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1. Introduction

Industry 4.0 represents an ongoing improvement 
of products and product related services for the 
development of interconnected manufacturing 
systems (Ghobakhloo, 2018). The industrial 
transformation of conventional computer control 
automation into smart devices is accomplished 
through a synergy between mechatronics, sensing 
and computational elements, supported by 
disruptive technologies, such as Cloud Computing 
and Internet of Things (Mehta et al., 2018), (Savu, 
Tomescu & Băjenaru, 2017). 

At the core of the Industry 4.0 platform stand 
Cyber Physical Systems (CPS) or intertwined 
embedded devices that exchange real-time data 
with the surrounding industrial ecosystem, 
which are characterized by an essential degree 
of intelligence and flexibility (Jazdi, 2014), 
(Dumitrache et al., 2017). Solving the complex 
system problems in such environments demands 
the wide-scale adoption of Machine Learning, as 
a fast and flexible way of predicting future events 
based on existing data (Stoica, 2019). 

Smart Retrofitting can be defined as a set of 
methodologies, allowing enterprises to implement 
the concepts of Industry 4.0 by transforming 
conventional shop floor devices into Cyber 
Physical ones with the support of internal or 
external Embedded Systems (Guerreiro et al., 
2018). The process is characterized by a wide 
range of workflows that relate to one another, in 
order to fully address the spatial and temporal 
scales peculiar to hardware and software problems 
(Beghi, Marcuzzi & Rampazzo, 2016). 

Among these workflows, the thermal design 
of Embedded Systems is an essential stage as 
hardware and software are concerned, when 
considering the limiting functional aspects 
involved and the ones related to performance 
(Krishna & Koren, 2017). A wide body of 
literature has analysed the problem of adopting 
optimal cooling solutions that are applicable to 
Embedded Systems (Iranfar et al., 2017), (Cheng 
et al., 2017). Even so, the cross-linkage of 
hardware and software in Smart Retrofitting has 
increased the complexity of the thermal design 
process, which frequently leads to a demand for 
custom-tailored approaches. 

In the past decades, the development of 
computer-aided software has supported the 
complex interdisciplinary thermal design with 
the help of virtual prototyping technologies 
(Hauck & Jha, 2019). The simulation tools rely 
on experimental methods that can be deployed 
for performing both result verification on 
physical prototypes as well as data analytics 
for lowering the computational complexity in 
optimization processes (Marek, 2016), (Lin et al., 
2018). Even so, the existing techniques demand 
extended knowledge of both simulation tools and 
experimental procedures, being less attractive for 
Smart Retrofitting projects. 

The present work proposes a novel approach 
for the thermal design of Embedded Systems 
that combines supervised Machine Learning 
with Lumped Parameter simulations. At first, 
based on the specifications of the heat source 
subjected to thermal design, a range of electronic 
packages of similar configuration is decided 
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upon. Experiments are conducted for capturing 
their thermal behaviour. The resulting knowledge 
is encompassed in a dataset side by side with 
datasheet specifications and performance metrics. 
Machine Learning is deployed in order to estimate 
heat transfer parameters corresponding to lumped 
conductance and capacitance. These two are used 
to parameterize the transient heat transfer analysis. 
Based on the loads imposed by the instruction 
cycles, the maximum temperature over time can 
be predicted, which allows an accurate optimal 
selection of cooling components. 

Experimental procedures for contact and non-
contact temperature measurements for embedded 
electronics are widespread throughout the 
literature (Gaofeng, Xueguang & Qing, 2010). 
The use of Machine Learning for the time-
series prediction of the thermal behaviour of 
semiconductor chips based on Long short-
term memory and Gated recurrent units neural 
networks has recently been discussed (Yang & 
Niu, 2019). Simplified numerical formulations, 
such as the lumped capacitance method have 
long been used for solving complex heat transfer 
problems with the help of computer programs 
(Benjamin et al., 1995). Most recent commercial 
heat transfer solvers implement such procedures in 
the form of user-definable macro elements (LMS 
Samtech, 2015).

Compared to the existing literature, the novelty 
of the aforementioned work consists in the 
development of a fully automated experimental 
procedure that is applicable to the study of 
embedded electronics, comprising multiple 
heat sources in the same case. The training and 
convergence issues peculiar to recurrent neural 
networks are tackled by deploying sequential 
models that predict steady-state heat transfer 
characteristics. A Lumped Parameter simulation 
is developed by using the Machine Learning logits 
and an imposed software resource usage.

This approach can successfully be deployed 
in Smart Retrofitting projects due to its low 
complexity and high reliance on tangible 
quantities. Furthermore, the ability of predicting 
the transient behaviour of embedded heat sources 
is a standpoint for other workflows, such as 
developing and tuning digital controllers (Wang, 
Yin & Xiong, 2010) or optimizing cooling 
components for mass and power saving (Dede, 
Joshi & Zhou, 2015). 

The remainder of this paper is structured as 
follows: the limiting aspects of Embedded 
Systems thermal design are discussed in the 
context of Smart Retrofitting in the second 
section. The original contribution is highlighted 
in the third one by detailing each constitutive layer 
of the proposed approach with emphasis on the 
cross-linkage of the tools involved. A case study 
on the Smart Retrofitting of a computer control 
unit is included in the fourth section to prove the 
accuracy of this approach. Finally, the conclusion 
and a summary of the results are included in 
section five.

2. Thermal Design in Smart 
Retrofitting 

Thermal design can be considered an informational 
subsystem development workflow that involves 
choosing the optimal cooling components for 
active heat sources, such as: microcontrollers, 
CPUs or networking chips. A holistic overview 
of the process is illustrated in Figure 1.

Figure 1. Holistic overview of the Thermal Design of 
Embedded Systems

In the first stage, the spatial scale of the enclosure 
setup is evaluated in terms of available space, 
allowable mass and operational power. The most 
critical aspect of thermal design is related to the 
second stage of the process, which involves the 
evaluation of the total heat transfer rate or the 
amount of power that is dissipated by the active 
heat sources during operation. Due to the fact that 
the software is written on top of the hardware, 
heat generation in embedded systems is a direct 
consequence of the involved computational 
elements combined with the resource scheduling 
algorithms. From this perspective, several 
engineering design loops can be distinguished, 
as frequent changes in hardware, software and 
enclosure layouts are systematically performed. 
For each derived configuration, an optimal 
selection of cooling components is completed, 
which results in a wide range of enclosure, 
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hardware and/or software configurations. Based 
on technological, economical and enterprise-
related aspects, a final solution is adopted. When 
performing smart retrofitting, the flexibility of the 
thermal design process is severely diminished. 
This is due to the fact that most computer-
controlled devices employed in the previous 
industrial transformation are not intended for 
future upgrades. From this perspective, only minor 
adjustments can be performed to the enclosures, 
while the software development is limited to the 
existing information exchange protocols. 

The traditional approach for estimating the total 
heat transfer rate based on datasheet characteristics 
is no longer relevant due to its lack in capturing 
the heat transfer that is specific to each industrial 
environment. A study regarding the estimation of 
the total heat transfer rate for a CPU deployed 
in an embedded application was conducted, by 
comparing the datasheet Thermal Design Power 
(TDP) with experimentally derived values for the 
worst-case scenario of the operational conditions. 
The results presented in Table 1 indicate that 
the dissipated power is 61% lower than the one 
estimated by the manufacturer, which results in 
an excessive dimensioning of the heat sink or 
inadequate power requirements related to the 
cooling fan. 

Table 1. Experimental assessment of the total heat 
transfer rate in an embedded CPU

Scenario Ta 
[°C]

Rth 
[°C/W]

Tmax 
[°C]

Estimated 
TDP [W]

Experiments
25 4.36

67.9 9.85
Datasheet 95.2 16.12

A strategy for adequately evaluating the total 
heat transfer rate in embedded systems is 
the multiphysics approach. By carrying out 
interdisciplinary analyses, the underlying heat 
source electromagnetics, the electric, fluid flow 
and heat transfer domains can be captured, 
which allows for a precise description of the 
thermal behaviour. Even so, the tools and 
resources involved in the process are appealing 
only for high-profile companies, as the cost and 
engineering knowledge demanded for SMEs in 
order to implement such procedures is excessively 
high. Nevertheless, the strategy proves a very 
low flexibility, as it over constrains the Smart 
Retrofitting process.

From these perspectives, a comprehensive 
approach for evaluating the total heat transfer 
rate in embedded systems is required by Thermal 
Design in Smart Retrofitting. 

3. Generalization of Lumped 
Parameter Models Based on 
Machine Learning

In all embedded heat sources, the ability of 
semiconductors to oppose to the flow of energy 
releases heat at the package level and its 
surrounding junctions. At steady-state level, the 
phenomenon can be described by means of basic 
thermal circuits (Intel, 2017):

R T T
Hth

a

f

�
�

max

                                               
(1)

where: Rth is the thermal resistance (°C/W) 
occurring at the junction between two sub-
components, Tmax is the maximum temperature 
(°C), Ta is the ambient temperature (°C) and Hf 
is the total heat transfer rate (W). Developing the 
equivalent thermal model of complex devices 
such as processors or Systems-on-a-Chip (SoC) 
can prove challenging due to the integrated 
circuit design density that causes complex power 
dissipation. The dominant heat flow in such 
components is characterized by the activity of the 
logic gates (Skadron, Stan & Huang 2010):

P CV fdynamic � �2

                                           (2)

where: Pdynamic represents the released dynamic 
power (W), C represents the package capacitance 
(J/K) and f the operating frequency (MHz).

From equations 1 and 2, the thermal behaviour of 
any embedded heat source can be identified based 
on the ability of a package to conduct, store and 
release heat during software execution. Technical 
specifications and resource usage estimations can 
easily be derived based on product manuals and by 
evaluating the embedded software. Even so, every 
heat source has its own heat transfer peculiarities. 
Thus, developing a generalized model requires 
the identification of the relationship between the 
dissipated power and the temperature gradients 
in conjunction with the resource usage. For this 
purpose, the proposed approach is divided into 
three layers that correspond to the deployed 
software tools. A schematic representation of 
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each layer is illustrated in Figure 2, followed by a 
brief description of each constitutive block in the 
following sections.

a) Experimental layer. An initial batch of 
heat sources is decided based on those already 
available at the level of shop floor computer- 
controlled devices (i.e. SoC, microcontrollers 
or CPUs). The aim of this study is to evaluate 
their behaviour when operating under constant 
instruction cycles. Various levels of resource 
usage percentages are considered, which allows 
one to carry out a wide range of measurements. 
The proposed experimental test platform 
comprises contact thermal sensors that are 
attached to the main junctions of the heat source. 
Alternatively, the task can be accomplished by 
means of internally embedded sensors. In this 
way the maximum temperature and time needed 
to achieve steady-state can be evaluated. These 
two characteristics provide a valuable insight in 
load-dependent conductance and capacitance. A 
software procedure for automating the process is 
depicted in Table 2.

Table 2. Experimental procedure

Algorithm for experimental method
procedure experimental (hs, usage, cycle, delay)

for each hs do
while usage < 100

call procedure test (usage, cycle)
call procedure acquisition (delay, cycle)
pause (cycle)
increment usage

end while
end for

for each do
call procedure filter_extract (samples)

end for
end procedure

Embedded electronics such as multiprocessors 
require repeating the experimental procedure 
for each individual heat source and for every 
combination of heat sources (hs). An incremental 
resource usage is decided based on the resolution 
of the experimental system (usage). A standard 
cycle time (cycle) ensures that each acquisition 
takes place until steady-state is reached. The 
same variable can be employed in order to allow 
the device to cool down between measurements. 
On the other hand, a constant delay is applied 
to synchronize the execution of the procedures 
between the experimental and the test platform.

The main procedure calls other three ones. The 
instruction cycle is triggered on the test platform 
(test). This can be accomplished by monotonically 
executing the source code in low-complexity 
embedded systems. However, most recent devices 
used in CPS deploy operating systems, as they 
require various benchmarking procedures for 
adjusting resource usage and processor affinity. 
To remove any residual heat, all of the auxiliary 
functions of those devices must be turned off. 
At the same time, the temperature acquisition 
begins (acquisition), with a specified delay. For 
each completed measurement, a text file with the 
recorded time and temperature values (samples) 
is generated. 

Regardless of the experimental method, the 
coexistence of perturbing factors, such as 
electromagnetic interference or variations in the 
ambient temperature results in noisy temperature 
acquisitions. From this perspective, a digital filter 
(i.e. Savitzky–Golay) is applied on the data points 
(filter_extract). All measurements are assembled 
in a single CSV file. Labels are added at the 
beginning and end of each experimental sequence 
for delimiting the acquisition cycles.

Figure 2. Schematic representation of the proposed approach
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b) Machine Learning layer. The knowledge 
acquired in the experimental layer provides the 
necessary input for developing lumped models in 
the simulation layer. This allows one to estimate 
the transient behaviour of the heat sources based 
on their temperature-dependent heat transfer 
characteristics. Even so, this direct transfer does 
not provide any generalization ability. From this 
perspective, Machine Learning is added as an 
intermediate layer for supporting the knowledge 
development process. In this way, the model can 
adapt to new and unseen heat sources by training 
on existing experimental data. 

A Deep Learning regression model is developed 
by means of a high level application programming 
interface. It comprises a dense neural network that 
can have several non-categorical inputs and one 
single continuous output, two hidden layers being 
defined (Figure 3).

Figure 3. Deep Learning Sequential Neural Network 
with two hidden layers

The inputs applied to the neural network comprise 
the measurement sequences derived from the 
experimental layer. Additional labels are added to 
distinguish each heat source based on technical 
specifications that are in a close relationship with 
the power dissipation of the package. For example, a 
microcontroller chip requires a total of seven inputs. 
The first one is derived from the experimental layer, 
being a continuous value that describes the level 
of the resource usage. For this purpose, the test 

procedure can be carried out based on a variable 
resistance circuit applied to the microcontroller 
output pins, the obtained values resembling the 
resistance threshold. The other six features are 
extracted from the datasheet of the product, providing 
technical specifications that encompass relevant heat 
generation characteristics: manufacturer, program 
memory size, CPU Speed, SRAM, number of timers 
and operating voltage. An additional feature is added 
comprising scores of standardized benchmarks 
that can capture the computational efficiency of 
the device (i.e. Newton’s Pi approximation). One-
hot encoding is applied to the inputs to convert 
categorical features to numerical ones. Furthermore, 
min-max normalization is deployed to ease the 
training process.

In the output layer, the label corresponds either 
to the temperature of the heat sources embedded 
in the package or to the time required to achieve 
the steady-state temperature. The values are 
extracted from the measurements carried out in 
the experimental layer, being left unnormalized.

The solution that yielded the best results for a wide 
range of heat sources employed at least 16 neurons 
for the hidden layers. Rectified Linear Unit (ReLu) 
is used as activation function. Root Mean Square 
Propagation (RMSProp) optimization is deployed 
for adjusting the weights. A learning rate of 0.01 
is defined in order to control the weights with 
respect to the gradient loss. Mean Squared and 
Mean absolute error loss functions are employed 
as model convergence metrics, 1000 Epochs 
being performed. These settings cause the training 
process to take a significant amount of time. Even 
so, it provides a fail-safe approach considering the 
small size of the datasets employed. Alternatively, if 
overfitting occurs, early stopping can be activated. 
Regardless of the adopted hyperparameters, the 
ability of the model to perform good predictions 
lies in the consistency of the dataset definition. A 
more complex example of labelled data used for 
multi-core CPUs is illustrated in Figure 4.

Figure 4. Example of a dataset used for multi-core CPUs with a selection of features and labels 
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c) Simulation layer comprises a Finite Element 
Analysis (FEA) model. The computation of 
temperature distribution and heat flow adapted 
from (Zienkiewicz, Taylor & Zhu, 2005) is 
described as:

� �c T
t

T Qi ij j
�
�

� � �� � �
                                  

(3)

where r is the specific mass, c the specific heat, 
T the temperature, l the conductivity and Q the 
heat flux. 

Instead of solving the complete heat transfer 
equations, the Lumped Parameter approach 
considers bodies without significant thermal 
gradients for nodal capacity, while 1D bars 
materialize the thermal interface conductance. 
2D Skin elements are employed for modelling 
the package where each embedded heat source 
is formalized as a rectangular plate. Lead frame 
thermal resistance is modelled by means of 
coupled degrees of freedom (DOF). Contact 
elements are included so that the heat transfer path 
of the printed circuit board (PCB) is fully defined. 
The resulting macro element (Figure 5) requires as 
input the temperature-dependent conductance and 
capacitance, predicted in the Machine Learning 
layer. All other boundary conditions (i.e. surface 
convection) are considered constant.

Figure 5. Representation of the macro element

4. Evaluation of the Proposed 
Procedure for an Existing 
Computer Control Unit

A case study on the Smart Retrofitting of an 
existing computer control unit is carried out. An 
internally deployed Embedded System including 
a dual core CPU is added to exchange real-time 
information with the existing hardware.

In this new setup, the processor is the main source 
of power dissipation, demanding a thermal design 
solution. The experimental setup is illustrated in 
Figure 6. 

Figure 6. Experimental setup

The study is performed for a batch of 30 
heat sources having a similar architecture to 
the embedded CPU, based on a selection of 
characteristics related to the thermal behaviour 
of the package involved, such as: manufacturer, 
operating frequency, size of the die and lithography 
technology. The resulting dataset comprises 10 
feature columns: 6 technical and performance 
characteristics, 2 features specifying on which 
core the load is applied and 2 features which 
define the software usage. 80% of the dataset 
is considered for training the neural network, 
while the remaining 20% is used for validating 
its predictions.

The regression model is developed with the support 
of TensorFlow and Keras Deep Learning library.

The mean absolute error for 1000 Epochs in the 
case of the package temperature (TCP) is depicted 
in Figure 7 for the training set (Train Error) and 
the validation set (Val Error). 

Figure 7. Learning curves for train set (Train Error) 
and validation set (Val Error) Mean Absolute Error

The graph indicates that the convergence of the 
model improves with the number of epochs. 
Furthermore, the trend of both curves is 
comparable, meaning that overfitting is avoided. 
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In the validation set, the average prediction error 
is around +/- 0.4°C which provides a reasonable 
level of accuracy. 

The Lumped Parameter model is completed using 
MSC Patran FEA software, while the solution is 
carried out using LMS SAMCEF Mecano Thermal 
solver (Figure 8). 

Figure 8. Fringe plot of the temperature distribution 
at steady-state

To test the overall accuracy of the approach, an 
embedded source code is executed to generate 
a transient resource usage on both cores of the 
CPU. An external thermocouple along with two 
sensors embedded in the die of the processor 
capture the temperature increase from the ambient 
at the main junctions. 

An identical test cycle is considered in the Lumped 
parameter model, so that the resulting temperatures 
can be compared for both experiments and 
simulations considering the two cores and the 
package that embeds them (Figure 9).

Figure 9. Temperature increase from the ambient for 
all cores (CPU 0 and 1) and the embedding package 

(Pkg) for both experiments and simulations

Experimental and simulation curves emphasize 
a similar temperature profile for all time steps, 
proving the ability of the proposed approach to 
approximate the conductance and capacitance of 
individual cores, as well as the package. In this 
regard, a mean absolute error of 0.34°C increase 
from the ambient was achieved for the first core, 
a 0.32°C increase from the ambient for the second 
one and a 0.17°C increase from the ambient for the 
package. The absolute error recorded at each time 
step for both experiments and simulation results is 
presented in Figure 10 as the average one achieved 
for all heat sources. 

Figure 10. Average Error percentage related to 
the predicted temperature of the two cores and the 

package for each time step

The accuracy of the proposed model is low for 
the first recording intervals. This can be explained 
mainly by the limitations of the presented approach 
to capture thermal gradients when the heat sources 
are operating at low power. To overcome such 
issues, high-precision temperature acquisition 
methods can be deployed. Other sources of errors 
are related to the randomness peculiar to Machine 
Learning, as well as to the approximate methods 
deployed in the FEA. 

Even so, the most important stage of the process is 
the evaluation of the total heat transfer rate. In this 
respect, a good match of the temperature increase 
from the ambient one can be noticed for both 
experimental and simulation attempts, proving 
good prediction accuracy.

5. Conclusion

This paper tackles the issues of Thermal Design in 
Smart Retrofitting by generalizing the behaviour 
of heat sources deployed in Embedded Systems 
with the support of Machine learning regression 
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models. The proposed approach involves 
predicting heat transfer characteristics that 
resemble the conductance and capacitance of a 
package. These logits are further used in Lumped 
parameter simulation models. Best practices are 
presented throughout the work for easing the 
implementation process. A case study regarding 
the Smart Retrofitting of a computer control unit 
is provided to prove the accuracy of the presented 
approach. The results succeeded to capture the 

transient temperature for the two cores of the CPU 
as well as the entire package with a maximum 
mean absolute error of 0.34 °C increase from the 
ambient. The approach is straightforward and can 
be further used for the evaluation of the total heat 
transfer rate based on the maximum temperatures 
over time. Thus, the selection of optimal cooling 
components can be performed by maintaining a 
subtle balance between the resources involved and 
the accuracy of the procedure. 
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