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1. Introduction

Over the last decade, many potential applications 
and technological advances have generated 
increasing interest in Unmanned Aerial Vehicle 
(UAV). This interest is due their wide range 
of civilian and military applications, to the 
simplicity of their construction and also to their 
vertical ability to take-off and landing capability. 
In addition to their cost-effective commercial 
applications, they have proven their capabilities in 
the field of exploration of dangerous environments 
such as burning forests, radioactive zones, hostile 
area requiring a military reconnaissance mission 
etc. (Hößler & Landgraf, 2014).

The new challenging conditions faced by UAVs 
have shown how critical safety and reliability 
are to achieving mission objectives and avoiding 
unnecessary losses. To meet this request, 
particular importance has been given to the 
diagnosis of actuator and sensor faults, which 
lead to undesirable behavior, or even instability 
of UAVs. Thus, much research has been devoted 
to their control and diagnosis (Zhang et al., 2013).

To achieve this goal different strategies have been 
followed in the literature. In most of the cases, 
when using model-based techniques, the simplest 
and most practical solution is to linearize the 
system around a suitable operating point. This 
solution is especially suitable for UAVs operating 
most of the time close to the considered conditions. 
However, this approach does not give satisfactory 
results for highly nonlinear systems with a wide 

dynamic operating range. Other methods have 
been developed directly dealing with models of 
nonlinear dynamic systems (Sjöberg et al., 1995).

In the field of system controls, PID controller can 
be mentioned (El Hamidi et al., 2019). The control 
based on the sliding mode is proposed in (Nguyen 
& Hong, 2018). The backstepping approach is 
applied in (Madani & Benallegue, 2006) and the 
hybrid control combining the sliding mode and 
the backstepping is presented in (Smaoui, Brun, & 
Thomasset 2006). Other strategies which hybridize 
backstepping, sliding mode and fuzzy logic are 
developed in (Ibraheem, Bahgat & Motelb, 2000).

As regards the diagnosis of actuator and sensor 
faults; different methods have been studied. Model-
based methods have been adopted to generate 
residuals and to detect faults in systems. Luenberger 
observers have been used for the detection of faults 
in sensors and actuators (Heredia et al. 2008) and 
the Kalman filters have been used for checking 
fault tolerance (Qi et al., 2014).

Other model generating residuals are correctly 
aimed at ill-defined, complex, and nonlinear 
processes. There can be mentioned Neural 
networks, Hammerstein, Wiener, Volterra and 
Kolmogorov-Gabor models (Isermann, 2005). 
This approach consists in building a model by 
identifying the parameters of the system. The 
diagnosis is then carried out, by monitoring the 
difference between the numerical values measured 
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on the system and their values predicted by the 
outputs of the constructed model. 

The residual is then evaluated for decision making 
regarding the occurrence of a fault. This task 
requires good expertise and must be performed 
in real time.

Several paths have been explored by researchers 
in the field of fault monitoring. First the statistical 
methods have been used (Mjahed & Proriol, 1989). 
Then, with the improved power of calculators, 
artificial intelligence techniques such as neural 
networks, genetic algorithms, fuzzy logic and 
other techniques have given more satisfaction 
(Chen et al., 2018).

The contribution and the originality of this article 
is that it combines the Hammerstein-Wiener model 
distinguished for its capacity to take into account 
the nonlinearities of the processes with the Neural 
Networks in order to ensure a continuous and 
effective diagnosis.

This article is organized as follows: Section 2 
is devoted to the study of the dynamics of the 
quadrotor and its modeling. The Sliding Method 
has been used for the quadrotor control. The 
control laws have been synthesized from the 
results of UAV modeling. This approach is suitable 
for the nonlinear model that has been studied.

Section 3 describes the system adopted for fault 
diagnosis. First, the basic concept of system 
identification and residual generation by the 
Hammerstein-Wiener model will be detailed, and 
then the artificial neurons will be presented as an 
efficient and reliable method for diagnosing faults. 
The application of the methods mentioned above 
on the quadrotor model and the discussion of the 
simulation results will be detailed and discussed 
in section 4. Finally, a general conclusion of the 
work is provided in section 5.

2. Quadrotor Modeling and Sliding 
Mode Control

This section is devoted to dynamic modelling of 
the quadrotor; this system and its general principle 
of flight are firstly described. Then, the dynamic 
model and the model state space representation are 
highlighted. Finally, the theoretical foundations of 
the sliding mode control are detailed before the 
presentation of the results of its application on 
the quadrotor.

2.1 Quadrotor Modeling

In this subsection, the mathematical model of 
the quadrotor is briefly explained. A quadrotor 
is a four-rotor aerial mobile robot generating 4 
propeller forces F1, F2, F3, and F4 (Figure 1). It 
is necessary that two pairs of propellers (1-3) 
and (2-4) rotate in opposite directions to balance 
the moments and produce the required yaw 
motion. The operation of a quadrotor is quite 
particular. By varying the power of the motors, 
it can be moved up/down, tilted left/right (roll) 
or forward/backward (pitch) or turned on itself 
(yaw). The quadrotor has six degrees of freedom, 
three rotational motions, and three translational 
motions; these six degrees must be controlled with 
only four triggers; therefore it is an under-actuated 
system (the number of entries less than the number 
of outputs) (Mahony, Kumar & Corke, 2012).

To evaluate the mathematical model of the 
quadrotor two reference frames are used: the earth-
fixed inertial reference frame ‘E’ and the body-
fixed reference frame ‘B’ The absolute position of 
the quadrotor is described by its coordinates x, y 
and z and the attitude by the angles of Euler φ, θ 
and ψ; where φ is the roll angle (rotation around 
the x-axis), θ is the pitch angle (rotation around 
the y-axis) and ψ is the yaw angle (rotation around 
the z-axis).

Figure 1. Quadrotor configuration

The torque τ and the thrust force Fi produced by 
the ith motor are related to the rotational speed 
as follows:

(1a)
2 

i idτ = Ω (1b)

where Ωi is the rotation speed of the ith motor and b, 
d are the thrust and drag coefficients, respectively. 
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Assume that the control variables can be 
described as:

1 2 3 4ZU F F F F= + + +  (2a)

( )3 4U l F Fϕ = −  	 (2b)

( )1 2U l F Fθ = −  (2c)

1 2 3 4Uψ τ τ τ τ= + − − (2d)

where l  is the distance between the center of the 
quadrotor and each rotation axis  of the propellers.

The insertion of equations (1) into equations 
(2) yields:

  (3a)

(3b)

(3c)

(3d)

Using the Newton-Euler formalism the dynamic 
equations are written in the following form (Siti 
et al., 2019):

(4a)

(4b)

(4c)

(4d)

where   

The other parameters are defined as follows:

	- Ix, Iy, Iz: the moments of inertia along the x,y, 
z directions;

	- Kφ, Kθ, Kψ: the drag coefficients;

	- JT : the moment of inertia of each motor.

At low speed, a simplified nonlinear model of 
equations (4) can be obtained by neglecting the 
terms of drag and the gyroscopic effects:

( ) ( )¨ cos cos
ZZ U g

m
ϕ θ

= − (5a)

¨ 1 y z

x x

I I
U

I Iϕϕ θψ
−

= + 

 (5b)

¨ 1 y z

x y

I I
U

I Iϕθ ϕψ
−

= +   (5c)

¨ 1 x y

z z

I I
U

I Iψψ ϕθ
−

= + 

 (5d)

The parameters of the quadrotor model which are used 
in this study and which are identified from a real case 
proposed by (Cen et al., 2013) are shown below.

1m kg= 6 2104 10 . / /
T

J N m rad s−= ×

3 28,1 10 . / /
x

I N m rad s−= ×
3 28,1 10 . / /

y
I N m rad s−= ×

3 214, 2 10 . / /
z

I N m rad s−= ×

2.2 Sliding Mode Controller

With the complexity of the new systems, 
conventional controllers become powerless and 
often give less effective results. To overcome 
this problem, research tends to favor robust 
nonlinear controls that yield acceptable results. 
These techniques include Sliding Mode Control 
(SMC), which has long been the subject of several 
research studies (Hung, Gao & Hung, 1993).

The SMC is used to control nonlinear processes 
subject to external disturbances and large 
uncertainties related to modeling. The SMC is 
a nonlinear control that relies on the switching 
functions of the state variables used to create a 
sliding surface. The goal is to force the dynamics 
of the system to follow the equation defined by this 
surface and to keep it on this surface. The system 
is then insensitive to external and parametric 
disturbances as long as the conditions of the 
sliding mode are guaranteed. In this subsection 
some basic notions of the concepts of sliding 
modes theory will be given.

The SMC of the single input, single output (SISO) 
system expressed by equations (6) will be studied. 
This control system will be applied on quadcopter 
modeled by Equations (5).

1 2 x x= (6a)

( ) ( )2 1 2 1 2, , . , , x g x x t u f x x t= + (6b)

1 y x= (6c)
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where:

	- x1,x2: are the state variables;

	- y is the controlled outputs ( , ,   )z orϕ θ ψ ;

	- u is the controlled  input ( , ,  ZU U U orUϕ θ ψ );

	- g(x1,x2,t) : is a nonlinear function;

	- f(x1,x2,t): is the term of perturbation, which 
may include a dry and viscous friction 
in addition to any further resistance. It is 
supposed to be bounded by Equation (7).

( )1 2, ,   f x x t L< (7)

The objective is to design a sliding mode control 
u(x1,x2,t) allowing the output to asymptotically 
follow the input reference yr.

Let e be the tracking error (Equation (8))

( ) ( ) ( )rt y t y te = − (8)

The control low u  must lead this error to zero: 

( )( )( )lim  0
t

e t
→∞

= .

Let σ be the Sliding Variable expressed as a 
function of e  and e  (Equation (9))

( ) ,        0e e e eσ λ λ= + >  (9)

In order to ensure the asymptotic convergence 
of the variables x1 and x2 the variable σ has to 
be driven to zero in finite time by means of the 
control u, although the presence of the bounded 
perturbation f.

By using the Lyapunov function techniques to 
σ-dynamics, this result can be achieved. From 
Equations (8) and (9) one obtains:

( )
¨

   , ,   .r ry y f y y t y g uσ λ= + − − −    (10)

The Lyapunov function for the σ
-dynamics is expressed by Equation (11):

21
 

2
V σ= (11)

The following conditions must be satisfied to 
ensure the asymptotic stability of Equation (10) 
around the point of equilibrium (σ=0):

(12a)

lim  V
σ →∞

=∞
 (12b)

It can be easily deduced that condition (12b) is 
satisfied. With regard to condition (12a) which 
ensures convergence and stability, it can be 
modified as follows (Equation (13)):

( ) 1/2 V t Vα< − , 0α >                                       (13)
After the separation of the variables and the 
integration on the time interval 0<τ<t one obtains:

( ) ( )1/2 1/21   0
2

V t t Vα≤− + (14)

Consequently, V(t) reaches zero in a finite time tr 
that is bounded by (Equation (15)).

( )1/2

r

2V 0
t

á
≤ (15)

The control u that satisfies Equation (13) is 
calculated. This control will drive the variable σ to 
zero in a finite time and then keep it at that value.

The derivative of V is computed as:

( )( )ÿ ¨

   , ,   .r rV y y f y y t y g uσ σ σ λ= = + − − −

   (16)

Let be:

( )
¨

  , ,   r ry y f y y t yφ λ= + − −   (17)

, :  r ry y  are the known input references. 

The cumulative disturbance ( ), ,y y tφ   is assumed 
to be bounded ( )( ), ,y y t Dφ <

Assuming:

( )1  u sign
g
ρ σ= (18)

where ρ is the control gain (ρ>0) and ‘sign’ is a 
function expressed as follows:

( )
1  0
1  0
if x

sign x
if x

>
= − < , ( ) [ ]0   1,1sign ∈ − (19)

Substituting it into Equations (16) and (17)  
one obtains:

( ) ( )( ) , ,  V y y t signσ φ ρ σ= −

 (20)
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Then it yields:

( ) ( ) ( ) , ,  , ,  V y y t sign y y tσφ ρσ σ σφ ρ σ= − = −

 

It can be deduced:

( ) ( ), ,    y y t Dσφ ρ σ σ ρ− < −

Taking into account Equation (11) and condition 
(12a) one obtains:

1/2  
2

V V αα σ−
< − =

, 0α >
(21)

The control gain ρ is computed as:

2
D αρ = + (22)

2.3 Control Law Synthesis 

In this subsection the synthesis of the control law 
which will be applied to the quadrotor system 
modeled by Equations (5) will be carried out. This 
task will be accomplished by applying the Sliding 
Mode Control.

Consider Equation (5b) of the yaw angle ‘φ’:

¨

1 1 1 bU aϕ θψ= + 


(23)

where: 1
x

lb
I

=  and 1a =  y z

x

I I
I
−

The goal is to design a control law U that will 
allow the output φ to follow the input reference 
φref. The tracking error is expressed as follows:

 refeϕ ϕ ϕ= −

By applying Equation (18) one will obtain: 

( )
1

1   U sign
bϕ ϕ ϕρ σ= (24)

Where: e eϕ ϕ ϕσ λ= −

In a similar way one obtains:

( )
1

1   U sign
bθ θ θρ σ= (25a)

( )
1

1   U sign
bψ ψ ψρ σ= (25b)

( )  
cos cosZ z z

mU signρ σ
θ ϕ

= (25c)

with:  0  ,0
2 2
π πθ ϕ≤ < ≤ <  

The parameters of the Sliding Mode Control are 
fixed as follows:

1,5 λ =  and  120z ϕ θ ψρ ρ ρ ρ= = = = .
The simulation has been performed with the 
following input references:

3 1cos
8 20 15refZ t sin tπ π   =    

   
(26a)

3 1sin
8 25 15ref t sin tπ πϕ    =    

   
(26b)

3 1cos
8 15 15ref t sin tπ πθ    =    

   
(26c)

3 1sin
8 15 15ref t cos tπ πψ    =    

   
(26d)

Figures (2) shows the simulated input reference 
and system output for φ signal.

Figure 2. Sliding Mode Control of Signal
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3. Fault Diagnostic System

The principle of model-based monitoring is to 
compare the behavior of the actual system with 
that of a model that represents normal operative 
conditions. The general approach is to compare 
the actual output of the system to an estimated 
fault free output of the model. Fault indication 
signals, called residuals, are thus generated to 
perform a diagnostic decision test (Equation (27)).

( ) ( ) ( )ˆr t y t y t= − (27)

Where y(t) is the actual output of the system and 

( )ŷ t  is the estimated output.

Residuals are designed to be equal or converge 
to zero in case there are no defects and deviate 
considerably from zero if an error occurs. 
Therefore, the residuals characterize the effects 
of the faults. Depending on the number of the 
generated residuals and their design, it is possible 
to detect and isolate the faults that have occurred.
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Figure 3. Fault Diagnosis system

Model-based fault diagnosis can therefore be 
divided into two main stages: residuals generation 
and decision-making (Figure 3).

To achieve this goal, the Hammerstein-Wiener 
model has been successively used for residual 
generation and multilayer artificial neural 
networks for decision making. Further explanation 
of these two blocks will be introduced in the 
following subsections.

3.1 Hammerstein-Wiener Model

A relatively simple way to represent the nonlinear 
behavior of a system relies on the use of structured 
block models composed of linear dynamic 
elements and nonlinear static elements. The 
Hammerstein, Wiener and Hammerstein-Wiener 
models can be mentioned (Vörös, 2014).

In the Hammerstein model, the input signal passes 
first through the nonlinear static element to give 
an intermediate signal which will be processed by 
the dynamic linear part. The nonlinear element 
can explain the nonlinearities of the actuators and 
other effects that can be placed at the input of the 
system (Wang et al. 2009). 

The permutation of the linear and nonlinear 
elements in the Hammerstein model leads to the 
Wiener model. This model is well adapted to the 
characterization of a system whose sensor has a 
nonlinear behavior (Chen, Lu & Ding, 2014).

The combination of a Hammerstein model and a 
Wiener model in series allows the development 
of a new Hammerstein-Wiener structure. Figure 
4 shows the connection between these blocks. The 
Hammerstein-Wiener models are well suited to 
the characterization of a system whose actuator 
and sensor have a nonlinear character. It has been 
successfully applied to the modeling of several 
physical processes (Nadimi et al. 2012).

Figure 4. Hammerstein-Wiener Model

Most studies have assumed that the linear element 
is parametric and can be represented by a known 
order transfer function, a state space representation 
or an input-output polynomial model with a 
known degree of dynamics.

For the polynomial model used in this research, 
the relationship between the output of the linear 
subsystem and the input is given in Equation (28):

( ) ( )( ) ( )
( ) ( )

B z
v t g u t u t

A z
= = (28)

Here ' '  z is the shift operator: ( ) ( )1   1   z y t y t− = −  
and A(z), B(z) and D(z) are polynomials.

With regard to nonlinear subsystems, several 
solutions can be adopted. The piecewise linear 
function, the sigmoid network, the Wavelet 
network and the saturation function can be 
mentioned (Shokrollahi et al., 2018). In the 
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present work, the piecewise linear function with 
10 break points has been chosen for estimating the 
two nonlinear Hammerstein-Wiener subsystems.

To allow the identification of the system, it is 
necessary to have a set of input and output signals 
of the process. These signals are acquired in 
normal operation or introduced artificially. 

A considerable advantage of the identification 
methods is that with the input signal and the 
output signal, several parameters can be estimated, 
which gives detailed information about the 
internal behavior of the process. In this study, after 
configuring the model, the identification data has 
been artificially generated.

After identifying the parameters of the process 
model that generates the residuals, it is essential 
to set up a fault classifier from this data. In the 
present study, the multilayer neural networks have 
been chosen as an efficient and reliable method to 
perform this task. To enable a reliable diagnosis, 
the training of the network must be done by using 
the data of all the possible fault situations. 

In what follows, a brief overview of the principle 
of Artificial Neural Networks will be introduced.

3.2 Artificial Neural Networks

Artificial Neural Networks (ANN) reproduce the 
neural network of the biological brain through 
elementary processing units interconnected 
by weighted connections. Learning involves 
modifying these weights to allow these networks 
to perform specific tasks such as pattern 
recognition, classification, clustering, and 
functions approximation (Ouadine et al., 2018).

Figure 5. Multilayer Perceptron

Multilayer Perceptron (MLP) is the most popular 
ANN. It has been used to identify and classify 
faults into 5 classes. An MLP network includes 
several layers; each is composed of a set of 

neurons. The number of neurons in the input 
and output layer depends on the number of the 
input variables and number of the desired classes, 
respectively. Figure 5 illustrates a typical MLP 
architecture consisting of an input layer, a single 
hidden layer, and the output layer.

The desired output vector Y(y1,y2…yp) of the 
network is calculated from the input vector 
X(x1,x2,…xN) and the intermediate vector z(z1,z2…
zM) by using equations (28a) and (28b):

( )1 1
1 ,

1

N

j i j i j
i

z f w x b
=

= +∑ (28a)

( )2 2
2 ,

1

M

k l k l k
l

y f w z b
=

= +∑ (28b)

where:

	- f1 and f2 are the activation functions such as 
the sigmoid function, the hyperbolic tangent 
and the linear function;

	- w1 is the first matrix weight with 1
,i jw  which 

is the weight between the jth neuron of 
the hidden layer and the ith neuron of the  
input layer;

	- w2 is the second matrix weight with 2
,l kw  

which is the weight between the lth neuron 
of the output layer and the kth neuron of the 
hidden layer;

	-
1
jb  ( 2

jb ) is the bias of the jth neuron of the first 
(second) layer

The learning algorithm indicates how to modify 
the weighting values assigned to the connections 
between the processing units. It is based on 
the minimization of a sum of Mean Squared 
Errors (MSE) between the calculated output and 
the desired output. The fundamental learning 
algorithms for multilayer networks are the Back-
Propagation (BP) (Van Ooyen & Nienhuis, 1992), 
Levenberg-Marquardt, Conjugate Gradient and 
Scaled Conjugate Gradient Back-propagation.

4. Experimental Results 

In this subsection, the steps to follow in order 
to create a quadrotor diagnostic system will be 
introduced. As mentioned earlier, this model 
is composed of the residual generation and the 
decision-making blocks. The approach followed 
to accomplish this work will be presented.



https://www.sic.ici.ro

324 Ahmed Youssef Ouadine, Mostafa Mjahed, Hassan Ayad, Abdeljalil El Kari

4.1 Identification of Hammerstein-
Wiener Model

The first step in building the Hammerstein-
Wiener model is to collect identification data 
from the plant.

Figure 6. Identification of Model

Figure 6 shows the Simulink block used to collect 
the 4 control inputs (Uz, Uφ, Uθ, Uψ) and the 4 
outputs (Z, φ, θ and ψ). The duration of each 
collected signal is 600 seconds with a sampling 
time of 0.1 second.

The data has been divided into two parts, 50% for 
model estimation and 50% for its validation. As 
noted in subsection 2.1, the Hammerstein-Wiener 
model has been used to identify the system. From 
the generated simulation data, several tests have 
been performed by using Identification ToolBox 
of MATLAB, to find the configuration and 
parameters of the optimal model.

To allow a quantitative comparison the fitness 
value indicator ‘Fit’ has been introduced as 
performance criteria for both estimation and 
validation of the data (Equation (29)). 

( ) ( )
( )

2

1
2

ˆ
% 100 1

n

i

y i y i
Fit

y i y=

 −
 = × −∑
 − 

(29)

where:

	- ( ) y i , ( )ŷ i   and  ( ) y i are the systems output, 
the predicted output and the mean systems 
output of the ith value, respectively, 

	- n is the number of samples.

Table 1 summarizes the fitness function values 
of the optimal model for both estimation and 
validation data. Figure 7 presents a comparison 
of the actual outputs ‘Z’ and their estimation by 
the model.

Table 1. Fitness function

Output Estimation Validation
Z 91,15% 90,53%
φ 90,88% 90,08%
θ 92,61% 92,36%
ψ 95,84% 96,27%

It can be seen that the quadrotor system has 
been well identified by the Hammerstein-Wiener 
nonlinear model. The fitness value in this model 
has exceeded the value of 90%. The lowest 
value of this value is recorded on the roll angle 
‘φ’ output. The differences recorded between 
the outputs of the process and their estimates by 
the model remain within the tolerances. This is 
confirmed by the results of the diagnosis by the 
classification of residuals which will be seen in 
subsection 4.2. This model is validated for fault 
detection and isolation.

4.2 Residual Generation and  
Fault Identification

The present study has been limited to simulating 
sensor type defects and it has been assumed 
that there was only one failure at a time. A good 
diagnosis requires an excellent ability to identify 

Figure 7. Estimation of Altitude 
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(classify) defects by the ANN. Therefore, their 
training from a database containing all the possible 
cases has been carried out: system without faults 
and with 4 sensor faults (Z, φ, θ and ψ). 

Abrupt faults of 0.1 m amplitude on the altitude 
sensor ‘Z’ and of 0.1 rad amplitude on the other 
angle sensors have been simulated.

Figure 8 shows how a fault on the quadrotor’s ‘φ’ 
sensor has been simulated on a Simulink model. 
The faults simulation allows the generation 
of the residual signals. The duration of each 
simulation is 100 seconds with a sampling rate 
of 0.1 seconds. 

Figure 8. Simulation of abrupt fault (altitude sensor)

Figure 9 shows the values of the generated 
residual with defects on the sensor ‘ψ’.

Figure 9. Fault in ’ψ’ Sensor

A training database divided into 5 classes 
organized in a matrix composed of 5005 rows and 
4 columns corresponding to the residual values of 
Z, φ, θ and ψ has been obtained.

Before starting the training of the ANN, the rows 
of the data matrix have been normalized to ensure 
that the data is processed with the same priority. 
Then database has been divided into three parts: 
70% for the training, 15% for the validation and 
15% for the test.

The neuron network has been created, trained 
and implemented using the MATLAB Neural 
Network Toolbox. The Scaled Conjugate Gradient 
Backpropagation has been used for training the 
network and the Hyperbolic Tangent Sigmoid as 
transfer function. 

The ANN, used in this work, is composed of three 
layers (input, hidden and output). The number 
of neurons in the input layer is 4 corresponding 
to the number of residuals generated by the 
Hammerstein-Wiener model, 10 neurons are in 
the hidden layer and 5 neurons in the output layer 
corresponding to the number of classes.

Convergence is reached after 67 periods with a 
Mean Squared Error 7MSE  4.2303 1 0−= × . The 
results are very satisfactory with a classification 
rate of 100% for training, validation and test data.

Figure 10 shows the Simulink model of the Fault 
diagnosis system. The simulation has been carried 
out with the following three blocks: Quadrotor 
plant, Hammerstein-Wiener model and Artificial 
Neural Networks block.

In this subsection, the concepts of control and 
diagnosis seen in the previous sections have 
been implemented on a quadrotor. The rate of 

Figure 10. Global diagram of fault detection system
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classification of defects by neural networks 
from residual data reaches a value of 100%. The 
results have been validated to diagnose faults in 
quadrotor sensors.

4.3 Results Discussion

In the present work, a diagnostic system for 
quadrotor sensors has been established. Three 
steps have been followed.

First, the dynamics of the nonlinear system has 
been modeled to synthesize the control laws by the 
sliding mode method. Then, a process model has 
been estimated to generate the residuals. Finally, 
the automatic diagnosis has been carried out by 
the ANN.

The sliding mode control system has been used 
successfully. Much of the work in the field of 
quadrotor control relies on linear representations 
to describe the system. For example, by the PID 
controller (Pounds, Bersak, & Dollar, 2012) or 
Linear Quadratic Regulator (LQR) (Islam & 
Okasha, 2019) methods. The advantage of the 
approach followed in this work compared to 
these methods is that it takes into account the 
nonlinearity of the system, the uncertainties of the 
modeling and the external disturbances.

According to the results obtained in subsection 
2.3, the control system has been able to stabilize 
the quadcopter with the reference inputs 
(Equations 26).

For fault detection, many techniques are available. 
The state observer methods (Frank & Ding, 1997), 
parity equations (Han, Wang & Shen, 2017), 
parameter estimation (Mokhtari & Benallegue, 
2004) are based on linear representations of 
the system. However, due to linearization 
approximations, the generated residuals may not 
provide reliable fault detection information.

To avoid this problem, it has been estimated in 
this work the nonlinear Hammerstein-Wiener 
model to generate residuals. This model takes into 
account the nonlinearities of the actuators and 
the sensors of the quadrotor. The model has been 
validated from the simulation results discussed 
in subsection 4.1.

Finally, to ensure a diagnosis, ANN was 
used for the classification of defects from the 

available residuals. This approach is renowned 
for its efficiency compared to conventional 
methods (Kourti & MacGregor, 1995). Indeed, 
the classification rate is maximum: (100% for 
learning, validation end test data).

5. Conclusion

In this work, a system for diagnosing faults in 
sensors mounted on a quadrotor has been set 
up. This approach is based on a Hammerstein-
Wiener model for generating residuals and 
on neural networks for classification and  
automatic diagnosis.

The choice of the residual generation approach 
based on the Hammerstein-Wiener model is 
justified by its great ability to take into account 
the nonlinearities of the sensors and actuators as 
in the case of the quadrotor. The neural networks 
have been selected because they have proven their 
excellent classification performance in the field of 
fault diagnosis on several applications.

After the synthesis of the control laws by the 
sliding mode method, the parameters of the 
Hammerstein-Wiener model have been estimated. 
Then, to generate residuals, several faults have 
been simulated on the altitude and attitude sensors. 
The residuals allow a comparison of the output 
signals of the real process with the outputs of the 
process model. They deviate from zero if there is 
a fault.

For the automatic diagnosis, the learning of neural 
networks has been carried out from the residual 
database. The optimal neural network classifying 
the defects from residuals is composed of a single 
hidden layer of 10 neurons. Convergence is 
reached after 67 epochs with a mean square error 

74.2303 10MSE −= × . The diagnostic model has 
been validated with a classification rate of 100% 
for training, validation and test data.

In this work, abrupt type faults have been 
simulated. This study can be easily generalized 
to other faults affecting the actuators or the 
process itself and for the case where several 
faults occur simultaneously.
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