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1. Introduction

Recently, coordination tracking control problem 
has been favoured by many researchers due to 
its application value, especially in formation 
mission and entrapment or escorting mission 
(Ma et al., 2019). Owing to measurement 
noise, modelling errors, external disturbances, 
and modelling simplifications, unmodelled 
dynamics often exist in practical systems, which 
can severely degrade the performance of the 
system and cause unstable control systems. In 
addition, disregarding the practical issues such 
as input saturation and obstacles may have 
serious consequences. Therefore, it is necessary 
to study these issues with regard to coordination  
tracking control.

Obviously, the requirement to maintain accurate 
relative distances or orientations between robots 
is essential and imperative in the coordination 
tracking control. Until now, many methods have 
been used to achieve coordination tracking control, 
e.g., cyclic pursuit strategy (Yu & Liu, 2016), 
behavior-based methods (Zhou & Xia, 2015), and 
cluster space control method (Mas et al., 2009). 

When compared with other behavioral methods, 
the NSB control exhibits an obvious feature, 
i.e., a clear mathematical representation. In 
(Schlanbusch et al., 2011), a behavioral control 
solution using the NSB control and sliding mode 
control was presented to achieve reconfiguration 
and avoid collisions in spacecraft formations. 

In (Zhou & Xia, 2015), a cooperation control 
strategy was designed to complete the escorting 
mission in the environments with obstacles, and 
the system is proved to be convergent in finite-
time. However, it requires a certain knowledge 
of system parameters discussed in the above 
mentioned specialized literatures, while in many 
practices it is difficult to obtain accurately (Kara 
& Mary, 2017, Yue et al., 2016). In (Zhang et 
al., 2018), the APD-SMC method was employed 
to enhance the capability of 2D overhead crane 
systems as it is simple and robust. A robust 
model-free inner-outer layer controller scheme 
was proposed in (Gao et al., 2019), which had the 
advantages of simplicity and robustness.

Recently, many researchers have begun to use 
many learning-based methods to identify models 
needed to enhance the performance of tradition 
control methods. Neural networks are adopted to 
model nonlinear unknown functions owing to their 
excellent approximation abilities. In (Li et al., 
2016), RBFNNs was used to estimate the function 
which is unknown, and finally the uniform and 
bounded tracking error was realized. In (Zhou et 
al., 2019), the universal approximation feature 
of RBFNNs which was adopted in controller 
design, overcame the design difficulties caused 
by nonlinearity and uncertainty.

Input saturation may deteriorate the performance 
of multiple robots system up to an unacceptable 
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level; therefore, scholars have studied many 
antisaturation control strategies (Guo et al., 2019, 
Sun et al., 2020, Chen et al., 2018). In (Lu et 
al., 2019), an arctangent function was designed 
in a control signal to ensure that the input was 
bounded to prevent actuator saturation. In (Guo 
et al., 2019), two robust antisaturation controllers 
were designed based on the saturation function to 
address the input constraint.

Motivated by (Lu et al., 2019) and (Li et al., 
2019), a robust hierarchical NSB+IRPD-SMC 
controller is proposed herein. In comparison 
with the current existing control algorithms, 
this paper has made the following contributions. 
Specifically speaking, the first aspect is that the 
proposed NSB+IRPD-SMC controller exhibits 
characteristics of simplicity, strong robustness, 
and is model-free. Secondly, this controller has a 
strong learning ability, does not require complex 
calculation, and achieves null steady-state errors. 
Finally, it can guarantee the boundedness of the 
control torques and prevent the actuator saturation 
without affecting the stability of the system.

This paper is organized as follows. Section 2 
presents the system models and several properties. 
Section 3 describes the outer layer controller 
design in detail. Section 4 presents the inner layer 
controller and analyses the stability of the system. 
The results of the experiments under different 
conditions and some resolutions are detailed in 
Section 5 and 6, respectively.

2. System Model

A system consisting of n  robots expressed by 
Euler–Lagrange equation is described below.

( ) ( ) ( ), ,
1,...,

d
i i i i i i i i i i iM q q C q q q g q

i n
τ τ+ + + =

=

  

           
(1)

where ( ) p p
i iM q ×∈ , p

iq ∈ , ( ), p
i i i iC q q q ∈ 

 ,
( )i ig q , iτ  and d

iτ  represent the inertia matrix, the 
generalized coordinates vector, the centrifugal-
Coriolis vector,  the gravity term, the control 
torque input of the i th robot, and  the unknown 
disturbance vector, respectively.

The following properties used in this paper  
are given:

Property 2.1. Skew symmetry.

( ) ( )/ 2 , 0T
i i i i ix M q C q q x − = 


 , 
px∀ ∈ .

Property 2.2. The system model is linearly 
parameterized.

( ) ( ) ( ) ( ), , , ,i i i i i i i i i i iM q x C q q y g q Y q q x y+ + = Θ   
( ), , ,i i iY q q x y  is the dynamic regression matrix, 
iΘ  is a vector associated with the i th robot 

which contains the unknown constant parameters,  
and , px y∈ .

Property 2.3. Boundedness. 
( )i iM q , ( ),i i iC q q , ( )i ig q and d

iτ are all bounded.

3. Outer Layer Controller Design

NSB control is applied in the outer layer to 
incorporate the three different tasks in order to 
form the coordination tracking motion with 
obstacle avoidance and generate the required 
velocity for the robots. IRPD-SMC is proposed 
in inner layer to remove the influences aroused by 
model uncertainties and disturbances and ensure 
the boundedness of the inputs. The entire control 
system diagram is illustrated in Figure 1.

Figure 1. Control structure
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Three different tasks are considered in this 
section for the coordination tracking and obstacle 
avoidance, and the desired velocity is 

( )†
1 1 1 2 2 2 3[ ( ) ]dq q I J J q I J J q+= + − + −                    (2)

1, ,,...
TT T pn

d d n dq q q = ∈   
 , 1 1,1 ,1,...

TT T pn
nq q q = ∈   

  

represents the ideal velocity of avoiding obstacles 
(task 1), 2 1,2 ,2,...

TT T pn
nq q q = ∈   

  is the desired 
velocity of distributing evenly around a target 
(task 2), 3 1,3 ,3,...

TT T pn
nq q q = ∈   

  is the desired 
velocity of maintaining on a sphere/ hypersphere 
surface (task 3). 

{ }( )†
,1 ,1 ,1 ,1 ,1 ˆmax ,0o

i i i i i i i i iq J f d q q rχ χ= = − −

 , 
where the error function of task 1 is

{ },1 ,1 ,1 max ,o
i i d i i i i if f f d q q d= − = − −

               (3)

o
iq  indicates the obstacle position of robot i ;  
id  is the specified allowable safety distance 

from the robot i  to the obstacle; the Jacobian 
matrix is ( ),1 /

To o
i i i i iJ q q q q= − − ; ,1 0iχ > is a 

gain which will be given later, and †
,1 ,1

T
i iJ J= ,

1
1 1,1 ,1,... pn

nJ J J × = ∈   .

Using the planar case as example in task 2, the 
desired formation is an n  regular polygon and all 
robots remain on the vertices eventually. 

†
2 2 2 2q J f= Λ 

 , where 2
n n×Λ ∈  represents a gains 

matrix which is constant positive-definite,

( ) ( ){ }1 12 ,... ,...
n j j

TT

k k k k

n pn

J block diag q q q q
−

×

= − −

∈

is the Jacobian matrix, whose pseudoinverse is

( ) ( ) ( ){
( ) ( ) ( ) }

1 1 1

1 1 1

†
2 / ,...

/ ,...

n n n

j j j j j j

T

k k k k k k

T
pn n

k k k k k k

J block diag q q q q q q

q q q q q q
− − −

×

= − − −

− − − ∈

The error function of task 2 is defined as

( ) ( )

( ) ( )

1 1

1 1

2 2 2

2 2 1/ 2,... / 2 ,...
2

1 ,...
2

n n

j j j j

d

TT

i i k k k k

T
T

k k k k

f f f

l l q q q q

q q q q
− −

= −

 = − − −  

− − 



  

(4)

 
where ,1 ,[ ... ]

j j j

T p
k k k pq q q= ∈ ; jk  is the j th 

position of the robot on the circle, but it is not the 
j th robots.

In task 3, †
3 3 3 3q J f= Λ 

  and the error function is

( ) ( )

( ) ( )

3 3 3

2 2
1 1/ 2,... / 2 / 2,...

/ 2

d
T T

t t

TT
n t n t

f f f

R R q q q q

q q q q

= −

 = − − −  

− − 



     

(5)

where tq  is the position of the target;

( ) ( ){ }3 1 ,...T T n pn
t n tJ block diag q q q q ×= − − ∈ ;

3
n n×Λ ∈ , with a similar definition as the one 

of 2Λ , is also a gain matrix which is constant 
positive- definite;

( ) ( ) ( ){
( ) ( ) ( )}

†
3 1 1 1/ ,...

/

T
t t t

T pn n
n t n t n t

J block diag q q q q q q

q q q q q q ×

= − − −

− − − ∈

4. Inner Layer Controller Design

To address the model uncertainties and external 
disturbances as well as to achieve null steady-state 
errors tracking and bounded inputs, IRPD-SMC is 
proposed for the inner layer.

4.1 IRPD-SMC Law

The expected trajectory tracked by each robot 
is ( ) 1, ,[ ( ),... ( )]T T T pn

d d n dq t q t q t= ∈ , it is obtained 
via integration of ( )dq t  in equation (2), and the 
definition of ( )dq t  is similar. As both of them are 
bounded. Define the following sliding surface 

, ,i i r i i d i i i i i is q q q q re e re= − = − + = +                        (6)

where 

,1 i,,...
T p

i i ps s s = ∈   , , i, 1 ,,...
T p

i r r i rpq q q = ∈   
  is the 

nominal reference states and ( ),1 ,2 ,, ...i i i i pr diag r r r=  
is the sliding constant, which is positive. Position 
and velocity tracking errors are

, ,1 ,( ) ( ) ,...
T p

i i d i i i pe q t q t e e = − = ∈    and 

, ,1 ,( ) ( ) ,...
T p

i i d i i i pe q t q t e e = − = ∈     
  , respectively.

According to Property 2.2, the nominal reference 
torque is obtained below

( ), ,

, ,

(q )q ( , )
( , , , )

d
i i i r i i i i r i i i

i i i i r i r i i

M C q q q g q
Y q q q q

τ

δ

+ + +

= Θ =

  

                    
(7)

As has been shown, ,1 ,[ ,..., ]T p
i i i pδ δ δ= ∈  is 

unknown and it is hard to determine its value 
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because it has disturbances and uncertain 
dynamics. Therefore, it is proposed to utilize the 
approximation properties of RBFNNS to estimate 
the unknown term iδ .

As illustrated in Figure 1, the adaptive RBFNNS 
is written as
ˆ ˆ ( )T
i i i iW Xδ = Φ                                                   (8)

where the input is ,1 ,2 ,[x , x ...x ]T
i i i i mX = , * p

iW ν∈
is the weight of the network, 

ν  is the nodes number of neurons, 

,1 ,1 , ,( ) [ ( ,c ),... ( , c )]T
i i i i i i i iX X X ν

ν νΦ = Φ Φ ∈  and 

( ), ,( , c ) 1,...i j i i jX j vΦ =  is the activation function. 
Gaussian function is a typically activation 
function, expressed as

( )2 2
, , , ,( , c ) exp /i j i i j i i j i jX X c σΦ = − −

               
(9)

where ,ci j  and ,i jσ  are the center and breadth of 
the j th network.

The optimal RBFNNS for learning iδ  is 
*( ) ( )T

i i i i iW Xδ ε= Φ +                                       (10)

where * p
iW ν∗ ∈ is the optimal value of the weight 

vector; iε  is the bounded approximation error.

The adaptive RBFNNS is written as
ˆ ˆ ( )T
i i i iW Xδ = Φ                                                 (11) 

the updating law of weight is 
ˆ ( ) T

i i i i iW X sµ= Φ

                                              (12)

where the gain iµ is a diagonal matrix which is  
positive-definite.

Using equations (8) and (10), one obtains

( )ˆ T
i i i i i i iW Xδ δ δ ε= − = Φ + 

                             (13)

ˆ
i i iW W W∗= − . In this study, the input of the 

RBFNNS is selected as , , ,[ , , , , ]T
i i i i d i d i dX e e q q q=    . 

Using the estimation term îδ , RPD-SMC law is 
expressed as follows:

ˆ ( )i i pi i di i i ik e k e k sign sτ δ= + + +                         (14)

Obviously, the PD part is utilized to substitute 
the equivalent control of SMC; the robust part is 
utilized to ensure robustness, and the RBFNNS 
part is used to approximate the uncertain term. 
Finally, the system can achieve null steady-state 

errors tracking. However, in order solve the inputs 
constraint, the RPD-SMC law must be improved. 

Compared with hyperbolic tangent, the 
arctangent function tan( )iarc xκ  has a wider range 
of ( , )

2 2
π π

−  than that of the function tanh( )i xκ  
with a range of ( 1,1)− . With the same value of 

iκ , which is a constant, tan( )iarc xκ  approaches 
saturation more moderately. The smaller the 
value of iκ , the smaller the zero-crossing slope 
of function tan( )iarc xκ  is, and this function can 
approach saturation almost linearly. To describe 
the proportional relationship more effectively, 

tan( )iarc xκ  is often multiplied by a certain 
amount of gain, i.e., tan( )i iarc xλ κ . Therefore, 
the IRPD-SMC strategy is

ˆ tan( ) tan( )
( )

i i i i i i i i i i

i i

k arc e k arc e
k sign s

α βτ δ λ κ λ κ= + +

+



    
(15)

where ikα  is the position error-related gain that 
eliminates the positioning error; ikβ  is the velocity 
error-related gain which eliminates the velocity 
tracking error; iλ  is the approximate proportional 
gain; ik  is the robust term gain. All gains are 
positive definite.

4.2 Stability Analysis

Applying equations (6) and (7) into equation (1), 
the equation is obtained as follows:

( )( ) , , 1,...,i i i i i i i i iM q s C q q s i nτ δ+ + = =            (16)

Theorem 4.1. Considering multiple robots 
system described in equation (1), and the 
IRPD-SMC law and the weight update law as 
shown in equations (15) and (12). Assuming 
that Properties 2.1–2.3 hold, provided the 
control gains satisfy ,maxi ik ε> , and regardless of 
disturbances and the uncertainties, the following 
results have been obtained.

1. Outer–inner layer system is asymptotically 
steady with errors ,i ie e  converging to 0 , if no 
conflict exists among the three tasks.

2. If task 1 is active and conflicts with task 2 
and 3, ( ) ( )*

,1 ,1, ,i i i i i i ie q e qχ χ= +  , and 
i  is a robust term devised to reject noise, 

then task 1 is executed first. Finally, outer–
inner layer system is asymptotically steady 
with errors ,i ie e  converging to 0 .
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Proof. Select the following Lyapunov functions 

1 2V V V= +

( ){

( ) ( )

1
1 1

2 1

1

1 arctan
2

1 1ln 1
2 2

n n
T

i i i i i i i i i i
i i

n
T

i i i i i
i

V s M s k e e

e tr W W

ακ λ κ κ

κ µ

= =

−

=

= +

 − + + 

∑ ∑

∑  

( )2 1 1 1 2 2 2 3 3 3
1
2

T T TV f f f f f fη η η= + +     

                   
(17)

where 1η , 2η , and 3η  are design parameters which 
are positive-definite and 1 ,1

1

n

i
i

f f
=

= ∑  .

By substituting the IRPD-SMC law (15) into 
equation (16), it results 

,( ) ( ) tan( )
tan( ) ( )

i i i i i i i i i i i i

i i i i i i

M q s C q q s k art e
k art e k sign s

α

β

δ λ κ

λ κ

= − −

− −



 

      
(18)

Differentiating 1V  and substituting equations (6), 
(12), and (18) into it, one obtains

( ) ( )1
1 1

1

1 1

,max
1 1

1

1
2

ˆarctan( ) ( )

( ) arctan( )

arctan( ) arctan( )

n n
T T
i i i i i i i i i i

i i
n n

T
i i i i i i i i i i

i i
n n

T T
i i i i i i i i i

i i
n

T T
i i i i i i i i i i i i

i i

V s M q s s M q s

k e e tr W W

s k e k e

r e k e e k e

α

β

α β

κ κ

λκ κ κ µ

κ ε κ λ κ

κ λ κ γ κ λ κ

= =

−

= =

= =

= =

= +

+ −

≤ − −

− −

∑ ∑

∑ ∑

∑ ∑

∑

 









 



1

n

∑
 

                                                                        (19)

If ,maxi ik ε> , that is, ,max
1

( )
n

T
i i i

i
s kε

=

−∑ is negative 
definite, then 1 0V < .Thus, the errors ie , ie  will 
converge asymptotically to 0  and the inner layer 
system is globally stable.

Remark 4.1. In order to eliminate chattering 
which is caused by ( )sign ⋅  function, a hyperbolic 
tangent function is introduced and equation (15) 
is modified into

ˆ tan( ) tan( ) tanh( )i i i i i i i ik arc e k arc e k sα βτ δ λ λ= + + +

                                                                        (20)

where tanh( ) /i i i is s s s
i i i i is e e e e− −= − + .

Calculating the derivative of 2V  and substituting 
equations (3-5) into it, it yields 

2 1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 1 2 2 2 2 3 3 3 3

2 2 1 2 1 1 3 3 1 3 1 1

3 3 2 3 2 2 2 2 2 2 1 1 2 2

2 2 2 1 1 3 3

T T T

T T T
d d d

T T T

T T

T T

T

V f f f f f f

f J q f J q f J q

f f f f f f

f J J f f J J f

f J J f f J J J J f

f J J J J

η η η

η η η

η λ η η

η λ η λ

η η

η

+ +

+ + +

+ +

= − − −

= − − −

= − − Λ − Λ

− −

− Λ + Λ

+ Λ

     


  

  

     

   

   



3 3 3 3 2 2 3 3 3

3 3 2 3 1 1 2 2 3 3 3 1 1 3 3 3

2 2 2 1 1 2 2 3 3 3

3 3 3 1 1 2 2 3 3 3

T

T T

T

T

f f J J J J f

f J J J J f f J J J J f

f J J J J J J f

f J J J J J J f

η

η η

η

η

+ +

+ + + +

+ + +

+ + +

+ Λ

+ Λ + Λ

− Λ

− Λ

  

   

 

 

       

(21)

If no conflict exists in the three tasks, then
2 1 0J J + = , 3 1 0J J + = , 3 2 0J J + = . Therefore, equation 

(21) yields 

2 1 1 1 1 2 2 2 2 3 3 3 3 0T T TV f f f f f fη λ η η= − − Λ − Λ ≤     
       (22)

It can be noticed that the NSB system is  
globally stable.

Assuming that task 1 is active and conflicts with 
task 2 and task 3, 2V  could be rewritten as 

2
TV X MX= −                                                    (23)

where 1 2 3, ,
TT T TX f f f =  

   , , , 1, 2,3ijM m i j = =   

with 11 1 1m η χ= , 21 2 1 2 1m J Jη χ += ,

22 2 2 2 2 2 1 1 2m J J J Jη η + += Λ − Λ , 

23 2 2 1 1 3 3 2 2 1 1 2 2 3 3m J J J J J J J J J Jη η+ + + + += − Λ + Λ , 

31 3 1 3 1m J Jη λ += , 32 3 2 3 2 3 2 3 1 1 2m J J J J J Jη η+ + += Λ − Λ , 

33 3 3 3 3 2 2 3 3 3 3 1 1 3 3

3 3 1 1 2 2 3 3

m J J J J J J J J

J J J J J J

η η η

η

+ + + +

+ + +

= Λ − Λ − Λ

+ Λ

Furthermore, 2 22 ab a b≤ +  for any ,a b∈  is 
applied in equation (23) in order to yield

( )
( )
( )

2

11, 12, 13, 1

2

22, 21, 22, 2

2

33, 31, 32, 3

T
l L L

l L L

l L L

X MX m m m f

m m m f

m m m f

≥ − −

+ − −

+ − −







                    

(24)

where ,ij lm  and ,ij Lm  represent the lower and upper 
limits of ijm , respectively.

( )2 2 2

11, 1 22, 2 33, 3
1
2

T
l l lX PX m f m f m f≥ + +  

 
because 1 2 3 1J J J= = = , 22, 22, 0l Lm m= = , 

33, 33, 0l Lm m= = , 2f  and 3f  are losses of control, 
then 1dq q=  . Therefore, 2V  can be reselected as 

2 1 1 1
1
2

TV f fη=   . Subsequently, 2 1 1 1 1 0TV f fη χ= − ≤ 
  

is obtained. In this case, the outer layer system is 
also globally stable.
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Inserting equation (2) into equation (6), it results

( ) ( )
( )

( )

,1 ,1 ,1 ,1 ,1 ,1

2
,1 ,1 ,1

,1 ,1 ,1

T

i i i i i i i i i

TT
i i i i i i i i i i i

T
i i i i i i i

q J f k q J f

k e r e k e q J f

k re q J f

α

α α

α

χ χ

γ χ

χ

+ +

+

+

− −

> + −

+ −

 

 









                 

(25)

Taking the norm on both sides of equation (25) and 
manipulating it as an equality form, one obtains 

( ) 2
,1 , 4 / 2i i i i i i i ie q b b a c aχ = + +

*

                 (26)

where 2
,1i ia f=  , ( ),12 2i i i i ib f q r e= −

 ,
2 22 2i i i i i i ic e r e q qγ= + −  .

By selecting ( ) ( )*
,1 ,1, ,i i i i i i ie q e qχ χ= +  , 

where 0i >  , robots can successfully avoid obstacles. 

To summarize, whenever any conflict exists in 
the three tasks or not, the whole system must be 
globally stable, ie and ie eventually become 0 .

Remark 4.2. If there is only a conflict between 
task 2 and task 3, each robot will only perform 
task 1 and task 2, namely, 1 1 1 2( )dq q I J J q+= + −   , and 
no conflict will happen.

5. Simulation experiments

Several simulation experiments are conducted 
to display the superior capability of IRPD-SMC 
compared with that of APD-SMC (Gao et al., 
2019), ASMC (Zhou & Xia, 2015), and PD-
SMC(Ouyang et al., 2014).

Consider five robots and six robots in the 2D space 
and 3D space, respectively; assume that 1iM = , 

0iC =  and 0ig = . The parameters of the outer 
layer in the 2D and 3D space are shown in Tables 
1 and 2, respectively. The control parameters of 
ASMC, PD-SMC, APD-SMC, and of the proposed 
IRPD-SMC are displayed in Table 3, and they 
have been adjusted through trial and error. 

Table 1. Parameters of outer layer in the 2D space.

Symbol Value

R 5

id 2

il ( )2 cos / 2 /R nπ π−

2Λ  , 3Λ (2...2)diag

i 0.1

Table 2. Parameters of outer layer in the 3D space

Symbol Value
R 5

id 2

il 2R

2Λ  , 3Λ (2...2)diag

i 0.1

Table 3. Control parameters of different controllers

Controller Value

ASMC 5ik =

PD-SMC

(5...5)pik diag=

(6...6)dik diag=

(10...10)ik diag=

APD-SMC

(5...5)pik diag=

(6...6)dik diag=

(1...1)ik diag=

(4...4)r diag=

(2...2)i diagµ =

,0ˆ [0.1...0.1]T
iρ =

IRPD-SMC

(5....5)ik diagα =

(6...6)ik diagβ =

(5.5...5.5)i diagλ =

(1...1)ik diag=

0.2iκ =

(4...4)r diag=

(2...2)i diagµ =

, 25i jσ =

, [ 3, 2, 1,0,1, 2,3]i jc = − − −

1,2,...,7j =

Case 1. In the 2D space, initial values for 
the positions of five robots are 1(0) [5,10]Tq = , 

2 (0) [ 5,5]Tq = − , 3 (0) [ 5, 5]Tq = − − , 4 (0) [5, 10]Tq = − , 
and 5 (0) [5,0]Tq = . The trajectory of the target is 
defined as [3 0.1 ,0]Tc t= + . The external disturbance 
parameters are:

 
( )

1

2

( 40)
(else)

d
d i
i d

i

t
N

τ
τ

τ
 ≤= 


, 1 1/ 2[sin(0.5 ),sin(0.7 )]d T
i t tτ = ,

 
and 2 2d

iτ = , 1,...,5i = . 
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The values of the outer and inner layer parameters 
used for the simulations are shown in Tables 1 
and 3, respectively.

The target and the trajectories of the robots in the 
2D space, when using IRPD-SMC, are shown in 
Figure 2. 

Figure 2. Trajectories of the robots and target using 
IRPD-SMC

Figures 3–6 illustrate the distances between 
adjacent robots, the distances between the target 
and the robot, the position tracking errors, and 
the velocity tracking errors when using different 
controllers, respectively. From these figures, it 
becomes clear that the performances are different, 
especially when disturbances occur. 

Figure 3. Control results of using IRPD-SMC

Figure 4. Control results of using PD-SMC

Figure 5. Control results of using APD-SMC
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Figure 6. Control results of using ASMC

Figure 3 shows the best performance obtained 
by using the proposed control algorithm when 
compared with the one of other controllers. 

As demonstrated in Figure 3, disturbances are 
compensated and the null steady-state errors  
are achieved.

By contrast, the steady-state errors cannot be well 
compensated by the PD-SMC controller, as shown 
in Figure 4. When 2 2d

iτ = (N) are introduced at 
40t = s, tracking errors will always occur in the 

PD-SMC controller and the robots will never 
reach the reference trajectories again.

Finally, the control inputs of IRPD-SMC and 
RPD-SMC represented by equation (14) are 
illustrated in Figures 7 and 8. As shown, the 
control inputs have small values that do not 
exceed 3N at the end. However, the initial 
torque inputs of the RPD-SMC controller are 
significantly higher than those of IRPD-SMC. 
This means that controllers without saturation 
functions usually produce high initial torques, 
which may even exceed the upper limit of the 
actuator torques. In addition, it can be noticed 
that the control torques are continuous and easily 

physically realizable, which is just the result of 
using ( )tanh ⋅  function.

Figure 7. Control torques of using IRPD-SMC 

Figure 8. Control torques of using RPD-SMC

Case 2. In the 3D space with Gaussian noise and 
disturbance, the effectiveness of IRPD-SMC law 
is examined when the obstacle occurs. The initial 
positions of six robots are set as 1(0) [ 10,1,0]Tq = − ,  

2 (0) [ 1, 10,0.3]Tq = − − , 3 (0) [10,0,1]Tq = ,
4 (0) [0,0.5,10]Tq = ,  5 (0) [0,10,0.3]Tq = ,  and 
6 (0) [0,0, 10]Tq = − . The trajectory of the target 

is [0.1 ,3 0.1 ,sin 0.1 ]Tc t t t= + and the position of 
the obstacle is 0 [15,3, 4.5]Tq = − . Noise has been 
considered and simulated with a zero-mean 
Gaussian function with a standard deviation 
of 0.2. The disturbance parameters are defined 
as 1/ 2[sin(0.5 ),sin(0.7 ),cos(0.5 t)]d T

i t tτ =  where 
1,...,6i = . The parameters of the outer layer and 

the ones of the controller are shown in Tables 
2 and 3.
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As shown in Figures 9 and 10, it is clear that the 
proposed control strategy enables the robots to 
change their trajectories and avoid obstacles when 
they appear. In addition, it can effectively reject 
noise and disturbance.

Figure 9. Trajectories of robots and target using 
IRPD-SMC 

Figure 10. Distance between robot and obstacle 
using IRPD-SMC

6. Conclusion

The coordinated tracking control of multiple 
robots system has been described in an 
environment with obstacles, disturbances. A 
robust hierarchical outer–inner layer control 
structure composed of NSB and IRPD-SMC has 
been designed. 

Finally, parametric uncertainties and disturbances 
have been addressed, bounded control inputs 
have been provided, and fast convergence, 
robustness, and null steady errors have been 
obtained. 

In addition, the simplicity and model-free features 
of the proposed controller and continuous control 
signals have allowed the controller to be easily 
applied. 

The Lyapunov theorems and the results of 
simulation experiments have verified that the 
proposed control law is effective. In a future 
work some discussions about the design of the 
observer in coordination control will be given.
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