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1. Introduction 

The wide and increasing use of photogrammetry 
and remote sensing technologies, as well as 
the development of sophisticated geo-sensors 
such as GPS (Global Positioning System) and 
LIDAR (Light Detection and Ranging), have 
enabled the collection of massive amounts of 
geospatial data. The processing and analysis 
of such data have found useful applications 
in various domains, such as environmental 
protection, agriculture, smart cities, emergency 
management, nature preservation, to name just 
a few. For most of these computing and data-
intensive applications, it is crucial to achieve 
high performance, decrease the processing and 
analysis time, and generate almost instantaneous 
responses in real time.

The performance of advanced geospatial data 
processing and analysis applications can be 
improved by leveraging parallel and distributed 
computing methods and technologies. Some 
of these approaches are based on multi/many-
core computer systems, and advanced parallel 
programming frameworks, such as OpenMP 
(Open Multi-Processing), NVIDIA CUDA 
(Compute Unified Device Architecture) and 
OpenCL (Barlas, G., 2014). 

In the case of massively parallel and distributed 
computing based on a cluster and cloud 
infrastructure, MPI (Message Passing Interface), 
Apache Hadoop (2020) and Apache Spark (2020) 
frameworks have been widely used. 

MPI is defined by the standard specification, 
and implemented as a library of routines for 
implementation of portable message-passing 
applications in C/C++ and FORTRAN. The 
portability allows MPI applications to run on 
heterogeneous computer systems, processors 
and architectures. As such, MPI provides an 
exchange of messages between application 
components running on different processors 
and architectures, automatically performing 
appropriate data conversions and usage of 
communication protocols. 

A watershed refers to a spatial area that collects 
and drains surface water to a common outlet, 
usually delimited by topographical ridges and 
hills. Watershed analysis refers to the process 
of using DEMs and terrain data processing and 
analysis to detect water flows and delineate 
stream networks and watersheds (Chang, 
2018). It is based on raster Digital Elevation 
Model (DEM) data and consists of two 
computational steps: i) Depression filling and 
ii) Flow distribution that includes the detection 
of, single or multiple, flow direction and flow 
accumulation steps.

The main goal of the research presented in the paper 
is the parallelization of the watershed analysis 
algorithm using MPI by the implementation of two 
different approaches. The experimental evaluation 
of these MPI implementations shows the 
performance improvements related to sequential 
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implementation. The main contributions of this 
paper are:

 - The parallel implementation of the flow 
distribution computation is developed as 
the most time-consuming phase of the 
watershed analysis; 

 - Two proposed MPI implementations are 
tested and evaluated on several large DEM 
datasets and significant speedup in regard to 
the sequential solution is proved; 

 - The advantages and shortcomings of both 
parallel watershed analysis implementations 
are analysed and the best candidate that 
achieves performance improvements 
by overlapping process computing and 
communication is promoted.

The rest of the paper is structured as follows. 
Section 2 presents the research work related 
to parallel and High Performance Computing 
(HPC) implementations of Digital Terrain 
Analysis (DTA) algorithms, with focus on the 
watershed analysis. The general description of 
algorithms for watershed analysis is presented 
in Section 3 along with the possibilities for their 
parallelization. Section 4 describes the two parallel 
implementations of the watershed algorithm 
using MPI. Section 5 presents the experimental 
evaluation of the proposed implementations for 
different DEM datasets and the varying number 
of computers in the cluster. Finally, Section 
6 concludes the paper and outlines the major 
directions for the future research.

2. Related Work

The advancement in widely parallel and 
distributed computing architectures, such as 
private and hybrid clouds and computer clusters, 
has enabled processing and analysis of massive 
amounts of geospatial data. The computing and 
data-intensive GIS (Geographic Information 
Systems) applications and algorithms are widely 
implemented using parallel and distributed HPC 
frameworks such as MPI, Apache Hadoop and 
Spark, being promoted as an emerging research 
topic (Li, 2020; Stojanovic & Stojanovic, 2015).

Various parallel and distributed techniques, 
such as OpenMP, CUDA, and MPI, have been 
used in many GIS algorithms for processing and 
analysing the large-scale geospatial data. Different 
parallelization techniques, based on MPI and 

OpenMP, applied to processing of geospatial 
vector data are proposed and described in (Fan 
et al., 2018; Puri et al., 2018). The parallel 
processing of geospatial raster data, on a GPU 
using CUDA is considered in (Qarah & Tu, 2019; 
Wu et al., 2019).

Parallel implementation of watershed analysis 
algorithms based on large-scale DEM processing 
has attracted attention in the scientific community 
in the last decade (Qin & Zhan, 2012; Stojanovic 
& Stojanovic, 2019; Rueda et al., 2016). (Quin 
& Zhan, 2012) perform parallelization of 
multiple-flow direction algorithm on GPU. In 
their CUDA implementation, the parallelization 
of both depression filling step and multiple-
flow (MFD-md) accumulation step of the 
watershed algorithm is performed. In MFD-md 
parallelization step, they used two approaches, the 
first based on flow-transfer matrix and the second 
based on graph structure. In (Rueda et al., 2016) 
parallelization the single flow direction algorithm, 
D8, using CUDA and OpenACC, is performed. 
They compare and analyze the performance and 
programming effort of two proposed parallel 
implementations for different input datasets. In 
(Stojanovic & Stojanovic, 2019) multiple flow 
direction algorithm (MFD-md) for watershed 
analysis is implemented and evaluated on multi-
core CPU and many-core GPU. Different parallel 
implementations, native CUDA for GPU and 
two OpenACC implementations are proposed.  
OpenACC implementations are mapped to both 
GPU and multi-core CPU. The evaluation of the 
proposed solutions is performed with respect to 
the execution time, energy consumption, and 
programming effort for algorithm parallelization 
for different sizes of input data.

Distributed processing of raster geospatial data 
on a cluster of computers using MPI is an active 
research field, presented in recent scientific work. 
In (Akhter et al., 2010), parallel and distributed 
techniques are integrated into the GRASS 
GIS modules. Akhter et al. apply different 
implementation methodologies such as MPI, 
Ninf-G and OpenMP to the GRASS software 
system and discuss their performance. In (He et 
al., 2015) MPI-based parallel algorithm for large-
scale remote sensing image is proposed. They 
achieve a significant performance improvement of 
the distributed MPI pyramid building algorithm. 
In their experiments, they prove a scalability of 
the solution with the increasing number of nodes 
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and show that the benefits of the parallelization 
become more obvious with the increasing of the 
image size. (Qin et al., 2014), consider how to 
resolve input/output bottleneck in the geospatial 
raster data processing due to the Big data volume 
and diverse raster formats. They explore the 
efficiency and feasibility of parallel raster I/O 
using GDAL library. They propose two-phase 
I/O strategy implemented for GDAL using MPI.  
The experimental results show that the proposed 
approach is effective. 

In (Jiang et al., 2013), the parallelization of the 
two single flow direction (SFD) algorithms with 
the control of granularity using MPI, is presented. 
The authors compare the implementations 
of the parallel D8 algorithm and the parallel 
AreaD8 algorithm, and discuss their sensitivity 
to granularity. They prove and conclude that 
the performance of the parallel D8 algorithm 
is better than the one of the parallel Area D8 
algorithm. (Barnes, 2017) proposes the new flow 
accumulation algorithm and demonstrates its 
implementation using MPI. The implementation 
is based on non-divergent (single) flow directions, 
where a flow directs from one cell to only one 
of its neighbours. In (Reinoso-Gordo et al. 2017) 
the authors propose an open source algorithm for 
calculating flow accumulation using multiple flow 
direction and presents its parallel implementation 
using Octave and MPI. They evaluated their 
solution on two real DEM dataset and indicated 
degradation in speedup and parallelization when 
complex flows occur in the border areas of the 
flow direction matrices shared between nodes. 

In contrast to the reviewed solutions, a watershed 
analysis implementation based on multiple 
flow direction method (MFD-md) leveraging 
MPI for parallel execution of iterative multiple 
flow accumulation algorithm is proposed. The 
particular novelty of the present implementation 
lays in achieving higher performance by 
overlapping MPI process computation and inter-
process communication, for large-scale DEMs and 
independent of DEM characteristics.

3. Watershed Analysis 

Watershed analysis is an important process in the 
efficient management and planning of water and 
other natural resources, flood prediction modelling 
and snow melt runoff models. Watershed analysis 
is based on large-scale DEM data of the spatial 

area of interest, as well as the focal and zonal 
raster data operations (Chang, 2018).

The watershed analysis algorithm starts with DEM 
pre-processing step, named depression filling, that 
removes depressions or sinks in the elevation raster 
and forms a filled DEM. (Wang et al., 2019) review 
DEM depression processing algorithms, such 
as depression filling, and describe their parallel 
implementations on various parallel computing 
platforms and technologies, such as CUDA and 
MPI. A common method for removing a depression 
is to increase its cell value to the lowest neighbour 
point and thus the flow is routed to the lower DEM 
areas (Planchon & Darboux, 2002).

The watershed analysis algorithm continues with 
the computation of flow distribution from each cell 
to its neighbours. The results of this computation 
is represented by the flow direction raster that 
shows the directions of water from each cell of 
the previously filled DEM. The flow directions 
and the corresponding raster data are commonly 
calculated using single or multiple flow direction 
methods. In the single flow direction (SFD) 
algorithms, the water always flows out to one of 
the eight neighbouring cells, as in D8, a popular 
single flow direction method (Chang, 2018).

Multiple flow direction (MFD) methods allow 
divergence of a water flow and determine the 
parts of the flow that stream to each of the eight 
neighbours to some extent (Figure 1). MFD 
methods, such as D∞ and MFD-md, are more 
accurate comparing to the SFD ones. On the other 
side, such methods are more computing and data-
intensive and require more processing (Wilson et 
al., 2008).

Figure 1. The calculation of the flow directions in the 
MFD-md algorithm (Qin & Zhan, 2012)

In this paper, a parallel implementation of the 
MFD-md algorithm (Qin & Zhan, 2012) that 
consists of two phases is proposed. The first phase 
calculates the multiple flow directions according 
to the algorithm described in (Qin & Zhan, 2012), 
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and gives the result shown in Figure 1. The second 
phase calculates the flow accumulation using 
generated multiple flow direction raster data.

The flow accumulation is performed using the 
Flow-Transfer Matrix (FTM) algorithm proposed 
in (Rueda et al., 2016; Qin & Zhan, 2012). The 
FTM algorithm is iterative in nature and thus 
suitable for parallelization. In each iteration, the 
flow accumulation of each cell, originated from 
its neighbours, is calculated. When there is no 
change in results between successive iterations, 
meaning that there is no flow between any of the 
two neighbour raster cells, the algorithm finishes 
and the final flow accumulation raster is obtained.

4. MPI Implementation of the 
Watershed Analysis 

MPI parallel programming framework provides 
support for parallel execution of multiple 
processes on one or more processors/computers. 
During the execution, the processes exchange 
data and/or synchronize with each other. The 
number of processes in the MPI application 
is determined during the execution time. All 
the started MPI processes are members of the  
MPI_COMM_WORLD communicator, by 
default. After starting, the processes execute 
the same program code. Each process obtains a 
unique identifier inside the communicator, named 
rank. The rank of a process is an integer value 
which varies in the range of 0 to the total number 
of the processes minus 1 . The value of the process 
rank determines which part of the program code 
has to be executed by each process. In many cases, 
this linear rank assignment inside a communicator 
doesn’t match a logical pattern of communication 
between processes. Therefore, the optional 
attribute that can be given to a communicator 
represents a topology. It enables the logical 
process arrangement in the topological patterns 
such as: 2D grid, 3D grid or a graph.

As mentioned, the watershed analysis algorithm 
contains two phases that can be performed either 
sequentially, or in parallel: 

1. DEM pre-processing for the purpose of 
depression filling; 

2. Flow distribution computation of each cell 
to its neighbouring cells, performed by  
MFD-md algorithm.

The second phase of the MFD-md algorithm is 
computationally intensive and time-consuming, 
especially for large-scale DEM. Thus, the 
parallelization of this phase, on a cluster of 
computers, is needed for accelerating the 
execution of the MFD-md algorithm.

The parallelization of the flow distribution phase 
is implemented through the following steps:

1. Create communicator with assigned Cartesian 
2D topology; 

2. Calculate the FlowFractions matrix;

3. Distribute the FlowFractions matrix among 
processes; 

4. Calculate the LocalFlowTransfer and 
LocalResultTransfer matrices in each process 
using an iterative process;

5. Gather LocalResultTransfer matrices into 
ResultFlowTransfer matrix in a root process.

The algorithm that consists of the steps performed 
by the MPI processes, for two parallel WaterShed 
Parallel solutions (WSP1 and WSP2), is shown 
in Figure 2.

Create communicator with 
assigned Cartesian 2D topology

Calculate the FlowFractions 
matrix

MPI initialization and 
process identification

Distribute the FlowFractions 
matrix among processes

LocalFlowTransfer(i) 
matrix computation 

Exchange borders’ data of 
LocalFlowTransfer(i) with 

neighbouring processes 

Change local termination condition 
depending on values of 

LocalFlowTransfer matrix

Aggregate local termination 
condition values and send result to 

all processes 

WSP1
LocalFlowTransfer(i) matrix 
border values computation 

Exchange borders’ data 
overlapping with computation 

interior of LocalFlowTransfer(i) 

WSP2

Termination condition?

Gather LocalResultTransfer 
matrices into ResultFlowTransfer 

matrix in a root process 

True

Figure 2. The algorithm for the MPI parallelization

In the first step, the communicator with assigned 
Cartesian 2D topology is created. All processes 
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from the default communicator, MPI_COMM_
WORLD, are arranged as dim0 x dim1 grid. The 
values of dim0 and dim1 represent the number of 
the processes in the first and the second dimension, 
respectively. In Figure 3 the Cartesian grid with 
dim0 = dim1 = 3 is shown.  

P0 P1 P2

P3 P4 P5

P6 P7 P8

   (0,0) (0,1) (0,2)

(2,0) (2,1) (2,2)
Figure 3. Processes ordered in 2D Cartesian topology

Each process (except the boundary one) is 
connected to the four neighbours: left, right, 
up and down. That connection provides the 
communication necessary to perform the 
calculation in Step 4.

Step 2 assumes the calculation of the Flow 
Fractions matrix which is performed as shown 
in Figure 2. This matrix is necessary for 
FlowTransfer matrix calculation. 

In Step 3, the distribution of FlowFractions 
matrix among processes is performed in the way 
shown in Figure 4. The FlowFractions matrix is 
firstly divided vertically into dim0 parts, where 
dim0 is the number of rows of the processes’ 
matrix. Each part is sent to the first process of 
each row of the processes’ matrix using the MPI_
Scatter operation. After that, each part is divided 
into dim1 parts, where dim1 is the number of 
columns of the processes’ matrix. These parts 
are sent from the first process of each row to 
the entire processes row, again using the MPI_
Scatter operation. If the dimensions of the matrix 
are   not divisible by the number of processes in 
the corresponding dimension of the processes’ 
matrix, the remainder of the FlowFractions 
matrix is assigned to the last process in the 
communicator. After distribution, each process 
gathers elements of the FlowFractions matrix, 
needed for its local computation.

Figure 4. Distribution of FlowFractions matrix data 
among processes

Step 4 is the most time-consuming step. This 
step represents an iterative computation where, 
in each iteration, the flow accumulation for each 
cell, originated from its neighbouring cells, is 
computed. This computation requires values 
from both, FlowFractions and FlowTransfer 
matrices. These values are multiplied and 
recorded in each iteration, in the flow-transfer 
matrix of each process, LocalFlowTransfer. The 
final value of the LocalFlowTransfer matrix, 
the LocalResultTransfer matrix, in each process 
is obtained as the sum of LocalFlowTransfer(i) 
matrices, where i is the iteration number. 
The iterative process finishes when the zero 
FlowTransfer matrix is obtained. The initial 
matrix, LocalFlowTransfer(0), is initiated with 
the value 1 in each cell (Qin & Zhan, 2012). The 
computation performed as an iterative process can 
be organized using different approaches. 

As shown in Figure 5, the computation 
of FlowTransfer matrix is geometrically 
decomposed into grids, and each grid is assigned 
to a different process. 

Figure 5. Calculation of LocalFlowTransfer matrix
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The grid corresponds to LocalFlowTransfer 
matrix in each process. Also, the value in each 
cell, in the current iteration, is based on the 
values of eight neighbouring cells from the 
previous iteration. Furthermore, the values in the 
border cells require the values of cells that reside 
in the neighbouring processes. 

To perform such computation, each process 
must exchange data on the borders with the 
neighbouring processes, in each iteration. 
Therefore, LocalFlowTransfer has to be extended 
with two rows and two columns, used for data 
exchange with the neighbouring processes, as 
shown in Figure 6. If the number of rows and 
columns are n and m, respectively, the actual size 
of LocalFlowMatrix is n+2×m+2. The values in 
the blue rows, for the process (1, 1) in the Cartesian 
topology, have to be sent to the up and the down 
neighbour in the Cartesian topology and received 
in the neighbours’ gray rows. Also, the values in 
blue columns, for the process (1, 1), have to be 
sent to the left and the right neighbour in Cartesian 
topology, and received in the neighbour`s red 
columns. Also, the values in each corner have to 
be sent to each diagonal neighbouring processes.

Figure 6. LocalFlowTransfer matrix data exchange

As it has already been mentioned, there are 
two approaches used to organize the described 
computation in an iterative procedure. The 
solution that implements the first, straightforward 
approach is named WSP1, and the solution that 
implements the second approach is WSP2, as 
labelled in Figure 2.

In the first approach, in each iteration, each 
process computes the LocalFlowTransfer(i) 
matrix using the FlowFractions matrix assigned 
to the process and the LocalFlowTransfer(i-1) 

matrix. The LocalFlowTransfer(i) matrix is 
added to the LocalResultTransfer(i) matrix. To 
start a new iteration, each process must exchange 
data on the borders of the LocalFlowTransfer(i) 
matrix with the neighbourg processes. For that 
purpose asynchronous MPI_Send operations 
are used, to enable sending the messages in any 
order. The exchange is performed in two steps, 
with the synchronization point between the steps, 
to perform extra send operations for the corners. 
In the first step, n values from the blue columns 
are sent to the left and the right neighbouring 
processes. To ensure the completion of the first step 
the synchronization point is added. In the second 
step, m+2 values from the blue rows are sent to 
the up and the down neighbouring processes. To 
ensure that all the processes have completed the 
whole communication before the beginning of 
the next iteration, the new synchronization point 
is added after this step. The important aspect of 
the Watershed algorithm parallelization is the 
termination condition. The condition needed to 
terminate the algorithm, or to continue with the 
new iteration through the matrix, is defined as 
the last step of each iteration to confirm or deny 
that no cell receives the flow transferred from its 
neighbouring cells. It is sufficient that the only 
one process in its computation concludes, then 
the next iteration should continue. To achieve 
this, MPI_Allreduce is used to propagate the 
sum of values of the local flags of each process 
to all the processes and thus allow to continue or 
terminate the next iteration. The execution time 
of each MPI process iteration is the sum of time 
needed for computation of the local flow matrix 
(Tcp) and the time needed for communication with 
neighbouring processes to exchange the border 
rows and columns (Tnet), Tex1 = Tcp + Tnet.

In the second approach, WSP2, in each iteration, 
each process firstly computes only the border 
values of the LocalFlowTransfer(i) matrix (the 
blue cells in Figure 6) and then initiates sending the 
computed data to the corresponding neighbouring 
processes. This represents the first step. Using 
asynchronous send and receive operations, n 
values from the border columns are sent to the 
left and the right neighbouring processes (using 
two MPI_Isend operations) and m values from 
the border rows are sent to the up and the down 
neighbouring processes (using two MPI_Isend 
operations). In this step, the four values at the 
corner cells have to be sent by four additional 
MPI_Isend operations. While the borders and 
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corners are transferred, the computation of values 
in the interior of the LocalFlowTransfer(i) matrix 
(white cells in Figure 6) is performed in parallel. 

A synchronization point must be avoided after 
communication initiation in order to overlap 
communication and computation. Before the 
LocalFlowTransfer(i) matrix is added to the 
LocalResultTransfer(i) matrix, the synchronization 
point is added to ensure that all the data required 
for computation is available. 

In the last step, the examination of the 
termination condition is performed in the same 
way as in the WSP1 approach. In WSP2, the 
execution time of each MPI process iteration is 
the maximum time needed for the computation of 
the local flow matrix (Tcp) and the time needed 
for communication with neighbouring processes 
to exchange border rows/columns and corner 
cells (Tnet2), Tex2 = max(Tcp, Tnet2).

Finally, Step 5 of MFD-md algorithm execution 
is ResultFlowTransfer computation. Collecting 
the results obtained in the LocalResultTransfer 
matrices in each process in Step 4 is done using 
the group operation MPI_Gather. It is done in the 
same way, but in the reverse order than described 
in Step 3 for distribution of FlowFractions matrix 
among the processes.

5. Exxperimental Evaluation

The sequential and the parallel watershed analysis 
implementations have been developed using 
C++ and MPICH2 library. For raster geospatial 
data processing, the GDAL 3.01 library is used. 
The sequential and two parallel solutions have 
been experimentally evaluated on the cluster of 
commodity computers equipped with the Intel 
Core2Duo processor and 1GB RAM. 

Speedup (S) has been calculated to compare 
the accelerations achieved by two parallel 
implementations of the MFD-md algorithm 
(Tparallel) with respect to its sequential 
implementation (Tsequential), as shown in the 
following expression.

parallel

seqential

T
T

S = (1)

We applied the watershed analysis over different 
sizes of DEMs covering part of Alaska, obtained 
from the EarthExplorer (2020) (Table 3).

The experimental results for the execution times 
(in seconds) of the sequential and two proposed 
parallel solutions based on different approaches 
(WSP1 and WSP2) of accelerating the MFD-md 
algorithm, for different sizes of input DEM are 
shown in Tables 1, 2 and 3.

Table 1. The Execution times (in seconds) of 
sequential MFD 

DEM Tsequential (s)

1691x2877 373

2414x2912 542

2433x4152 988

3278x4152 1285

3308x5967 1984

The execution times of two parallel solutions for 
the variable number of computers in the cluster 
(p = 4, 6, 8, 12) are shown in Tables 2 and 3, with 
one MPI process running per computer. 

Table 2. The execution times (in seconds) of parallel 
MFD in the case of WSP1 

WSP1 T parallel (s)

Num. of 
computers 4 6 8 12

DEM

1691x2877 116 89 70 58

2414x2912 175 130 104 82

2433x4152 298 220 175 133

3278x4152 397 283 246 183

3308x5967 628 464 380 288

Table 3. The execution times (in seconds) of parallel 
MFD in the case of WSP2

WSP2 T parallel (s)

Num. of 
computers 4 6 8 12

DEM

1691x2877 116 86 69 57

2414x2912 174 129 103 81

2433x4152 298 219 174 131

3278x4152 398 280 230 182

3308x5967 615 438 364 276

It is shown that with the increase in the number of 
processes, for each input DEM size, the execution 
time decreases, for both solutions, WSP1 and 
WSP2. This result stems from the fact that most 
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of the work is parallelised. With the increase of the 
input DEM the execution time increases as well. 
The WSP2 solution that employs overlapping 
of computation inter-process communication 
is faster than WSP1, for each input DEM size, 
and the same number of MPI processes. This 
fact promotes WSP2 parallel implementation 
as the best candidate for the acceleration of the 
watershed analysis algorithm. 

The shortcoming of WSP2 is an overhead 
included in each iteration by sending each corner 
value with one MPI_Send operation. In the case 
of the largest input DEM, the computation in each 
iteration is large enough to minimize the overhead 
of additional communication. In that case, there is 
a more significant difference in execution times of 
WSP1 and WSP2 solutions.

Table 4 and Figure 7 show experimental results for 
speedup of parallel WSP2 solution with respect to 
the sequential solution for the variable number of 
computers in the cluster (p = 4, 6, 8, 12). 

Table 4. Speedup of the parallel MFD in the case 
of WSP2

WSP2 Speedup (
parallel

seqential

T
T

S = )

Num. of 
computers 4 6 8 12

DEM

1691x2877 3,22 4,34 5,41 6,54

2414x2912 3,11 4,20 5,26 6,69

2433x4152 3,32 4,51 5,68 7,54

3278x4152 3,23 4,59 5,59 7,06

3308x5967 3,23 4,53 5,45 7,19

Figure 7. Speedup of the parallel MFD in the case 
of WSP2

The experimental evaluation shows that the WSP2 
solution gives a speedup which is higher than 1 
in all the cases, which promotes it for the most 
efficient acceleration of the sequential solution. 
For the fixed DEM size, the speedup increases 
with the increasing number of computers 
(processes). The maximum speedup for all DEM 
sizes is achieved for 12 computers and has the 
average value of 7,01. The speedup values 
of parallel WSP2 solution with respect to the 
sequential solution using p = 4, 6, 8, 12 processes 
are in the range of 3,11 to 7,54. It can be noticed 
that speedup does not increase proportionally with 
the number of computers (processes). 

The reason lays in the fact that with the increasing 
number of processes, the contribution of inter-
process communication in the process execution 
time increases as well. 

The execution time of each process, in each 
iteration, depends on the computation time and 
inter-process communication time. In the case 
of WSP2,   the overlapping of the computation 
and the communication in each iteration is not 
completely performed. With the increasing 
number of processes, for fixed DEM size, each 
process is assigned with a reduced workload as the 
number of elements of LocalFlowTransfer matrix 
that have to be computed, decreases. 

Consequently, the computation time in each 
iteration decreases proportionally to the 
increasing number of processes. At the same 
time, the inter-process communication time 
does not decrease proportionally. While there 
is less borders’ data to exchange, there is also 
an overhead included by the exchange of the 
corner values. 

As mentioned in Section 4, the execution time 
of each MPI process iteration is the maximum of 
the computation and communication times (Tcp 
and Tnet2). Thus, with the increasing number of 
processes, the inter-process communication time 
surpasses the computation time and determines 
the total execution time of each iteration. As 
a consequence, the speedup does not increase 
proportionally, with the increasing number  
of processes. 

The best performance of the WSP2 parallel 
execution would be achieved for roughly equal 
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computation and inter-process communication 
times of each MPI process, which will maximize 
parallelization while minimizing the cost of 
inter-process communication. 

6. Conclusion

The development of photogrammetry and remote 
sensing has enabled the collection of massive 
geospatial data which raises the interest in 
processing and analysing the Big geospatial data 
in various Digital Terrain Analysis domains. In 
this paper, the parallel computing techniques and 
the MPI framework on the large-scale raster DEM 
data are applied to improve the performance of 
the flow accumulation algorithm, as the most 
time-consuming phase of the watershed analysis. 

Two solutions are proposed for the parallelization 
of the multiple flow accumulation algorithm 
based on the MFD-md method. These parallel 
implementations significantly outperform the 
sequential one in the experimental cluster 
configuration, showing scalability with increasing 
DEM size and the number of computing nodes 
in the cluster. 

In the first solution, the execution of each MPI 
process iteration includes the computation of the 
local flow matrix and subsequently the exchange 

of border rows and columns with neighbouring 
processes through inter-process communication. 

In the second solution, the overlapping of 
computation and inter-process communication 
is implemented within each MPI process, and 
a better performance than the one of the first 
solution is achieved. In that case, the appropriate 
trade-off analysis of the computation and the 
inter-process communication of MPI processes 
would provide the best performance and the 
highest gain of parallelization.

The experimental evaluation shows that 
application of parallel and distributed computing 
methods and techniques to large-scale raster data 
processing and analysis, represents a promising 
research and development direction. The future 
research will consider the parallelization and 
adaption of digital terrain analysis algorithms 
and solutions to advanced HPC programming 
models and architectures, such as multi-node 
GPU cluster, using both the CUDA programming 
and the MPI library.
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