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1. Introduction

Multi-robot coordination and collaboration 
problems are challenging topics which have been 
studied intensively over the last decades. Many 
problems such as search and rescue, patrolling, 
humanitarian demining and surveillance can be 
efficiently solved when employing more agents.

In the specialized literature there are many recent 
papers related to the coverage topic. In the research 
paper (Tardós et al., 2018), a multi-robot team 
consisting of ground and aerial vehicles performs 
area monitoring task. The ground robots follow 
aerial robots which are the targets. A Lloyd-based 
strategy is used. Simulation and experimental 
results are given. The work (Pierson et al., 
2017) proposes an algorithm which considers 
actuation and sensing performance parameters in 
a coverage collaboration algorithm. The algorithm 
automatically compensates the variations among 
the robots by using the online method and by 
learning the performance variations without prior 
knowledge. Experimental results are given. 

The Hopfield Neural Networks are also widely 
used for the robotic systems. In the paper 
(Atencia, Joya & Sandoval, 2004), an online 
identification method for non-linear systems with 
Hopfield networks is proposed. In the case of 
constant parameters and time-varying parameters 
to a bounded neighbourhood, the convergence 
is successful. The proposed method is used 
in the identification of a robotic system with a 
flexible link. Simulation results are given. In 

(Alonso, Mendonça & Rocha, 2009), the online 
parameter estimation with Hopfield networks is 
proposed for a robotic system. The stability and 
robustness analysis are given, and the results 
are experimentally verified. In order to mention 
about the control and estimation by using neural 
networks, the work (Jin et al., 2018) gives a review 
about the utilization of neural network controllers 
in the literature. In the work (Chen et al., 2020b), 
a method for simultaneous identification, tracking 
control and disturbance rejection by using Zeroing 
Neural Networks is proposed with applications to 
robot manipulators.

In the paper (Das & Ghose, 2015), a new approach 
for multi-agent consensus problem is introduced. 
The authors propose a linear programming based 
efficient method including an experimental 
verification with three robots. The work (Su & Lin, 
2015) proposes a new distributed consensus control 
approach for general higher order linear systems. 
In the work (Liu et al., 2015), a synchronization 
analysis of a class of multi-agent systems is 
presented by giving conditions for synchronization. 
The work (Dong et al., 2016) gives a study of time-
varying formation tracking of second order multi-
agent systems. They show numerical simulation 
and experimental results taken with one leader and 
three follower quadrotors. The paper (Zhao et al., 
2017) proposes an general approach to construct 
coordination control laws for multi-agent systems 
under motion constraints. 
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In the work (Alonso-Mora, Beardsley & Siegwart, 
2018), a dynamical collision avoidance approach 
among the agents is proposed. The distributed 
and centralized variants of the method are also 
introduced. The work (Zhang et al., 2018), a 
cooperative localization method among air and 
ground robots is presented. The aerial vehicles 
map the environment and share the map with the 
ground vehicles. The ground vehicles estimate 
their pose with respect to aerial vehicles.  The 
work (Sartoretti et al., 2019) introduces a method 
that uses the asynchronous advantage of the actor-
critic (A3C) algorithm for learning decentralized 
control policies. The method is utilized for single 
articulated robots. The paper (Lin & Ling, 2020) 
gives the results of a proposed method about a 
model based event triggering approach with 
dynamical quantization for multi-agent systems.

In the paper (Chen et al., 2020a), the authors 
propose a new method for finding unexpected 
faults on communication channels of multi-agents 
systems to improve the synchronization between 
the agents. A novel broadcast control law for 
multi-agent coordination problem is developed 
in (Ito et al., 2020) where a low communication 
volume is utilized for global coordination. The 
paper (Lin et al., 2017) presents a new method 
for multi-autonomous underwater vehicles utilized 
for tracking the targets in the sea autonomously 
and in coordination. The paper (Castaño et al., 
2019) presents a cooperative method for multiple 
unmanned aerial vehicles as a part of a competition 
challenge where the vehicles search, pick up and 
drop the objects in the environment.

The contribution of the paper is that the 
collaboration is performed among the agents 
according to their actuation performances (Pierson 
et al., 2017) in which the Hopfield Networks 
(Alonso, Mendonça & Rocha, 2009) are utilized as 
parameter estimator and energy-efficient optimal 
coverage control (Di Perna & Rodrigues, 2017) 
laws which enable the algorithm to make a trade-
off between the energy consumption of the agents 
and the coverage time. This is the first work in the 
research literature that uses multi-robot coverage 
collaboration according to the different actuation 
capabilities and energy-efficient coverage control 
laws at the same time. Also, the utilization of 
Hopfield Networks provides a better convergence 
rate and disturbance rejection capability in the 
collaboration algorithm compared to the method 
utilized in (Pierson et al., 2017).

The paper is structured as follows. The first 
section gives the introduction. The second part 
presents the preliminary information about the 
problem. The next section presents the coverage 
collaboration algorithm. In the fourth section, 
Lyapunov-type stability analysis is presented, 
and the necessary proofs are provided. Section 
five presents the simulation results obtained by 
employing MATLAB. In the next section, the 
experimental results obtained by using ROS are 
given. The last section summarizes the conclusions 
of the paper.

2. Problem Formulation

Let us consider m non-holonomic mobile robots 
spread over an environment. The aim is to drive 
the agents to the optimal coverage configuration by 
compensating their different actuation capabilities. 
The objective is to perform collaboration by 
assigning wider areas to the robots with stronger 
actuation capabilities and smaller areas to the 
ones with weaker actuator performances. This 
goal is achieved by estimating the performance 
parameters online with HNNs and then calculating 
the weights for the Power Diagram. The calculated 
weights are passed into the PD so that the 
regions are assigned to the agents according to 
the performances. After calculating the dynamic 
Power Voronoi regions and the centroids of the 
agents, the non-holonomic control law drives the 
robots to the optimal configurations.

Figure 1. The robot position ip  and centroid 
iVC  

courtesy of (Turanli & Temeltas, 2019) 

In the next sections, the definitions of the Power 
Voronoi Diagrams, Energy-Efficient Coverage 
Optimal Control, and Hopfield Neural Networks 
will be given.

2.1 Power Voronoi diagrams

Let the space be defined as NS ⊆   which is a 
bounded environment. Here, N is the number of 
dimensions. A Power Voronoi region iW  can be 
given as below (Okabe, 1992):

22{ | , , 1, 2,... }i i i j jW p S p p w p p w i j j m= ∈ − − ≤ − − ≠ =    (1)
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Here, iw and jw  are Power Diagram weights 
used for changing the area of the corresponding 
regions and ip is the position of the thi  agent. In 
this work, Voro++ library (Rycroft, n.d.) was used 
for drawing the power diagrams.

2.2 Energy-efficient Coverage Optimal 
Control

The energy-efficient coverage optimal control 
provides a trade-off between the energy 
consumption of the agents and the coverage time 
by adjusting two parameters in the control law. 

The optimal coverage control problem can be 
described by the cost function minimized by using 
an energy-efficient optimal control law derived 
analytically (Di Perna & Rodrigues, 2017). The 
cost function can be given as below:

2
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1
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= − +∑∫ ∫               
(2)

Here, m is the number of the agents, is  and ir  
denote the weighting coefficients for coverage 
and energy terms, respectively. Also, ip   gives 
the position of the thi  agent and iu  is the control 
inputs of the thi  agent according to the holonomic 
model given in (6).

As the robot and the centroid positions illustrated 
in Figure 1, the mass 

iWM and centroid 
iWC  of the 

Voronoi region i  can be shown as follows (Luna 
et al., 2013):
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The system model and the energy-efficient optimal 
coverage control law are defined as shown below 
where ip  is the position vector of the agent i:

.

i ip u=                                                               (6)
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                                            (7)

Equation (7) presents the control law obtained by 
minimizing the cost function in (2) for the agent i .

2.3 Hopfield Neural Networks

The Hopfield Neural Network is an online 
parameter estimation technique utilized to 
estimate the actuator performance parameters 
as proposed in (Alonso, Mendonça & Rocha, 
2009). The HNN is a non-autonomous non-linear 
dynamical system which provides the time-
evolving estimation of the system in continuous 
time. The parameterization of the system is given. 
The approach is chosen since limitations in 
accuracy can occur in other neural networks based 
approaches such as classification-based methods.

Consider a Hopfield-network consisting of M  
neurons. Here, ix  denotes the total input of the 
neuron i , js gives the output of the neuron j , ijW  
shows the weight corresponding to the connection 
from neuron j  to neuron i  and iI   represents the 
bias of the neuron i .

( ( ) ( ) ( ))dx W t s t I t
dt

= − +
                                    

(8)

( )( ) tanh( )x ts t α
β

=
                                             

(9)

The matrix representation of the HNN is given in 

(8) and (9) where , 0α β > .

3. Multi-Agent Coverage Control 
with Different Actuation 
Capabilities

This part gives the parameter estimation with 
HNNs and estimation of the PD weights. 

Here, the variations in the actuator performances 
of the individual agents are defined. The presence 
of strong motors and good tire contacts can be 
considered strong actuation performances. On the 
other hand, weak motors and slippery terrain can 
result in weak actuation performances.

In this work, the point offset controller from 
(Michael & Kumar, 2009), (Pierson et al., 2017) 
is used to transform the holonomic control inputs 
into the non-holonomic linear ( v ) and angular (ω ) 
velocities with respect to P . Here, the variable θ  
gives the yaw angle and P  is the reference point 
with a distance l  to the center of the robot.
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θ θ
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(10)
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The transformation in (10) with the control 
law given in  (7) enables the agents to perform 
the autonomous operation. So, the agents can 
be driven to the centroid locations in order to 
complete the energy-efficient collaborative 
coverage task.

3.1 Estimating the Performance 
Parameters with HNNs

Each agent learns its own actuation performance 
vector which is not known beforehand in order 
to perform the collaboration. For this purpose, 
the system parametrization for the HNN 
algorithm will be derived.

The system in (6) is used together with the 
control law in (7) to estimate the parameters 
of the agent i . For this purpose, the system is 
written in linear in the parameters (LIPs) form. 
The closed-loop system equation is:

.
( ) ( )

i i i i
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i
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r

= − = −
                 

(11)

The velocity vector 
.

ip  can be converted into body 
coordinates by using the transformation where 

,zR θ  is the rotation about z  axis and ,i bp  is the 
body velocities of the agent i :
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Taking the first row yields the equation below 
since the lateral body velocity ,i by  is equal  
to zero:
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The LIP form can be written as below:
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The weight matrix and bias terms can be calculated 
as below:

TW A A=                                                         (18)
TI A y= −                                                           (19)

Then, the estimated parameter vector ˆ
iK  is 

obtained by using the estimated parameter êstθ  
as given in the following equations:

ˆ ( )est s tθ =                                                            (20)

1ˆ
ˆi
est

K
θ

=
                                                          

(21)

By using (8), (9) along with (14), (15), (18) and 
(19), the HNN estimates the parameters of the 
agent online whose closed-loop dynamics are 
given in (11). Then, the resulting parameters can 
be obtained by using equations (20) and (21).

The implementation of equation (8) can be done 
by using numerical integrators.

3.2 Estimating the PD Weights of the 
Agents

The Power diagram is utilized to partition the 
workspace and adjust the regions of individual 
agents with respect to their actuation performance 
vectors. This section will present the estimator 
equations based on (Pierson et al., 2017) which 
are used to calculate the PD weights from the 
actuation performance estimation vector ˆ

iK .

After ˆ
iK  is calculated by using (20) and (21), 

the values of the parameter vector ˆ
iK  are passed 

into the weight estimator. The output of the weight 
estimator is given to the PD algorithm.

The adaptation law (weight estimator) is given  
as below:

ˆ( )i i perf iw f Kκ = −                                        (22)

( )
i

i i j
j N

w kω κ κ
∈

= − −∑

                                  
(23)

where kω  denotes a positive coefficient, 
iw  gives the weight of the agent i  and the 

neighbours are represented by the variable iN . 
The desired performance function ˆ( )perf if K  is 
taken as ˆ ˆ( )perf i if K K=  in the simulations and 
experiments.

The communication among the robots is done only 
with the PD neighbours.

After ˆ
iK  is calculated for the agent i , the PD 

weights are estimated using equations (22) and 
(23). In the implementation, the integrations are 
converted into numerical trapezoidal integrations.
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4. Stability Analysis

This part of the paper provides the Lyapunov-
type proof for the control and estimation 
laws. First, the definition of a Lyapunov 
function candidate is given as shown below 
for 3 : ( , )M

estV c cθ + − →  where c  is a  
positive constant:
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where , , , , , ,
ˆ

est i j est i j est i jθ θ θ= − . For the parameter 
estimator of the thi  agent, the variable , ,êst i jθ gives 
the output of the thj  neuron. 

Next, the state vector is defined as 
( ),i

T

i W i i est ix C p w θ= −  . It can be easily 
noticed that  ( 0) 0V x = = . In order to investigate 
the positive definiteness of ( )V x , the positive 
definiteness of the 1( )V x , 2 ( )V x  and 3( )V x  
should be proven. The 1( )V x  is clearly positive 
definite. The 2 ( )V x  is positive definite since the 
weights of the agents are positive. Also, the 3( )V x  
is guaranteed to be positive definite as proven in 
(Alonso, Mendonça & Rocha, 2009).  So, it can 
be concluded that ( ) 0V x > .

The time derivative of the Lyapunov function 
yields the first term:
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1
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The first term 1V  is negative semi-definite since 
i

i

s
r

 and 
iWM are positive.

Also, the second and third terms are shown to be 
negative semi-definite as demonstrated in (Turanli 
& Temeltas, 2019). The details are omitted here. 
Theorem 1 from (Turanli & Temeltas, 2019) shows 
that for an interval t I∈  which is non-degenerate, 
the *

, 0est iθ =  is a unique equilibrium point. 

Corollary 1: ( )i perf iw f K−  has the same value 
for all agents in the steady-state (Pierson et al., 
2017) as shown in (32):

ˆlim( )i it
K K

→∞
=

                                                
(31)

lim( ) ( ) ( )i j perf i perf jt
w w f K f K

→∞
− = −

                (32)

The LaSalle’s Invariance Principle will be used 
for the proof. It can be concluded that 0V =
occurs only when 

iW iC p= and , 0est iθ = . The 
equilibrium points were shown to be unique. If 
the system reaches the given equilibrium points 
the tracking and estimation errors converge to 
zero. The result is that this set is an invariant 
set when the control and estimation laws are 
considered. Thus, the system is shown to be 
globally asymptotically stable.

5. Simulations

In this section, MATLAB simulations are given 
with a map of 5x5 meters. The parameters 
used in the simulations are given as 0.2kω = , 

0.11robotr = , 0.1l = , 6000α =  and 1β = . Also, 
the vertices of the map are given as (0.625,0), 
(3.125,0), (5.0,4.375), (3.75,5.0) and (0,4.375).

The parameter kω  gives the convergence rate of 
the weight estimator. Also, α and β  determine the 
convergence rate of the Hopfield Network estimator.

In the first simulation performed with 6 agents, 
the actuation performance of the first agent has 
a performance degradation of 10 percent. In 
Figure 2, the coverage cost is illustrated. The 
coverage cost settles to its local minima in the 
end configuration. Figure 3 depicts the HNN 
parameter estimation errors. Asymptotical 
convergence to zero is achieved for all agents as 
given in the stability proof. In Figure 4 the value 
of ˆ( )i perf iw f K−  is the same value among all the 
agents as given in Corollary 1.

Figure 2. The value of cost function J
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Figure 3. The parameter estimation errors

In Figure 5, the trajectories of the agents with the 
PD regions at the end configurations are illustrated. 
The red circles show the end configurations while 
the initial configurations are represented by the 
black markers.

In Table 1, three simulation results are 
summarized. In the first simulation, the value 
of parameters /i is r  has been taken as 1.0 and 
actuation performances have been kept at 1.0 
(100%). As the  ir  parameter increases in second 
and third simulations, the energy consumption 
is reduced accordingly, and the coverage  
time increases.

Figure 4. The value of ˆ( )i perf iw f K−

Figure 5. The trajectories of the robots with Power 
Voronoi regions

In Table 2, the first, fourth and fifth simulation 
results are given. In the first simulation, the 
value of the parameters /i is r  has been taken as 
1.0 and actuation performances have been kept 
at 1.0, similarly. As is  parameter decreases 
in fourth and fifth simulations, the energy 
consumption is reduced accordingly, and the 
coverage time increases.

Table 3 shows the resulting region ratios in 
simulations 1, 6 and 7. In the first simulation, 
all the values of the performance parameters 
have been taken as 1.0 which corresponds 
to 100% actuation capability. In the second 
simulation, the first agent has had a performance 
degradation of 10% and in the third simulation, 
the performance of the second agent has been 
decreased by 20%. As seen in Table 3, in the 
sixth simulation the first agent has a region ratio 
lower than that of all the other agents. Similarly, 
in the seventh simulation the second agent has 
a region ratio which is lower than all the other 
agents. The region ratios are represented so that 
the value 1.0 corresponds to an area of 100% 
from the workspace. Note that as seen in Figure 
5, the convex shape of the environment leads to 
empty regions in the workspace.

Successful results have been obtained with 
the MATLAB simulations obeying the  
stability analysis.

Table 1. Change of energy consumption with respect to ir

Simulation # /i is r Actuation Performances Coverage Time [s] Energy Consumption

1 1.0 / 1.0 All are the same (1.0) 93.6 0.2766
2 1.0 / 2.0 1.0 / 2.0 123.5 0.1954
3 1.0 / 4.0 All are the same (1.0) 168 0.1378



	 185

ICI Bucharest © Copyright 2012-2020. All rights reserved

6. Experiments

The ground experiments have been conducted in ITU 
Robotics Laboratory with two Turtlebot 2 robots. First, 
a simulation has been performed in the ROS/Gazebo 
multi-robot simulator and the same ROS node has been 
used in experiments. Second, seven experiments have 
been performed in the laboratory environment. The 
robots have been placed at known initial locations and 
the ROS nodes have been started remotely with a start 
service at the same time. The data have been collected 
remotely by using rosbag and the bag files have been 
processed by using a MATLAB script. 

The ROS implementation package consists of a 
coverage ROS node written in C++. The agents 
communicate with each other by using the Power 
Diagram neighbours.

The algorithm in the coverage ROS node starts 
by calculating Power Voronoi regions by using 
initial positions and weight values. Then, the HNN 
algorithm estimates the parameter vector of each 
agent. The weight estimator calculates the Power 
Voronoi weights by using the parameter vector 
and the desired performance function. After, 
the calculated weights are utilized in the Power 
Diagram to assign the regions to the agents. By 
using the Power Diagram, the centroid locations 
are found, and each robot calculates its own control 
input by using the control law. So, the robots 
achieve the optimal coverage configuration by 
running the algorithm online and in a decentralized 
way. In the end, the regions are assigned to the 
agents according to their actuation performances.

In the experiments, the two Turtlebot 2 robots as 
shown in Figure 6 run the Coverage node in a 

decentralized manner and perform energy-efficient 
collaboration in a 2x2 meters environment. For 
localization, the SLAM gmapping ROS node has 
been used in conjunction with Hokuyo UTM-
30LX laser scanners and wheel odometry.

Figure 6. The environment in which the experiments 
were performed

The communication among the agents has been 
accomplished over a Wi-Fi network. Two ROS 
slave Turtlebot 2 robots have been connected to the 
same ROS master laptop over the communication 
link. The robots have been equipped with laptop 
computers running Ubuntu, ROS Indigo and the 
coverage ROS node in real-time.

In the following paragraphs, the results regarding 
the ROS experiments are shown. The first result 
set corresponds to the first experiment in which the 
performance of the first agent has been degraded 
and the resultant plots regarding the algorithm are 
depicted. Then, the energy-efficient optimal controller 
parameters have been changed and the coverage 
time along with the energy consumptions have been 
investigated. Finally, the actuation performances of 
the first and second agents have been degraded by a 
certain amount and the results are shown.

Multi-Robot Energy-Efficient Coverage Control with Hopfield Networks

Table 2. Change of energy consumption with respect to is

Simulation # /i is r Actuation Performances Coverage Time [s] Energy Consumption

1 1.0 / 1.0 All are the same (1.0) 93.6 0.2766
4 0.75 / 1.0 All are the same (1.0) 105.2 0.2392
5 0.125 / 1.0 All are the same (1.0) 266.9 0.0974

Table 3. Change of region ratios with respect to actuation performances of the agents

Simulation # /i is r Actuation Performances Region Ratios

6 1.0 / 1.0 0.9, 1.0, 1.0, 
1.0, 1.0, 1.0

0.0935, 0.1113, 0.1175, 
0.1280, 0.1313, 0.1181

7 1.0 / 1.0 1.0, 0.8, 1.0, 
1.0, 1.0, 1.0

0.1512, 0.0585, 0.1570, 
0.1358, 0.1021, 0.0970
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The energy-efficient coverage cost function is 
minimized as shown in Figure 7. In Figure 8, 
asymptotical convergence for the parameter 
estimation errors is achieved. Figure 9 illustrates 
the value of i perfw f−  which has the same value 
among the two agents as given in Corollary 1.

Figure 7. The value of cost function J

Figure 8. The parameter estimation errors

Figure 9. The value of ˆ( )i perf iw f K−

The weights of the agents with respect to time 
are shown in Figure 10. A lower weight value for 
the first agent is obtained since it has an actuation 
performance degradation of 10%. The algorithm 
has automatically compensated the performance 
degradation of the first agent relatively by 
assigning a lower weight value and area from the 
workspace to the agent one.

Figure 10. The weights of the agents

In Figure 11, the trajectories of the agents in the 
experiment are shown. Each agent calculates its 
centroid location from its Power Voronoi region 
and executes the point-offset control law. 

Figure 11. The trajectories of the agents

In Table 4, the coverage time of the agents increases 
as the parameter ir  increases. Meanwhile, the 
energy consumption decreases since the parameter 

ir  affects the energy consumption in the coverage 
optimization formulation. 

In Table 5, the coverage time increases with 
the decrease of the parameter is . At the same 
time, the energy consumption decreases. In  
Table 6, as the actuation performance degrades, 
the resultant region ratio corresponding to agent 
1 decreases. The reason is that the performance of 
the first agent has been degraded in experiments 6 
and 7 by 10% and 20%, respectively.

ROS/Gazebo simulation video can be seen at:
	- https://web.itu.edu.tr/turanlim/video/sim-

20200221.mp4

Two videos of the experiments can be seen at:
	- https://web.itu.edu.tr/turanlim/video/exp-

20200123.mp4
	- https://web.itu.edu.tr/turanlim/video/exp-

20200124.mp4
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The experiments show that the algorithm is 
capable of performing energy-efficient optimal 
coverage and collaboration among the agents.  
The energy consumption of the agents can be 
adjusted by making a trade-off between energy 
consumption and the coverage time. At the 
same time, the algorithm can assign the regions 
of the robots by learning their own actuation 
performances by giving larger regions to the 
stronger robots, and smaller regions to the weaker 
ones. The HNN algorithm can perform a fast and 
robust estimation which can be adjusted with its 
convergence parameter. 

When compared to the method utilized in (Pierson 
et al., 2017), the proposed method has a faster 
convergence rate which is about 20 seconds at 
best while the compared method has converged 
in more than 100 seconds in the experiments. The 
convergence rate depends only on the velocities 
of the robots and convergence rate parameter. In 
the method utilized in the compared paper, it is not 
possible to adjust the convergence rate by using 
parameters in the proposed method. 

7. Conclusion
The paper presents the results of an energy-
efficient multi-agent collaboration method. The 
proposed algorithm automatically compensates 
different actuation capabilities of the agents by 
changing their regions. The performances of the 
agents are not known beforehand.

The simulations were conducted in MATLAB and 
ROS/Gazebo environments. Also, the experiments 
were performed in ITU Robotics Laboratory 
with two Turtlebot 2 agents equipped with laser 
scanners. The localization information was 
obtained from the ROS gmapping algorithm. The 
ROS nodes run real-time on the laptop computers 
of the robots.

The results of the energy-efficient coverage 
control are shown along with the results of the 
main collaboration algorithm. Simulation and 
experimental results show the efficiency of 
the proposed method. The HNN proves better 
performance when compared to the method 
utilized in (Pierson et al., 2017) with an adjustable 
and better convergence rate.

Multi-Robot Energy-Efficient Coverage Control with Hopfield Networks

Table 4. Change of energy consumption with respect to ir

Experiment # /i is r Actuation 
Performances Coverage Time [s] Energy 

Consumption
1 1.0 / 1.0 0.9, 1.0 37.76 0.089034
2 1.0 / 2.0 0.9, 1.0 47.66 0.054833
3 1.0 / 4.0 0.9, 1.0 70.63 0.043552

Table 5. Change of energy consumption with respect to is

Experiment # /i is r Actuation 
Performances Coverage Time [s] Energy 

Consumption
1 1.0 / 1.0 0.9, 1.0 37.76 0.089034
4 0.75 / 1.0 0.9, 1.0 40.25 0.072635
5 0.5 / 1.0 0.9, 1.0 47.37 0.058017

Table 6. Change of region ratios with respect to actuation performances of the agents

Experiment # /i is r Actuation 
Performances

Region 
Ratios

6 1.0 / 1.0 0.9, 1.0 0.4, 0.6
7 1.0 / 1.0 0.8, 1.0 0.35, 0.65
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