
269

ICI Bucharest © Copyright 2012-2020. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X

1. Introduction

Network intrusion detection is currently done
through a combination of automated and manual
techniques. Automated tools use near-real-time
data sources, such as host-based and network-
based activity logs, along with a variety of
detection strategies based on IOCs, rules, anomaly
detection, and machine learning to trigger alerts for
potentially malicious activity that cybersecurity
analysts must investigate. These alerts are good
at identifying new attacks but have a high false
positive rate. Manual analysis of alerts requires
a high level of skill and is resource intensive.
The analysts must be skilled at collecting and
examining a wide variety of data including disk
and memory artifacts, logs, and raw network
packet data to determine if an alert is valid.
Large CSOCs must analyze tens of thousands of
security incidents per day. Not only that there are
not enough cybersecurity analysts available but
the average cost of a cybersecurity analyst keeps
going up.

This paper presents a novel approach to the
detection of APTs, where an expert cybersecurity
analyst directly teaches (rather than programs) a
cognitive agent how to investigate cybersecurity
alerts. Section 2 summarizes this approach and

presents the overall architecture of the instructable
agent. Then Section 3 presents the instantiation of
this approach into ADONIS that detects malware
based on its behavior expressed in terms of the
employed tactics and techniques. Section 4
presents a complementary instantiation of this
approach into CAAPT that detects malware based
on combinations of weak IOCs. Section 5 presents
the evaluation of CAAPT. Finally, Section 6
compares ADONIS and CAAPT, and discusses
the expected benefits of the proposed approach to
intrusion detection.

2. Instructable Agents for
APT Detection

An instructable agent for APT detection is a
cognitive agent that is directly taught how to
investigate cybersecurity alerts by an expert
cybersecurity analyst, as the analyst would
teach a student, through explained examples
of investigations. Once trained, this agent can
investigate alerts as the human analyst would,
both autonomously to allow an “on the loop”
supervision by an analyst, and interactively with
the user “in the loop,” as a trusted collaborator.

Studies in Informatics and Control, 29(3) 269-282, September 2020

https://doi.org/10.24846/v29i3y202001

Complementary Approaches to Instructable Agents
for Advanced Persistent Threats Detection

Juan HUANG1,2, Zhemin AN1,2, Steven MECKL1, Gheorghe TECUCI1,2*, Dorin MARCU1

1 Learning Agents Center
2 Department of Computer Science, George Mason University, Fairfax, Virginia, 22030, USA

jhuang21@gmu.edu, zan2@gmu.edu, smeckl@gmu.edu, tecuci@gmu.edu (*Corresponding author),
dmarcu@gmu.edu

Abstract: Large CSOCs (cybersecurity operation centers) must analyze tens of thousands of security incidents per day.
Not only that there are not enough cybersecurity analysts available but the average cost of a cybersecurity analyst keeps
going up. This paper presents a novel approach to the detection of APTs (advanced persistent threats), where an expert cyber-
security analyst directly teaches (rather than programs) a cognitive agent how to investigate cybersecurity alerts, as the ana-
lyst would teach a student, through explained examples of investigations. It then presents two complementary instantiations
of this approach, as implemented in ADONIS (Automating the ATT&CKTM-based Detection Of Novel Network Intrusions
System) and CAAPT (Cognitive Agent for APT detection). ADONIS detects adversary’s behavior in terms of MITRE’s
ATT&CK (Adversarial Tactics, Techniques & Common Knowledge), independent of specific malware and tools. It can
therefore detect novel intrusions, but is expected to be less efficient because of the multitude of tactics and techniques that can
be employed. CAAPT only detects known malware based on combinations of weak IOCs (indicators of compromise) and,
as demonstrated by the experimental results, is efficient. Therefore, once a new malware is detected with ADONIS, its IOCs
can be identified and CAAPT can be trained to rapidly detect it. This instructable agents approach promises to significantly
reduce the cost of operating the CSOCs and improve their detection performance by automating much of the analysts’ inves-
tigative activity. It increases the probability of detecting intrusion activity and reduces the false positive detections presented
to the analysts who can spend their time on more complex tasks and on teaching the agents.

Keywords: Cybersecurity, Intrusion detection, Instructable agent, Evidence-based reasoning, Artificial intelligence.

https://www.sic.ici.ro

270 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

This approach builds directly on the research on
a computational theory and technology for the
development of instructable cognitive agents
that are taught rather than programmed (Tecuci,
1988; Tecuci 1998; Boicu et al., 2000; Tecuci et
al., 2000; Boicu et al., 2001; Tecuci et al., 2002a;
Tecuci et al., 2016a). These cognitive agents can
learn complex problem-solving expertise directly
from human experts, can support experts and
non-experts in problem solving and decision
making, can autonomously perform the learned
tasks, and can teach their problem-solving
expertise to students. Because the resulting agent
learns to replicate the problem-solving behavior
of its human expert, it is called a Disciple
agent. Exemplary Disciple agents have been
demonstrated in many domains, including critical
thinking education (Tecuci & Keeling, 1999),
course of action critiquing (Tecuci et al., 2001),
center of gravity analysis (Tecuci et al., 2002b;
Tecuci et al., 2005; Tecuci, Boicu & Comello,
2008), intelligence analysis (Tecuci et al., 2008;
Tecuci et al., 2011; Tecuci et al., 2016b; Tecuci
et al., 2018), and intelligence, surveillance and
reconnaissance (Tecuci et al., 2019).

The instructable agent has two main components,
a Mixed-Initiative Learning and Reasoning
Assistant shown in Figure 1, and an Autonomous
Multi-Agent Reasoner shown in Figure 2.

Mixed-Initiative
Learning and

Reasoning Assistant

Collection requests
and returned evidence

Hypothesized malicious
and regular activities that

may explain the alert

Cybersecurity
alert

Probability
of each

hypothesis

Learning
to generate
hypotheses

Learning
to discover
evidence

Learning
to assess

hypotheses

Expert
Cybersecurity Analyst

Reference
Knowledge Base

Figure 1. Mixed-initiative teaching and learning

Simulated CSOC

Mixed-Initiative
Refinement Assistant

Hypothesis
Generation Agent

Evidence
Agent

Alert
Agent

Collection and
Monitoring Manager

Re
po

si
to

ry
 M

an
ag

em
en

t
Se

rv
ic

e

Collection
Agent

Collection
Agent

Collection
Agents

Surveillance
Agent

Surveillance
Agent

Surveillance
Agents

Evidence collection
KB queue

User review
KB queue

Hypothesis analysis
KB queue

Hypothesis
generation KB queue

Reference
Knowledge Base

Hypothesis
Analysis Agent

Hypothesis
Analysis Agent

Surveillance
Manager

Hypothesis
Analysis Agent

User Notification and
Review Service

Simulated
Data

Figure 2. Autonomous intrusion detection

A cybersecurity analyst directly teaches the
Learning and Reasoning Assistant how to
investigate cybersecurity alerts and the assistant
develops the Reference Knowledge Base (KB),
enabling it to automatically perform similar
investigations. The analyst demonstrates the
investigation of a specific cybersecurity alert by
following the scientific method of hypothesis
generation and testing used in intelligence analysis
(Tecuci et al., 2016b). First, during alert-driven
hypothesis generation, the analyst employs
abductive reasoning that shows that something is
possibly true, to imagine the possible malicious
and non-malicious (regular) activities that may
have caused the alert. Then, during hypothesis-
driven evidence discovery, the analyst employs
deductive reasoning that shows that something
is necessarily true, to successively decompose
each of these hypothesized activities into
simpler and simpler hypotheses. The simplest
hypotheses point to evidence that may support
either their truthfulness or their falsehood.
After that, specialized collection agents are
invoked to look for this evidence on the host and
network computers. Finally, during evidence-
based hypothesis testing, the analyst employs
inductive reasoning that shows that something is
probably true, to test each hypothesis based on the
discovered evidence.

The Mixed-Initiative Learning and Reasoning
Assistant learns rules for generating
hypotheses, rules for evidence collection, and
rules for analyzing hypotheses, as ontology-
based generalizations of the reasoning steps
demonstrated by the analyst (Tecuci et al.,
2016a). These rules are stored into the Reference
Knowledge Base.

This instructable agent approach is based
on apprenticeship learning from examples
demonstrated by the instructor. However, as
opposed to other instructable agent approaches,
such as PLOW (Allen et al., 2007) or LIA
(Azaria, Krishnamurthy & Mitchell, 2016) that
rely on inductive learning and natural language
processing, this approach employs multistrategy
learning (Tecuci, 1993; Michalski & Tecuci, 1994)
that synergistically integrates inductive learning
from examples, learning from explanations, and
learning by analogy, in the context of a multi-
agent architecture.

 271

ICI Bucharest © Copyright 2012-2020. All rights reserved

Complementary Approaches to Instructable Agents for Advanced Persistent Threats Detection

3. Intrusion Detection Based on
Attacker Tactics and Techniques

A transformative development in intrusion
detection is represented by MITRE’s ATT&CK
framework that identifies the tactics and
techniques employed by adversaries (Strom et
al., 2017). The tactics represent the adversary’s
objectives for performing its actions, such
as persist on the attacked system, escalate
privileges, evade detection, access credentials,
discover information, move laterally, execute
files, collect information, exfiltrate data, and
command and control.

The techniques describe the actions adversaries
take to achieve their tactical objectives. Within
each tactic category, such as that of executing
files, there are a finite number of actions that
will enable the adversary to achieve its objective,
such as service execution, Windows management
instrumentation, and scheduled task. Many of
the ATT&CK techniques are legitimate system
functions that can also be used for malicious
purposes, as opposed to IOCs that are indications
of actions known to be caused by, or under the
influence of an adversary. Moreover, the ATT&CK
techniques represent behavior exhibited by an
adversary through remote access tools, scripts,
or interaction with a command-line interface,
independent of specific adversary malware and
tools that are likely to change over time (Strom
et al., 2017).

During an intrusion, an adversary decides at
every step which technique to use based on
its knowledge, information obtained about
the target environment, information needed
for future actions, and capabilities currently
available (Strom et al., 2017). This provides
the opportunity to detect patterns of adversary
behavior as combinations of specific tactics
and techniques. As illustrated in the following
sections, a cybersecurity expert can instruct
ADONIS to automatically detect such patterns.

3.1 Cybersecurity Ontology

When the cybersecurity analyst models the
detection process for a specific malware, s/
he (assisted by a knowledge engineer) also
identifies the ontological knowledge needed by
the assistant to automatically perform the same
analysis. This results in an ontology specification.
An initial ontology is then developed based on this
ontology specification, existing cyber ontologies
(Obrst, Chase & Markeloff, 2012), CSOC’s
network configuration, and threat intelligence.
The ontology language is an extension of the
Resource Description Framework Schema, or
RDFS (Allemang & Hendler, 2011; W3C, 2014)
with additional features to facilitate learning and
evidence representation (Tecuci et al.,, 2016a).
Figure 3 shows a fragment of the ontology of
ADONIS that is used both as a generalization
hierarchy for learning, and for reasoning in
conjunction with learned ontology-based rules.

object

communicationpattern time event

network event

network transfer event

SMB transfer event

network object

connection

network protocol

application layer protocol

SMB transfer protocol

network address

IP address

IPv6 address

IPv4 address

port

system object

process

command

file system object

computer file system object

path

absolute path

file

executable file

… system API

system tool

program

scheduled task

…
…

…

…

…

…

…………

…

…

Windows process

Figure 3. Fragment of the cybersecurity ontology used as generalization hierarchy

https://www.sic.ici.ro

272 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

3.2 Hypothesis Generation
and Learning

The agent’s instruction starts with a cybersecurity
alert. These alerts can come from a variety of IDSs
(intrusion detection systems), including network-
based and host-based IDSs, anti-virus software,
endpoint detection and response tools, or complex
detection rules built into security information and
event management systems. In this illustration
the alert was generated by the Zeek IDS (2020)
and converted into the JSON (Java Script Object
Notation) format which was then represented
both as an ontology fragment and as a natural
language phrase, as shown at the bottom of Figure
4 (SMB stands for server message block). Next
the cybersecurity analyst needs to imagine a
malicious activity that may have caused this alert
and formulate a question (shown at the top of
Figure 4) whose answer is this activity. The other
answers (of which one is shown) are alternative
activities that may also have caused the alert.
From this demonstration of hypothesis generation
the agent learns an alert rule, an indicator rule,
and two question rules. These rules will enable
the agent to generate alternative hypotheses from
similar alerts.

3.3 Evidence Discovery and Learning

The two hypotheses from the top of Figure 4 (an
intrusion hypothesis and a false-positive one) need
to be analyzed to determine which one is the most
likely. This requires more evidence. The analyst
needs to show to the agent how such evidence can
be discovered by putting each of the hypotheses
to work, as part of the hypothesis-driven evidence
discovery phase. In essence, each hypothesized
activity is successively decomposed into simpler
and simpler ones representing specific tactics
and techniques which point to evidence that may
support their truthfulness. Figure 5 shows the
decomposition of the attack hypothesis into two
tactics, LATERAL MOVEMENT TACTIC and
EXECUTION TACTIC. The Lateral Movement
hypothesis is supported by the evidence represented
by the alert. However, to further decompose the
Execution tactic into corresponding techniques, one
needs to identify the process that was created from
executable file1. Therefore, a collection request for
this process is transmitted to a specialized collection
agent that will identify and return process1. From
the demonstrated decomposition in Figure 5, the
agent learns a hypothesis analysis rule and an
evidence collection rule.

The discovery of process1 enables the
decomposition of the EXECUTION TACTIC into

Figure 4. Instructing the agent to generate hypotheses

 273

ICI Bucharest © Copyright 2012-2020. All rights reserved

Complementary Approaches to Instructable Agents for Advanced Persistent Threats Detection

three techniques, SERVICE EXECUTION TECHNIQUE,
WINDOWS MANAGEMENT INSTRUMENTATION
TECHNIQUE, and SCHEDULED TASK TECHNIQUE,
as illustrated in Figure 6. Each technique is further
decomposed into simpler hypotheses that point to
evidence that may support its truthfulness. Then
corresponding collection requests are formulated
for specialized collection agents. For example, the
Windows Management Instrumentation technique
is decomposed into two sub-hypotheses. The
second one (i.e. “WMIC command1 is executed in
command-line on host 10.10.1.10 through remote
procedure call on 3/27/2020 05:07:25”) has a
favoring argument (that favors its truthfulness)
under the left (green) square, consisting of
the conjunction of two sub-hypotheses. It also
has a disfavoring argument (that disfavors its
trustfulness) under the right (pink) square: if the
WMIC command1 is executed locally on host

10.10.1.10, then it is not executed in command-
line through remote procedure call.

Learn
hypothesis

analysis
rules

Learn
evidence
collection

rule

process1

Figure 5. Hypothesis-driven evidence discovery and
rule learning

Learn
hypothesis

analysis
rule

Learn
evidence
collection

rule

Learn
evidence
collection

rule

Learn
evidence
collection

rule

Learn
hypothesis

analysis
rule

Learn
hypothesis

analysis
rule

Learn
hypothesis

analysis
rule

Learn
evidence
collection

rule

Figure 6. Resumed hypothesis-driven evidence discovery and learning

https://www.sic.ici.ro

274 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

3.4 Multistrategy Rule Learning

The vast majority of the current machine learning
approaches are heavily statistical and learn single
functions from a large number of examples.
Such approaches are not applicable for learning
analysis rules because large sets of examples to
learn from do not exist and would be very difficult
to create. Instead, the cybersecurity analyst just
points directly to the relevant features of the
instances in the example, such as process1 runs
on 10.10.1.10, and has as time stamp 3/27/2020
05:07:25. Thus, these features do not need to be
discovered through the statistical comparison of
a large number of positive and negative examples
(that are not available anyway), as done in the
inductive learning methods (Alpaydyn, 2020).

From the demonstrated reasoning in Figure 6,
the agent learns three hypothesis analysis rules,
each reducing the Execution tactic to an execution
technique, as shown on top of the figure. Then
it learns other hypothesis analysis rules,
corresponding to these techniques, as well as the
corresponding evidence collection rules.

In particular, from the decomposition of
the Windows Management Instrumentation
hypothesis, shown inside the polygon in Figure 6,
the agent learns the hypothesis analysis rule
shown in Figure 7. First, the agent replaces each
example-specific instance with a different variable
(i.e., process1 with ?O1, 10.10.1.10 with ?S1, and
3/27/2020 05:07:25 with ?S2). Then it generates
an ontology-based applicability condition for the
resulting reasoning pattern that shows the possible
values that these variables may take.

Notice however that, instead of a single
applicability condition, the agent learns a lower
bound and an upper bound for this condition, by
using two complementary learning strategies.

The lower bound is generated by employing
the strategy of a cautious learner that wants to
minimize the chances of making mistakes when
employing the learned rule. In this case the
lower bound of ?O1 is obtained as a minimal
generalization of process1 in the agent’s ontology,
which is Windows process. That is, ?O1 can be
instantiated by any instance of a Windows process.
This strategy increases agent’s confidence in the
correctness of its reasoning, but the agent may fail
to apply the reasoning pattern in situations where
it is applicable.

The upper bound of the condition is generated
by employing the strategy of an aggressive
learner that wants to maximize the opportunities
of employing the learned rule. In this case the
upper bound of ?O1 is obtained as a maximal
generalization of process1 which is system object.
This strategy increases the number of situations
where the rule can be applied, but in some of them
the reasoning may not be correct.

The two bounds may be refined, and may even
become identical, based on additional examples
encountered by the agent during its autonomous
analysis of new alerts.

Figure 7. Hypothesis analysis rule learned from the
example argumentation in Figure 6

4. Intrusion Detection Based on
Combinations of Weak IOCs

Many attacker groups practice evolutionary
development to adapt their malware to changes
in network defense technology or simply to

 275

ICI Bucharest © Copyright 2012-2020. All rights reserved

Complementary Approaches to Instructable Agents for Advanced Persistent Threats Detection

increase efficiency. These changes in the way
malware presents itself on the network and on
disk have made it difficult for signature-based
intrusion detection tools to detect attacks because
the attackers can change static information in
their malware faster than defenders can adapt.
However, the patterns of behavior change more
slowly and with less variance.

CAAPT can be trained to learn patterns of IOCs
and can anticipate the changes present in the
malware. If one aspect of the malware’s behavior
changes and becomes undetectable by the agent,
the malware can still be detected with some
probability based on the remaining observable
evidence. This partial detection can further be
used, in collaboration with an analyst, to identify
the changes in the malware family by searching
for additional observable behavior, to extend the
initial detection pattern. This cycle of learning,
applying, and extending patterns allows the agent
to adapt as the malware family evolves.

The previous sections have illustrated the process
of instructing ADONIS, which is similar to that
of CAAPT. The next subsection will illustrate the
hypothesis testing process.

Evidence-based Hypothesis Testing

Figure 2 presents the autonomous intrusion
detection process that will be illustrated in the
following. The Zeek IDS generated an alert. Its
JSON representation is sent to the Alert Agent
by a Surveillance Agent through the Surveillance
Manager. The Alert Agent employs a (previously
learned) alert rule to generate the ontological
representation of this alert and the following
basic hypothesis:

Suspicious connection1 from 10.10.1.20 (port 56902)
to 10.10.4.101 (port 53) at 08/29/2019 11:42:23 AM,
using known APT1 domain ubuntuguru.strangled.net

The Hypotheses Generation Agent employs
an indicator rule to abductively generate the
following intrusion hypothesis:

connection1 from 10.10.1.20 (port 56902) to
10.10.4.101 (port 53) at 08/29/2019 11:42:23 AM,
using known APT1 domain ubuntuguru.strangled.net,
is part of APT1 intrusion.

Then it uses three question rules to generate a
question and two other alternative hypotheses.
After that, the Hypothesis Analysis Agent

and the Evidence Agent generate Wigmorean
argumentations (Wigmore, 1913; Schum, 2001;
Tecuci et al.,, 2016b), like those in Figure
5 and Figure 6, for assessing the generated
hypotheses. In a Wigmorean argumentation, the
hypothesis to be assessed is decomposed into
simpler sub-hypotheses by considering both
favoring arguments (supporting the truthfulness
of the hypothesis), and disfavoring arguments
(supporting the falsehood of the hypothesis).
Each argument is an independent strategy of
showing that the hypothesis to be assessed is
true or false, and is characterized by a specific
relevance or strength. An argument consists
either of a single sub-hypothesis or a conjunction
of sub-hypotheses. The symbol “*” is used to
denote a combined indicator representing all the
possible combinations of a set of sub-hypotheses
(e.g., H1*H2 = H1 or H2 or H1&H2).

The agents employ an intuitive system of Baconian
probabilities (Cohen, 1977) with Fuzzy qualifiers
(Negoita & Ralescu, 1975; Zadeh, 1983) which
are shown in Table 1. Notice that the probability
intervals are associated with intuitive names, such
as likely (60-65%) or almost certain (95-99%).

Table 1. Probability scale

L11 100% certain
L10 95-99% almost certain
L09 90-95% very likely+
L08 85-90% very likely
L07 80-85% very likely-
L06 75-80% more than likely+
L05 70-75% more than likely
L04 65-70% likely+
L03 60-65% likely
L02 55-60% likely-
L01 50-55% barely likely
L00 0-50% lacking support

A fragment of the generated Wigmorean
argumentation for assessing the above intrusion
hypothesis is shown in Figure 8. The probabilities
of the hypotheses are assessed from bottom-up.
First the probabilities of the leaf hypotheses are
assessed based on the three credentials of the
corresponding evidence: credibility, relevance,
and inferential force. The credibility of evidence
answers the question: What is the probability that
the evidence is true? The relevance of evidence
to a hypothesis answers the question: What
would be the probability of the hypothesis if the
evidence were true?” The inferential force or

https://www.sic.ici.ro

276 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

weight of the evidence on the hypothesis answers
the question: What is the probability of the
hypothesis, based only on this evidence?
Obviously, an irrelevant item of evidence will
have no inferential force. An item of evidence that
is not credible will have no inferential force either.
Only an item of evidence that is both relevant
and credible would indicate that the hypothesis is
true. Consistent with both the Baconian and the
Fuzzy min/max probability combination rules,
the inferential force of an item of evidence on a
hypothesis is determined as the minimum between

its credibility and its relevance. When there is only
one item of favoring evidence for a hypothesis,
its inferential force on the hypothesis is also the
probability of the hypothesis. In general, however,
the probability of the hypothesis would be the
result of the balance of probabilities between the
combined inferential force (maximum) of the
favoring evidence items (represented under the
left green square) and the combined inferential
force of the disfavoring items (represented under
the right pink square).

Figure 8. Fragment of the analysis of a variant of the Seasalt malware

 277

ICI Bucharest © Copyright 2012-2020. All rights reserved

Complementary Approaches to Instructable Agents for Advanced Persistent Threats Detection

Once the probabilities of the bottom-level
hypotheses have been determined based on
evidence, the probabilities of the upper level
hypotheses are computed based on the logical
structure of the Wigmorean argumentation
(conjunctions and disjunctions of hypotheses),
using the min-max probability combination rules
common to the Fuzzy probability view and the
Baconian probability view. These rules are much
simpler than the Bayes rule used in the Bayesian
probability view (Schum, 2001), or the Dempster-
Shafer rule in the Belief Functions probability
view (Shafer, 1976).

Notice that the top argument in Figure 8 is a
combined indicator (*) argument. If there is
evidence of both indicators, their relevance is
very likely L08 (85-90%). If there is evidence
only for the left-hand side indicator, the relevance
is more than likely L05 (70-75%), and if there is
evidence only for the right-hand side indicator,
the relevance is likely L03 (60-65%). As a result,
the probability of the top hypothesis is assessed
as the minimum between the relevance of the
combined indicator and the probabilities of the
sub-hypotheses.

5. Evaluation

Evaluating a system like ADONIS or CAAPT
is challenging due to a lack of standardized data
for use when comparing it with other systems or
approaches. It is also challenging due to a lack of
similar systems. It is a novel approach with respect
to both autonomous evidence-based reasoning in
general and APT detection in particular. As such,
the only reasonable approach to compare them
would be against manual analysis by an expert,
but even this is problematic because of lack of
data on manual analysis. Currently only CAAPT
has been evaluated.

APT1 was chosen as the attack group for this
research primarily because of the abundance of
freely available unclassified information about it,
including IOCs, malware samples, and details of
how the group operated (Mandiant, 2013).

Experiments were designed and performed to
test both the training of CAAPT and its ability to
detect configuration changes in the same malware
and new malware versions as the attackers’ tool

set evolved over time (Meckl et al.,, 2017; Meckl,
2019). The experiments simulated a subset of the
historical evolution of the APT1 malware: Auriga
→ Auriga variants → Bangat → Bangat variants
→ Seasalt → Seasalt variants → Kurton →
Kurton variants.

The evaluation experiment started with
developing a cyber ontology which, as opposed
to the broad and malware-agnostic ontology of
ADONIS, was focused on the representation of
the APT1 malware and its IOCs. Then CAAPT
was trained to analyze the Auriga malware,
based on the expertise of Steven Meckl, and its
detection capabilities were tested in the sequence
of scenarios discussed below.

5.1 Auriga Experiment

Scenario 1a consisted of an intrusion with the
Auriga malware used in training, to create a
baseline for the evaluation. As shown in Table 2,
CAAPT detected that very likely (85-90%) there
is an intrusion by Auriga or by an unspecified
member of the APT1 family (including Auriga).

Table 2. Results of the Auriga experiment

Intrusion By Detected Intrusion Duration

1a: Auriga malware
used in training

Auriga (85-90%)
143 seconds

APT1 (85-90%)

2a: Variant of the
Auriga malware

Auriga (85-90%)
121 seconds

APT1 (85-90%)

3a: Bangat malware
Auriga (75-80%)

119 seconds
APT1 (85-90%)

Scenario 2a consisted of an intrusion by a variant
of Auriga that used a different APT1 domain to
trigger the security alert, and the malware process
%SYSTEMROOT%\Temp\svchost.exe did not
contain unique APT1 strings. In this case also
CAAPT detected that very likely (85-90%) there
is an intrusion by Auriga or by an unspecified
member of the APT1 family.

Scenario 3a consisted of an intrusion by the
Bangat malware for which CAAPT was not
trained. Bangat does not use the library files
riodrv32.sys and netui.dll, instead, it uses a
different regular expression for its temporary file
names, stores its data files in different folders,
and uses different Windows Service names for
its persistence mechanisms. This time CAAPT

https://www.sic.ici.ro

278 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

detected that very likely (85-90%) there is an
APT1 intrusion, but the probability of being
Auriga is only 75-80%.

The last column in Table 2 shows the duration of
each experiment. The run time for the generation
and evaluation of the analyses was between 1 and
3 seconds. Most of the time was spent waiting for
the Collection and Monitoring Manager to return
the results requested from the collection agents.

5.2 Bangat Experiment

The second experiment modelled the detection
of the Bangat intrusion from the first experiment,
and extended the APT1 ontology with the
representation of the Bangat malware as follows:

1. The experiment started with the KB generated
by the last Auriga experiment (Bangat
intrusion with the Auriga representation and
the rules learned from the Auriga modelling);

2. The ontological representation of Bangat was
added into this KB;

3. The analysis of the Bangat intrusion was
generated using the ontological representation
of Bangat and the rules were learned from the
Auriga modelling;

4. The generated analysis was refined and
extended to accurately and completely analyze
the Bangat malware;

5. New rules to analyze Bangat were learned;

6. CAAPT’s detection capabilities were tested in
three scenarios, as in the Auriga experiment.

Scenario 1b consisted of an intrusion with the
Bangat malware used in training (the one from
the Auriga experiment). As shown in Table 3,
CAAPT detected that very likely (85-90%) there
was an intrusion by Bangat or by an unspecified
member of the APT1 family. The probability
of being Auriga was more than likely+ (75-
80%). This is not a contradiction because these
hypotheses are not disjoint. The Bangat malware
is an evolution of the Auriga malware and
therefore it has many features in common with
Auriga. When checking for an intrusion with
Auriga, the system looks for the presence of the
features of the Auriga malware on the infected
computer, but some of these features are also

the features of Bangat, so it is possible that the
computer is infected by both Auriga and Bangat.

Therefore, Auriga intrusion with probability
more than likely+ (75-80%) covers the case
where the Auriga intrusion is accompanied by
a Bangat intrusion. Similarly, Bangat intrusion
with probability very likely (85-90%) is based on
the detected Bangat features on the host computer
which also includes some Auriga features. Thus,
this probability also covers the case when there
is both a Bangat and an Auriga intrusion.

Table 3. Results of the Bangat experiment

Intrusion By Detected Intrusion Duration

1b: Bangat malware
used in training

Auriga (75-80%)
265 secondsBangat (85-90%)

 APT1 (85-90%)

2b: Variant of
the Bangat malware

 Auriga (75-80%)
228 secondsBangat (85-90%)

APT1 (85-90%)

3b: Seasalt malware
Auriga (50-55%)

274 secondsBangat (50-55%)
APT1 (85-90%)

Scenario 2b consisted of an intrusion with a
variant of Bangat that had three differences. The
alert was triggered with a different domain, the
data files used in the first Bangat scenario were not
present, and a different temporary file matching
the Bangat regular expression was present on the
infected host. CAAPT again detected that very
likely (85-90%) there was an intrusion by Bangat
or by an unspecified member of the APT1 family,
and more than likely+ (75-80%) by Auriga.

Scenario 3b consisted of an intrusion by another
member of the APT1 family, the Seasalt malware,
for which CAAPT was not trained. Seasalt added
an auxiliary program, which was started by the
Seasalt Windows Service DLL, and the network
protocol was changed so it could be detected
using a unique HTTP User Agent String. CAAPT
detected that very likely (85-90%) there was an
intrusion by an unspecified member of the APT1
family, but the probability of being Auriga or
Bangat was only barely likely (50-55%).

5.3 Seasalt and Kurton Experiments

The Seasalt and Kurton experiments were similar
to the above ones and their results are presented

 279

ICI Bucharest © Copyright 2012-2020. All rights reserved

Complementary Approaches to Instructable Agents for Advanced Persistent Threats Detection

in Table 4 and Table 5. Compared to the other
analyzed malware, Kurton has fewer forensic
indicators to examine. The largest subset of
indicators consists of unique strings, which have
less inferential force than other types of indicators.
As such, without a matching hash value (which is
normal for APT1 intrusions) the highest expected
probability for detection of Kurton is 80-85%.

Table 4. Results of the Seasalt experiment

Intrusion By Detected Intrusion Duration

1s: Seasalt malware
used in training

Auriga (50-55%)

382 seconds
Bangat (50-55%)
Seasalt (85-90%)
APT1 (85-90%)

2s: Variant of
the Seasalt malware

 Auriga (75-80%)

406 seconds
Bangat (50-55%)
Seasalt (85-90%)
APT1 (85-90%)

3s: Kurton malware

Auriga (50-55%)

344 seconds
Bangat (60-65%)
Seasalt (0-50%)
APT1 (85-90%)

Table 5. Results of the Kurton experiment

Intrusion By Detected Intrusion Duration

1k: Kurton malware
used in training

Auriga (50-55%)

587 seconds
Bangat (60-65%)
Seasalt (0-50%)

Kurton (80-85%)
APT1 (85-90%)

2k: Variant of the
Kurton malware

Auriga (50-55%)

631 seconds
Bangat (60-65%)
Seasalt (0-50%)

Kurton (80-85%)
APT1 (85-90%)

5.4 Summary of the Experimental
Results

Overall, CAAPT learned 40 context-independent
hypotheses patterns, 2 alert rules, 2 indicator
rules, 23 hypotheses analysis rules (some of them
with large argument patterns that contain many
context-depended hypotheses), 23 collection
tasks, and 23 collection rules. 10 collection
agents were also defined.

The evolutionary development of APT1 was
successfully exploited by CAAPT, as shown
by the experimental results. First, after CAAPT

was trained based on one instance of the Auriga
malware, it was able to also detect a variant of
this malware. This was the case with all the other
three malware programs considered (Bangat,
Seasalt, and Kurton) and is a consequence of the
learning method employed by CAAPT. Indeed,
CAAPT generalizes a specific example and its
explanation into a general rule that also covers
similar examples which are likely to correspond
to variants of the malware used in training.

Second, CAAPT succeeded to anticipate the
changes in the malware by learning patterns of
IOCs in the form of hypotheses analysis rules. If
one aspect of the malware’s behavior changed
and became undetectable by CAAPT, it still
detected the malware with some probability
based on the remaining observable evidence.
For example, as shown in Table 2, after being
trained to detect Auriga and invoked to analyze
an intrusion with Bangat, CAAPT still reported
an APT1 intrusion with a probability of 85-90%,
but the probability of being Auriga was lower
(75-80%).

In the case of analyzing Seasalt after being
trained on Auriga and Bangat, CAAPT still
detected an APT1 intrusion with a probability
of 85-90%, but the probability of being Auriga
or Bangat was of only 50-55% (see Table 3).
A similar result was obtained in the case of
analyzing Kurton after being trained on Auriga,
Bangat, and Seasalt. CAAPT still detected an
APT1 intrusion with a probability of 85-90%, but
the probability of being Auriga was 50-55%, of
being Bangat was 60-65%, and of being Seasalt
was 0-50% (see Table 4).

The evolutionary development of APT1 also
significantly simplified and accelerated the
training of the agent. For example, to train for
Auriga detection, CAAPT had to learn 28 context-
independent hypotheses patterns, 2 alert rules,
2 indicator rules, 13 hypotheses analysis rules,
15 collection tasks, and 15 collection rules. 8
collection agents had also to be defined.

Many of these were also applicable for the
detection of Bangat intrusions. Therefore, to
train for Bangat detection, a reduced number
of knowledge elements needed to be learned:
1 context-independent hypothesis pattern, 1

https://www.sic.ici.ro

280 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

hypotheses analysis rule, 1 collection task, and 1
collection rule. The same is true for the training
to detect Seasalt and Kurton. The amount of
knowledge elements that needed to be learned
depended on the amount of change in the new
malware. Notice, for example, the 2 alert rules
and the 2 indicator rules learned for Auriga were
also applicable to Bangat, Seasalt, and Kurton.
Also, after defining 8 collection agents to collect
evidence for Auriga detection, only two more were
needed to cover the collection needs for Bangat,
Seasalt, and Kurton.

While CAAPT coverage of malware detection
is limited to APT1, and the increase in coverage
will also increase the detection time, the times
obtained in the experiment are very small
and support the hypothesis that a system
like CAAPT will significantly speed–up the
malware detection process. The total runtime
to detect an intrusion increased from around
2 minutes, when CAAPT was checking for
Auriga intrusions only, to around 10 minutes
when CAAPT was checking for Auriga, Bangat,
Seasalt, and Kurton intrusions.

However, the run time for the generation and
evaluation of the analyses only increased from
around 2 seconds, when CAAPT was checking
for Auriga intrusions only, to around 6 seconds
when CAAPT was checking for Auriga,
Bangat, Seasalt, and Kurton intrusions. As
previously mentioned, most of the time is spent
by waiting for the Collection and Monitoring
Manager to return the results requested from the
collection agents.

But time is only part of advantages offered by a
system like CAAPT. While professional CSOCs
have processes to be followed by analysts to
ensure consistent analytical quality, it is natural
for analysts to take shortcuts when they believe
that the evidence examined early in the process
leads to an obvious answer. These analytical leaps
can shorten analysis times but can also lead to
errors. CAAPT, on the other hand, will follow its
learned processes fully every time. This reduces
errors and provides consistent analytical results.
As the number of evaluated hypotheses grows the
increase of the processing time can be mitigated
with additional computing power.

6. Discussion

Network intrusion detection is a perennial
necessity because of the expected zero-day
vulnerabilities of computer software. These
represent the vulnerabilities that are unknown
to, or unaddressed by software developers, and
can therefore be exploited by hackers. This paper
presented a novel approach to network intrusion
detection where an instructable cognitive agent
is directly taught by an expert analyst how to
investigate cybersecurity alerts as the analyst
would teach a student. It also presented two
complementary instantiations of this approach,
CAAPT and ADONIS.

CAAPT is trained to detect sophisticated APT
intrusions based on combinations of weak IOCs
and is efficient. However, it can only detect known
malware and relies on the knowledge of malware’s
IOCs that are easily changed by the attackers.

ADONIS, on the other hand, focuses on
adversary’s behavior, independent of specific
malware and tools, and can detect novel intrusions,
but it is expected to be less efficient. Therefore,
once a new malware is detected, its IOCs can be
identified and CAAPT can be rapidly trained to
detect it and its variants. The further development
of and experimentation with ADONIS is a near-
term goal of this research.

7. Conclusion

This paper presented an instructable agent
approach to APT detection that promises to provide
significant benefits to CSOCs by automating much
of the analysts’ investigative activity, increasing
the probability of detecting intrusion activity and
reducing the false positive detections presented to
the analyst. Human analysts will be able to spend
their time on more complex and more engaging
analytical tasks and on teaching the agents.
Therefore, the cost of operating a CSOC will be
significantly reduced.

Acknowledgements

The research reported in this paper has been
supported by the Air Force Research Laboratory,
as part of the Autonomous Defensive Cyberspace

 281

ICI Bucharest © Copyright 2012-2020. All rights reserved

Complementary Approaches to Instructable Agents for Advanced Persistent Threats Detection

REFERENCES

Allemang, D. & Hendler, J. (2011). Semantic Web for
the Working Ontologist: Effective Modeling in RDFS
and OWL. Elsevier.

Allen, J., Chambers, N., Ferguson, G., Galescu, L.,
Jung, H., Swift, M. & Taysom, W. (2007). PLOW: A
Collaborative Task Learning Agent. In Proceedings
of the International Conference of the Association
for the Advancement of Artificial Intelligence (AAAI)
(pp. 1514-1519).

Alpaydyn, A. (2020). Introduction to Machine
Learning. MIT Press.

Azaria, A., Krishnamurthy, J. & Mitchell, T. M. (2016).
Instructable Intelligent Personal Agent. In Proceedings
of the International Conference of the Association
for the Advancement of Artificial intelligence (AAAI)
(pp. 2681-2689).

Boicu, M., Tecuci, G., Marcu, D., Bowman, M.,
Shyr, P., Ciucu, F. & Levcovici, C. (2000). Disciple-
COA: From Agent Programming to Agent Teaching.
In Proceedings of the International Conference on
Machine Learning (ICML) (pp. 73-80).

Boicu, M., Tecuci, G., Stanescu, B., Marcu, D. &
Cascaval, C. (2001). Automatic Knowledge Acquisition
from Subject Matter Experts. In Proceedings of the
13th IEEE International Conference on Tools with
Artificial Intelligence (pp. 69-78).

Cohen, L. J. (1977). The Probable and the Provable.
Clarendon Press, Oxford.

Mandiant (2013). APT1. Available at <https://www.
fireeye.com/content/dam/fireeye-www/services/
pdfs/mandiant-apt1-report.pdf>, last accessed:
18 June 2020.

Meckl, S. (2019). Cybersecurity Incident Response
Orchestration Using Agile Cognitive Assistants
(Doctoral dissertation, George Mason University).

Meckl, S., Tecuci, G., Marcu, D., Boicu, M. & Zaman,
A. B. (2017). Collaborative Cognitive Assistants for
Advanced Persistent Threat Detection. In Proceedings
of the AAAI Fall Symposium Series, (pp.171-178).

Michalski R. S. & Tecuci G. (eds). (1994). Machine
Learning: A Multistrategy Approach, vol. IV,
Morgan Kaufmann.

Negoiţă, C. V. & Ralescu, D. A. (1975). Applications
of Fuzzy Sets to Systems Analysis. Wiley.

Obrst, L., Chase, P. & Markeloff, R. (2012) Developing
an Ontology of the Cyber Security Domain. In
Proceedings of the International Conference on
Semantic Technologies for Intelligence, Defense, and
Security, George Mason University (pp.49-56).

Schum, D. A. (2001). The Evidential Foundations of
Probabilistic Reasoning. Northwestern University Press.

Shafer, G. (1976). A Mathematical Theory of Evidence,
Princeton University Press.

Strom, B. E., Battaglia, J. A., Kemmerer, M. S.,
Kupersanin, W., Miller, D. P., Wampler, C., Whitley, S.
M. & Wolf, R. D. (2017). Finding Cyber Threats with
ATT&CK-based Analytics. The MITRE Corporation,
Technical Report No. MTR170202.

Tecuci, G. (1988). Disciple: A Theory, Methodology
and System for Learning Expert Knowledge, Thèse de
Docteur en Science, University of Paris-Sud.

Tecuci, G. (1993). Plausible Justification Trees: A
Framework for the Deep and Dynamic Integration of
Learning Strategies, Machine Learning Journal, 11,
237-261.

Tecuci, G. (1998). Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. Academic Press.

Tecuci, G., Boicu, M., Boicu, C., Marcu, D., Stanescu,
B. & Barbulescu, M. (2005). The Disciple–RKF
Learning and Reasoning Agent, Computational
Intelligence, 21(4), 462-479.

Tecuci, G., Boicu, M., Bowman, M. & Marcu, D.
(2001). An Innovative Application from the DARPA
Knowledge Bases Program: Rapid Development of
a Course of Action Critiquer, AI Magazine, 22(2),
43-61.

Tecuci, G., Boicu, M., Bowman, M., Marcu, D., Shyr,
P. & Cascaval, C. (2000). An Experiment in Agent
Teaching by Subject Matter Experts, International
Journal of Human-Computer Studies, 53(4), 583-610.

Tecuci, G., Boicu, M. & Comello, J. J. (2008). Agent-
Assisted Center of Gravity Analysis, George Mason
University Press.

Operations program, under contract number
FA8750-17-C-0002, and by George Mason
University. The reviewers provided detailed
comments on this paper. The views and
conclusions contained in this document are those

of the authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of the
U.S. Government.

https://www.sic.ici.ro

282 Juan Huang, Zhemin An, Steven Meckl, Gheorghe Tecuci, Dorin Marcu

Tecuci, G., Boicu, M., Marcu, D., Boicu,
C. & Barbulescu, M. (2008). Disciple-LTA:
Learning, Tutoring and Analytic Assistance,
Journal of Intelligence Community Research
and Development. Available at: <http://lac.gmu.
edu/publications/2008/Disciple-LTA08.pdf>, last
accessed: 10 September 2020.

Tecuci, G., Boicu, M., Marcu, D., Stanescu, B., Boicu,
C. & Comello, J. (2002a). Training and Using Disciple
Agents: A Case Study in the Military Center of Gravity
Analysis Domain, AI Magazine, 23(4), 51-68.

Tecuci, G., Boicu, M., Marcu, D., Stanescu, B., Boicu,
C., Comello, J., Lopez, A., Donlon, J. & Cleckner, W.
(2002b). Development and Deployment of a Disciple
Agent for Center of Gravity Analysis. In Proceedings
of the AAAI/IAAI (pp. 853-861).

Tecuci, G., Kaiser, L., Marcu, D., Uttamsingh, C.
& Boicu, M. (2018). Evidence-based Reasoning in
Intelligence Analysis: Structured Methodology and
System, Computing in Science & Engineering, 20(6),
9-21.

Tecuci, G. & Keeling, H. (1999). Developing
an Intelligent Educational Agent with Disciple,
International Journal of Artificial Intelligence in
Education, 10(3-4), 221-237.

Tecuci, G., Marcu, D., Boicu, M. & Schum, D. A.
(2016a). Knowledge Engineering: Building Cognitive
Assistants for Evidence-Based Reasoning. Cambridge
University Press.

Tecuci, G., Marcu, D., Boicu, M., Schum, D. &
Russell, K. (2011). Computational Theory and
Cognitive Assistant for Intelligence Analysis. In
Proceedings of the Sixth International Conference on
Semantic Technologies for Intelligence, Defense, and
Security – STIDS (pp. 68-75).

Tecuci, G., Meckl, S., Marcu, D. & Boicu, M. (2019).
Instructable Cognitive Agents for Autonomous
Evidence-Based Reasoning. Advances in Cognitive
Systems, 8, 73-92.

Tecuci, G., Schum, D. A., Marcu, D. & Boicu,
M. (2016b). Intelligence Analysis as Discovery of
Evidence, Hypotheses, and Arguments: Connecting
the Dots. Cambridge University Press.

Wigmore, J. H. (1913). The Problem of Proof. Illinois
Law Review, 8, 77–103.

W3C (2014). Available at: <http://www.w3.org/TR/
rdf-schema/>, last accessed: 18 June 2020.

Zadeh, L. A. (1983). The Role of Fuzzy Logic in the
Management of Uncertainty in Expert Systems, Fuzzy
Sets and Systems, 11(1-3), 199-227.

Zeek (2020). Zeek: An Open Source Network Security
Monitoring Tool. Available at: <www.zeek.org>, last
accessed: 8 September 2020.

