint detection and response tools, or complex 
detection rules built into security information and 
event management systems. In this illustration 
the alert was generated by the Zeek IDS (2020) 
and converted into the JSON (Java Script Object 
Notation) format which was then represented 
both as an ontology fragment and as a natural 
language phrase, as shown at the bottom of Figure 
4 (SMB stands for server message block). Next 
the cybersecurity analyst needs to imagine a 
malicious activity that may have caused this alert 
and formulate a question (shown at the top of 
Figure 4) whose answer is this activity. The other 
answers (of which one is shown) are alternative 
activities that may also have caused the alert. 
From this demonstration of hypothesis generation 
the agent learns an alert rule, an indicator rule, 
and two question rules. These rules will enable 
the agent to generate alternative hypotheses from 
similar alerts. 

3.3 Evidence Discovery and Learning

The two hypotheses from the top of Figure 4 (an 
intrusion hypothesis and a false-positive one) need 
to be analyzed to determine which one is the most 
likely. This requires more evidence. The analyst 
needs to show to the agent how such evidence can 
be discovered by putting each of the hypotheses 
to work, as part of the hypothesis-driven evidence 
discovery phase. In essence, each hypothesized 
activity is successively decomposed into simpler 
and simpler ones representing specific tactics 
and techniques which point to evidence that may 
support their truthfulness. Figure 5 shows the 
decomposition of the attack hypothesis into two 
tactics, LATERAL MOVEMENT TACTIC and 
EXECUTION TACTIC. The Lateral Movement 
hypothesis is supported by the evidence represented 
by the alert. However, to further decompose the 
Execution tactic into corresponding techniques, one 
needs to identify the process that was created from 
executable file1. Therefore, a collection request for 
this process is transmitted to a specialized collection 
agent that will identify and return process1. From 
the demonstrated decomposition in Figure 5, the 
agent learns a hypothesis analysis rule and an 
evidence collection rule.

The discovery of process1 enables the 
decomposition of the EXECUTION TACTIC into 

Figure 4. Instructing the agent to generate hypotheses
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three techniques, SERVICE EXECUTION TECHNIQUE, 
WINDOWS MANAGEMENT INSTRUMENTATION 
TECHNIQUE, and SCHEDULED TASK TECHNIQUE, 
as illustrated in Figure 6. Each technique is further 
decomposed into simpler hypotheses that point to 
evidence that may support its truthfulness. Then 
corresponding collection requests are formulated 
for specialized collection agents. For example, the 
Windows Management Instrumentation technique 
is decomposed into two sub-hypotheses. The 
second one (i.e. “WMIC command1 is executed in 
command-line on host 10.10.1.10 through remote 
procedure call on 3/27/2020 05:07:25”) has a 
favoring argument (that favors its truthfulness) 
under the left (green) square, consisting of 
the conjunction of two sub-hypotheses. It also 
has a disfavoring argument (that disfavors its 
trustfulness) under the right (pink) square: if the 
WMIC command1 is executed locally on host 

10.10.1.10, then it is not executed in command-
line through remote procedure call.
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3.4 Multistrategy Rule Learning

The vast majority of the current machine learning 
approaches are heavily statistical and learn single 
functions from a large number of examples. 
Such approaches are not applicable for learning 
analysis rules because large sets of examples to 
learn from do not exist and would be very difficult 
to create. Instead, the cybersecurity analyst just 
points directly to the relevant features of the 
instances in the example, such as process1 runs 
on 10.10.1.10, and has as time stamp 3/27/2020 
05:07:25. Thus, these features do not need to be 
discovered through the statistical comparison of 
a large number of positive and negative examples 
(that are not available anyway), as done in the 
inductive learning methods (Alpaydyn, 2020). 

From the demonstrated reasoning in Figure 6,  
the agent learns three hypothesis analysis rules, 
each reducing the Execution tactic to an execution 
technique, as shown on top of the figure. Then 
it learns other hypothesis analysis rules, 
corresponding to these techniques, as well as the 
corresponding evidence collection rules.

In particular, from the decomposition of 
the Windows Management Instrumentation 
hypothesis, shown inside the polygon in Figure 6,  
the agent learns the hypothesis analysis rule 
shown in Figure 7. First, the agent replaces each 
example-specific instance with a different variable 
(i.e., process1 with ?O1, 10.10.1.10 with ?S1, and 
3/27/2020 05:07:25 with ?S2). Then it generates 
an ontology-based applicability condition for the 
resulting reasoning pattern that shows the possible 
values that these variables may take.

Notice however that, instead of a single 
applicability condition, the agent learns a lower 
bound and an upper bound for this condition, by 
using two complementary learning strategies.

The lower bound is generated by employing 
the strategy of a cautious learner that wants to 
minimize the chances of making mistakes when 
employing the learned rule. In this case the 
lower bound of ?O1 is obtained as a minimal 
generalization of process1 in the agent’s ontology, 
which is Windows process. That is, ?O1 can be 
instantiated by any instance of a Windows process. 
This strategy increases agent’s confidence in the 
correctness of its reasoning, but the agent may fail 
to apply the reasoning pattern in situations where 
it is applicable. 

The upper bound of the condition is generated 
by employing the strategy of an aggressive 
learner that wants to maximize the opportunities 
of employing the learned rule. In this case the 
upper bound of ?O1 is obtained as a maximal 
generalization of process1 which is system object. 
This strategy increases the number of situations 
where the rule can be applied, but in some of them 
the reasoning may not be correct. 

The two bounds may be refined, and may even 
become identical, based on additional examples 
encountered by the agent during its autonomous 
analysis of new alerts. 

Figure 7. Hypothesis analysis rule learned from the 
example argumentation in Figure 6

4. Intrusion Detection Based on 
Combinations of Weak IOCs

Many attacker groups practice evolutionary 
development to adapt their malware to changes 
in network defense technology or simply to 
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increase efficiency. These changes in the way 
malware presents itself on the network and on 
disk have made it difficult for signature-based 
intrusion detection tools to detect attacks because 
the attackers can change static information in 
their malware faster than defenders can adapt. 
However, the patterns of behavior change more 
slowly and with less variance. 

CAAPT can be trained to learn patterns of IOCs 
and can anticipate the changes present in the 
malware. If one aspect of the malware’s behavior 
changes and becomes undetectable by the agent, 
the malware can still be detected with some 
probability based on the remaining observable 
evidence. This partial detection can further be 
used, in collaboration with an analyst, to identify 
the changes in the malware family by searching 
for additional observable behavior, to extend the 
initial detection pattern. This cycle of learning, 
applying, and extending patterns allows the agent 
to adapt as the malware family evolves.

The previous sections have illustrated the process 
of instructing ADONIS, which is similar to that 
of CAAPT. The next subsection will illustrate the 
hypothesis testing process. 

Evidence-based Hypothesis Testing

Figure 2 presents the autonomous intrusion 
detection process that will be illustrated in the 
following. The Zeek IDS generated an alert. Its 
JSON representation is sent to the Alert Agent 
by a Surveillance Agent through the Surveillance 
Manager. The Alert Agent employs a (previously 
learned) alert rule to generate the ontological 
representation of this alert and the following 
basic hypothesis:

Suspicious connection1 from 10.10.1.20 (port 56902) 
to 10.10.4.101 (port 53) at 08/29/2019 11:42:23 AM, 
using known APT1 domain ubuntuguru.strangled.net

The Hypotheses Generation Agent employs 
an indicator rule to abductively generate the 
following intrusion hypothesis: 

connection1 from 10.10.1.20 (port 56902) to 
10.10.4.101 (port 53) at 08/29/2019 11:42:23 AM, 
using known APT1 domain ubuntuguru.strangled.net, 
is part of APT1 intrusion.

Then it uses three question rules to generate a 
question and two other alternative hypotheses. 
After that, the Hypothesis Analysis Agent 

and the Evidence Agent generate Wigmorean 
argumentations (Wigmore, 1913; Schum, 2001; 
Tecuci et al.,, 2016b), like those in Figure 
5 and Figure 6,  for assessing the generated 
hypotheses. In a Wigmorean argumentation, the 
hypothesis to be assessed is decomposed into 
simpler sub-hypotheses by considering both 
favoring arguments (supporting the truthfulness 
of the hypothesis), and disfavoring arguments 
(supporting the falsehood of the hypothesis). 
Each argument is an independent strategy of 
showing that the hypothesis to be assessed is 
true or false, and is characterized by a specific 
relevance or strength. An argument consists 
either of a single sub-hypothesis or a conjunction 
of sub-hypotheses. The symbol “*” is used to 
denote a combined indicator representing all the 
possible combinations of a set of sub-hypotheses  
(e.g., H1*H2 = H1 or H2 or H1&H2).  

The agents employ an intuitive system of Baconian 
probabilities (Cohen, 1977) with Fuzzy qualifiers 
(Negoita & Ralescu, 1975; Zadeh, 1983) which 
are shown in Table 1. Notice that the probability 
intervals are associated with intuitive names, such 
as likely (60-65%) or almost certain (95-99%).

Table 1. Probability scale

L11 100% certain
L10 95-99% almost certain
L09 90-95% very likely+
L08 85-90% very likely
L07 80-85% very likely-
L06 75-80% more than likely+
L05 70-75% more than likely
L04 65-70% likely+
L03 60-65% likely
L02 55-60% likely-
L01 50-55% barely likely
L00 0-50% lacking support

A fragment of the generated Wigmorean 
argumentation for assessing the above intrusion 
hypothesis is shown in Figure 8. The probabilities 
of the hypotheses are assessed from bottom-up. 
First the probabilities of the leaf hypotheses are 
assessed based on the three credentials of the 
corresponding evidence: credibility, relevance, 
and inferential force. The credibility of evidence 
answers the question: What is the probability that 
the evidence is true? The relevance of evidence 
to a hypothesis answers the question: What 
would be the probability of the hypothesis if the 
evidence were true?” The inferential force or 
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weight of the evidence on the hypothesis answers  
the question: What is the probability of the 
hypothesis, based only on this evidence? 
Obviously, an irrelevant item of evidence will 
have no inferential force. An item of evidence that 
is not credible will have no inferential force either. 
Only an item of evidence that is both relevant 
and credible would indicate that the hypothesis is 
true. Consistent with both the Baconian and the 
Fuzzy min/max probability combination rules, 
the inferential force of an item of evidence on a 
hypothesis is determined as the minimum between 

its credibility and its relevance. When there is only 
one item of favoring evidence for a hypothesis, 
its inferential force on the hypothesis is also the 
probability of the hypothesis. In general, however, 
the probability of the hypothesis would be the 
result of the balance of probabilities between the 
combined inferential force (maximum) of the 
favoring evidence items (represented under the 
left green square) and the combined inferential 
force of the disfavoring items (represented under 
the right pink square).

Figure 8. Fragment of the analysis of a variant of the Seasalt malware



 277

ICI Bucharest © Copyright 2012-2020. All rights reserved

Complementary Approaches to Instructable Agents for Advanced Persistent Threats Detection

Once the probabilities of the bottom-level 
hypotheses have been determined based on 
evidence, the probabilities of the upper level 
hypotheses are computed based on the logical 
structure of the Wigmorean argumentation 
(conjunctions and disjunctions of hypotheses), 
using the min-max probability combination rules 
common to the Fuzzy probability view and the 
Baconian probability view. These rules are much 
simpler than the Bayes rule used in the Bayesian 
probability view (Schum, 2001), or the Dempster-
Shafer rule in the Belief Functions probability 
view (Shafer, 1976).

Notice that the top argument in Figure 8 is a 
combined indicator (*) argument. If there is 
evidence of both indicators, their relevance is 
very likely L08 (85-90%). If there is evidence 
only for the left-hand side indicator, the relevance 
is more than likely L05 (70-75%), and if there is 
evidence only for the right-hand side indicator, 
the relevance is likely L03 (60-65%). As a result, 
the probability of the top hypothesis is assessed 
as the minimum between the relevance of the 
combined indicator and the probabilities of the 
sub-hypotheses.

5. Evaluation

Evaluating a system like ADONIS or CAAPT 
is challenging due to a lack of standardized data 
for use when comparing it with other systems or 
approaches. It is also challenging due to a lack of 
similar systems. It is a novel approach with respect 
to both autonomous evidence-based reasoning in 
general and APT detection in particular. As such, 
the only reasonable approach to compare them 
would be against manual analysis by an expert, 
but even this is problematic because of lack of 
data on manual analysis. Currently only CAAPT 
has been evaluated.

APT1 was chosen as the attack group for this 
research primarily because of the abundance of 
freely available unclassified information about it, 
including IOCs, malware samples, and details of 
how the group operated (Mandiant, 2013).

Experiments were designed and performed to 
test both the training of CAAPT and its ability to 
detect configuration changes in the same malware 
and new malware versions as the attackers’ tool 

set evolved over time (Meckl et al.,, 2017; Meckl, 
2019). The experiments simulated a subset of the 
historical evolution of the APT1 malware: Auriga 
→ Auriga variants → Bangat → Bangat variants 
→ Seasalt → Seasalt variants → Kurton → 
Kurton variants.

The evaluation experiment started with 
developing a cyber ontology which, as opposed 
to the broad and malware-agnostic ontology of 
ADONIS, was focused on the representation of 
the APT1 malware and its IOCs. Then CAAPT 
was trained to analyze the Auriga malware, 
based on the expertise of Steven Meckl, and its 
detection capabilities were tested in the sequence 
of scenarios discussed below.

5.1 Auriga Experiment

Scenario 1a consisted of an intrusion with the 
Auriga malware used in training, to create a 
baseline for the evaluation. As shown in Table 2, 
CAAPT detected that very likely (85-90%) there 
is an intrusion by Auriga or by an unspecified 
member of the APT1 family (including Auriga). 

Table 2. Results of the Auriga experiment

Intrusion By Detected Intrusion Duration

1a: Auriga malware 
used in training

Auriga (85-90%)
143 seconds

APT1 (85-90%)

2a: Variant of the 
Auriga malware

Auriga (85-90%)
121 seconds

APT1 (85-90%)

3a: Bangat malware
Auriga (75-80%)

119 seconds
APT1 (85-90%)

Scenario 2a consisted of an intrusion by a variant 
of Auriga that used a different APT1 domain to 
trigger the security alert, and the malware process 
%SYSTEMROOT%\Temp\svchost.exe did not 
contain unique APT1 strings. In this case also 
CAAPT detected that very likely (85-90%) there 
is an intrusion by Auriga or by an unspecified 
member of the APT1 family.

Scenario 3a consisted of an intrusion by the 
Bangat malware for which CAAPT was not 
trained. Bangat does not use the library files 
riodrv32.sys and netui.dll, instead, it uses a 
different regular expression for its temporary file 
names, stores its data files in different folders, 
and uses different Windows Service names for 
its persistence mechanisms. This time CAAPT 
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detected that very likely (85-90%) there is an 
APT1 intrusion, but the probability of being 
Auriga is only 75-80%.

The last column in Table 2 shows the duration of 
each experiment. The run time for the generation 
and evaluation of the analyses was between 1 and 
3 seconds. Most of the time was spent waiting for 
the Collection and Monitoring Manager to return 
the results requested from the collection agents.

5.2 Bangat Experiment

The second experiment modelled the detection 
of the Bangat intrusion from the first experiment, 
and extended the APT1 ontology with the 
representation of the Bangat malware as follows:

1. The experiment started with the KB generated 
by the last Auriga experiment (Bangat 
intrusion with the Auriga representation and 
the rules learned from the Auriga modelling);

2. The ontological representation of Bangat was 
added into this KB;

3. The analysis of the Bangat intrusion was 
generated using the ontological representation 
of Bangat and the rules were learned from the 
Auriga modelling;

4. The generated analysis was refined and 
extended to accurately and completely analyze 
the Bangat malware;

5. New rules to analyze Bangat were learned;

6. CAAPT’s detection capabilities were tested in 
three scenarios, as in the Auriga experiment.

Scenario 1b consisted of an intrusion with the 
Bangat malware used in training (the one from 
the Auriga experiment). As shown in Table 3, 
CAAPT detected that very likely (85-90%) there 
was an intrusion by Bangat or by an unspecified 
member of the APT1 family. The probability 
of being Auriga was more than likely+ (75-
80%). This is not a contradiction because these 
hypotheses are not disjoint. The Bangat malware 
is an evolution of the Auriga malware and 
therefore it has many features in common with 
Auriga. When checking for an intrusion with 
Auriga, the system looks for the presence of the 
features of the Auriga malware on the infected 
computer, but some of these features are also 

the features of Bangat, so it is possible that the 
computer is infected by both Auriga and Bangat. 

Therefore, Auriga intrusion with probability 
more than likely+ (75-80%) covers the case 
where the Auriga intrusion is accompanied by 
a Bangat intrusion. Similarly, Bangat intrusion 
with probability very likely (85-90%) is based on 
the detected Bangat features on the host computer 
which also includes some Auriga features. Thus, 
this probability also covers the case when there 
is both a Bangat and an Auriga intrusion.

Table 3. Results of the Bangat experiment

Intrusion By Detected Intrusion Duration

1b: Bangat malware 
used in training

Auriga (75-80%)
265 secondsBangat (85-90%)

 APT1 (85-90%)

2b: Variant of 
the Bangat malware

 Auriga (75-80%)
228 secondsBangat (85-90%)

APT1 (85-90%)

3b: Seasalt malware
Auriga (50-55%)

274 secondsBangat (50-55%)
APT1 (85-90%)

Scenario 2b consisted of an intrusion with a 
variant of Bangat that had three differences. The 
alert was triggered with a different domain, the 
data files used in the first Bangat scenario were not 
present, and a different temporary file matching 
the Bangat regular expression was present on the 
infected host. CAAPT again detected that very 
likely (85-90%) there was an intrusion by Bangat 
or by an unspecified member of the APT1 family, 
and more than likely+ (75-80%) by Auriga. 

Scenario 3b consisted of an intrusion by another 
member of the APT1 family, the Seasalt malware, 
for which CAAPT was not trained. Seasalt added 
an auxiliary program, which was started by the 
Seasalt Windows Service DLL, and the network 
protocol was changed so it could be detected 
using a unique HTTP User Agent String. CAAPT 
detected that very likely (85-90%) there was an 
intrusion by an unspecified member of the APT1 
family, but the probability of being Auriga or 
Bangat was only barely likely (50-55%).

5.3 Seasalt and Kurton Experiments

The Seasalt and Kurton experiments were similar 
to the above ones and their results are presented 
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in Table 4 and Table 5. Compared to the other 
analyzed malware, Kurton has fewer forensic 
indicators to examine. The largest subset of 
indicators consists of unique strings, which have 
less inferential force than other types of indicators. 
As such, without a matching hash value (which is 
normal for APT1 intrusions) the highest expected 
probability for detection of Kurton is 80-85%.

Table 4. Results of the Seasalt experiment

Intrusion By Detected Intrusion Duration

1s: Seasalt malware 
used in training

Auriga (50-55%)

382 seconds
Bangat (50-55%)
Seasalt (85-90%) 
APT1 (85-90%)

2s: Variant of 
the Seasalt malware

 Auriga (75-80%)

406 seconds
Bangat (50-55%)
Seasalt (85-90%)
APT1 (85-90%)

3s: Kurton malware

Auriga (50-55%)

344 seconds
Bangat (60-65%)
Seasalt (0-50%)
APT1 (85-90%)

Table 5. Results of the Kurton experiment

Intrusion By Detected Intrusion Duration

1k: Kurton malware 
used in training

Auriga (50-55%)

587 seconds
Bangat (60-65%)
Seasalt (0-50%)

Kurton (80-85%)
APT1 (85-90%)

2k: Variant of the 
Kurton malware

Auriga (50-55%)

631 seconds
Bangat (60-65%)
Seasalt (0-50%)

Kurton (80-85%)
APT1 (85-90%)

5.4 Summary of the Experimental 
Results

Overall, CAAPT learned 40 context-independent 
hypotheses patterns, 2 alert rules, 2 indicator 
rules, 23 hypotheses analysis rules (some of them 
with large argument patterns that contain many 
context-depended hypotheses), 23 collection 
tasks, and 23 collection rules. 10 collection 
agents were also defined. 

The evolutionary development of APT1 was 
successfully exploited by CAAPT, as shown 
by the experimental results. First, after CAAPT 

was trained based on one instance of the Auriga 
malware, it was able to also detect a variant of 
this malware. This was the case with all the other 
three malware programs considered (Bangat, 
Seasalt, and Kurton) and is a consequence of the 
learning method employed by CAAPT. Indeed, 
CAAPT generalizes a specific example and its 
explanation into a general rule that also covers 
similar examples which are likely to correspond 
to variants of the malware used in training.

Second, CAAPT succeeded to anticipate the 
changes in the malware by learning patterns of 
IOCs in the form of hypotheses analysis rules. If 
one aspect of the malware’s behavior changed 
and became undetectable by CAAPT, it still 
detected the malware with some probability 
based on the remaining observable evidence. 
For example, as shown in Table 2, after being 
trained to detect Auriga and invoked to analyze 
an intrusion with Bangat, CAAPT still reported 
an APT1 intrusion with a probability of 85-90%, 
but the probability of being Auriga was lower 
(75-80%). 

In the case of analyzing Seasalt after being 
trained on Auriga and Bangat, CAAPT still 
detected an APT1 intrusion with a probability 
of 85-90%, but the probability of being Auriga 
or Bangat was of only 50-55% (see Table 3). 
A similar result was obtained in the case of 
analyzing Kurton after being trained on Auriga, 
Bangat, and Seasalt. CAAPT still detected an 
APT1 intrusion with a probability of 85-90%, but 
the probability of being Auriga was 50-55%, of 
being Bangat was 60-65%, and of being Seasalt 
was 0-50% (see Table 4).

The evolutionary development of APT1 also 
significantly simplified and accelerated the 
training of the agent. For example, to train for 
Auriga detection, CAAPT had to learn 28 context-
independent hypotheses patterns, 2 alert rules, 
2 indicator rules, 13 hypotheses analysis rules, 
15 collection tasks, and 15 collection rules. 8 
collection agents had also to be defined. 

Many of these were also applicable for the 
detection of Bangat intrusions. Therefore, to 
train for Bangat detection, a reduced number 
of knowledge elements needed to be learned: 
1 context-independent hypothesis pattern, 1 
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hypotheses analysis rule, 1 collection task, and 1 
collection rule. The same is true for the training 
to detect Seasalt and Kurton. The amount of 
knowledge elements that needed to be learned 
depended on the amount of change in the new 
malware. Notice, for example, the 2 alert rules 
and the 2 indicator rules learned for Auriga were 
also applicable to Bangat, Seasalt, and Kurton. 
Also, after defining 8 collection agents to collect 
evidence for Auriga detection, only two more were 
needed to cover the collection needs for Bangat, 
Seasalt, and Kurton.

While CAAPT coverage of malware detection 
is limited to APT1, and the increase in coverage 
will also increase the detection time, the times 
obtained in the experiment are very small 
and support the hypothesis that a system 
like CAAPT will significantly speed–up the 
malware detection process. The total runtime 
to detect an intrusion increased from around 
2 minutes, when CAAPT was checking for 
Auriga intrusions only, to around 10 minutes 
when CAAPT was checking for Auriga, Bangat, 
Seasalt, and Kurton intrusions. 

However, the run time for the generation and 
evaluation of the analyses only increased from 
around 2 seconds, when CAAPT was checking 
for Auriga intrusions only, to around 6 seconds 
when CAAPT was checking for Auriga, 
Bangat, Seasalt, and Kurton intrusions. As 
previously mentioned, most of the time is spent 
by waiting for the Collection and Monitoring 
Manager to return the results requested from the  
collection agents. 

But time is only part of advantages offered by a 
system like CAAPT. While professional CSOCs 
have processes to be followed by analysts to 
ensure consistent analytical quality, it is natural 
for analysts to take shortcuts when they believe 
that the evidence examined early in the process 
leads to an obvious answer. These analytical leaps 
can shorten analysis times but can also lead to 
errors. CAAPT, on the other hand, will follow its 
learned processes fully every time. This reduces 
errors and provides consistent analytical results. 
As the number of evaluated hypotheses grows the 
increase of the processing time can be mitigated 
with additional computing power.

6. Discussion

Network intrusion detection is a perennial 
necessity because of the expected zero-day 
vulnerabilities of computer software. These 
represent the vulnerabilities that are unknown 
to, or unaddressed by software developers, and 
can therefore be exploited by hackers. This paper 
presented a novel approach to network intrusion 
detection where an instructable cognitive agent 
is directly taught by an expert analyst how to 
investigate cybersecurity alerts as the analyst 
would teach a student. It also presented two 
complementary instantiations of this approach, 
CAAPT and ADONIS.

CAAPT is trained to detect sophisticated APT 
intrusions based on combinations of weak IOCs 
and is efficient. However, it can only detect known 
malware and relies on the knowledge of malware’s 
IOCs that are easily changed by the attackers.

ADONIS, on the other hand, focuses on 
adversary’s behavior, independent of specific 
malware and tools, and can detect novel intrusions, 
but it is expected to be less efficient. Therefore, 
once a new malware is detected, its IOCs can be 
identified and CAAPT can be rapidly trained to 
detect it and its variants. The further development 
of and experimentation with ADONIS is a near-
term goal of this research.

7. Conclusion

This paper presented an instructable agent 
approach to APT detection that promises to provide 
significant benefits to CSOCs by automating much 
of the analysts’ investigative activity, increasing 
the probability of detecting intrusion activity and 
reducing the false positive detections presented to 
the analyst. Human analysts will be able to spend 
their time on more complex and more engaging 
analytical tasks and on teaching the agents. 
Therefore, the cost of operating a CSOC will be 
significantly reduced.
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