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1. Introduction

Since the late 1960s, the lower limb exoskeleton 
has attracted extensive attention all over the world. 
With the overview of currently available lower limb 
exoskeletons, the wide application of lower limb 
exoskeleton is categorized into three types: gait 
rehabilitation (van Kammen et al., 2016, Zeilig et 
al., 2012, Simbolotti et al., 2016), walking assistance 
(Esquenazi et al., 2017, Zhang et al., 2017), and 
human augmentation (Dumitru et al., 2018). 

In the rehabilitation exoskeleton research field, 
the LOKOMAT (van Kammen et al., 2016), 
ReWalk (Zeilig et al., 2012), ESKO (Simbolotti 
et al., 2016) and other medical devices have been 
designed for gait disorders caused by strokes, brain 
injuries, or spinal cord injuries in order to enhance 
their lower extremity gait function. As the current 
key technology of rehabilitation exoskeleton, the 
rehabilitation exoskeleton gait research consists of 
the gait planning and gait controlling fields.

In the gait planning research, one of the common 
typical methods is inverse kinematics analysis 
technology. The kinematics analysis technology 
requires establishing kinematic model and 
planning swing foot trajectory, the more important 
is to design CoG motion (Bajrami et al., 2016). To 
obtain the CoG motion, the cart-table model, the 
three dimension Linear Inverted Pendulum Model 
(3D-LIPM) (Kajita et al., 2003,  Sato et al., 2011) 
has been researched firstly, then the liquid model 

is proposed to simplify the biped exoskeleton  
(Chafroud et al., 2017). 

In order to achieve a stable walking, the ZMP 
theory (Zhan et al., 2013), which is utilized in 
biped robot gait generation applications, can be 
integrated in the walking stability. In (Kajita et al., 
2003), the CoG motion is designed for its balance 
to satisfy the given ZMP reference trajectory using 
preview control method. It can utilize future ZMP 
reference to design current CoG motion in real 
time. In addition, to search the maximum ZMP 
margin on the ground, the optimal algorithm e.g. 
PSO, GA (Fu et al., 2011, Farzadpour & Danesh, 
2012) have been applied into the hip/knee joint 
motion using iterative calculation.

To maintain the optimal ZMP stability, especially 
facing the unexpected walking surroundings, 
some solution methods are regulating the foot 
landing position, adjusting the ankle joint torque 
and compensating the joint motion (Zhan et al., 
2013, Ding et al., 2015, Sato et al., 2008), and 
these have achieved better applications. 

In order to describe the patients walking 
characteristics and estimate his/her motion 
intention, the human-data capturing and learning 
technology attracts more interests from experts in 
gait planning research (Cannell et al., 2018), and 
the technology requires collecting and learning 
normal human motions.
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For mild hemiplegia patients, one leg has normal 
walking ability and the other leg has walking 
dysfunction. To solve this, the online trajectory 
generation method that can be applied for 
hemiparetic subjects has been proposed (Vallery 
et al., 2009). The desired states for one disabled 
leg are generated online based on the other healthy 
leg’s movements. 

Central pattern generators (CPGs) learning 
as one of gait learning technologies becomes 
gradually a hot research field (Righetti & 
Ijspeert, 2006). The biological neural networks, 
CPGs, have been shown to produce rhythmic 
outputs. Using the CPGs model like Rayleigh 
Oscillators to generate the locomotion for biped 
robot has been successfully achieved (Mondal 
et al., 2011). In addition, Hopf oscillator as 
one of the classical nonlinear CPGs is studied 
in (Abusabah et al., 2017). It is the biological 
neural network that autonomously produces 
rhythmic patterned outputs without sensory 
feedback, which are increasingly used to control 
the locomotion of humanoid robots, especially 
in online generating periodical motion. It has 
the ability to dynamically alter the amplitude 
and frequency of oscillator to learn any periodic 
input signal. In (Liu et al., 2017), Adaptive 
Hopf oscillators learning strategy is utilized to 
model the exoskeleton knee motion trajectory 
by tuning its frequency and amplitude. In 
addition, the swinging foot trajectory motion 
as the human walking characteristic has also 
been researched. The normal individual swing 
foot trajectories have been learned and modeled 
by Dynamic Moment Primitives (DMPs) 
oscillators (Kulvicius et al., 2013) to generate 
walking gait for the lower limb exoskeleton. In 
fact, the exoskeleton joint motion generated by 
oscillators attracts a lot attention from world 
(Chen et al., 2018). 

The existed physical Human Robot Interaction 
(pHRI) could cause the patients’ gait and the 
exoskeleton’s gait different. The essential pHRI 
force signal (Huang et al., 2018, Long et al., 
2018) has been used to generate gait pattern as 
the motion intensions. In (Long et al., 2018), the 
pHRI force signal has been observed, and the 
increment of the angular position of the knee 
joints has been adjusted in real time. The online 
sparse Gaussian process algorithm is proposed to 

learn the human gait trajectory in order to ensure 
that the exoskeleton system shadows the human 
gait trajectory in the robotic gait rehabilitation 
systems. In (Chen et al., 2017), the patients’ CoG 
motion is the intension to adjust exoskeletons’ 
CoG motion. Thus, in the walking assistance 
procedure, the exoskeleton can utilize pHRI and 
adapt to the patients’ motion intension is vital 
to improve patients’ motion comfort (Hamaya et 
al., 2017).

In the gait controlling research, the main methods 
focus on the planning joint position tracking 
strategy. Considering the complex walking 
surrounding and high-order nonlinear model, the 
model free controller (MFC) has been developed 
and implemented with a high precision control 
mainly based on the input-output (I/O) data 
(Wang et al., 2016, Han et al., 2018). A model-free 
(MFC) based adaptive nonsingular fast terminal 
sliding mode control strategy is proposed in (Han 
et al., 2018) in order to speed up the convergence 
rate and to improve the tracking performance. 
However, the lower limb exoskeleton controller 
only tracks the desired pre-defined trajectory 
rather than adapting it to the controller error, 
which means to adjust the desired gait reference 
real time.

Therefore, how to achieve efficient exoskeleton 
planning gaits which satisfy the patients’ different 
gait characteristic, satisfy their different motion 
intensions, and generate stable walking patterns, 
are urgent problems needed to be solved in this 
paper. These are closely related to lower limb 
rehabilitation effects (Hamaya et al., 2017). 

To overcome these problems, the online balance 
gait generation strategies are proposed for an 
exoskeleton used in lower limb rehabilitation. 
It could utilize the healthy limb of a mild 
hemiplegia patient as the gait characteristic to 
tune the exoskeleton gait, also it could achieve a 
better balance performance. This entire method 
consists of gait planning strategy and gait 
control strategy. In the gait planning strategy 
structure, the iDE AHopf oscillators have been 
used to learn, generate and modify the swing 
foot motion trajectories and apply them into 
assistance walking. Then, in order to adapt 
it to the patient, the next step length has been 
determined by the step length adaption method 



	 207

ICI Bucharest © Copyright 2012-2020. All rights reserved

according to the patients’ motion intension. The 
discrete step planner designs the exoskeleton CoG 
motion. In the gait control strategy structure, the 
joint controller has been designed to track the 
joint trajectory obtained from inverse kinematic 
models. The balance gait adaptive regulation 
technology has been researched in the human-
exoskeleton model to improve the dynamic 
balance ability as well.

The rest of this paper is organized as follows. 
The rehabilitation exoskeleton description and 
modeling structure are introduced in section II. 
In section III, the online dynamic gait generation 
strategy which is based on iDE AHopf oscillators 
is derived. Section IV gives the proposed method’s 
simulation results. Finally, conclusions and 
perspectives are shown in section V.

2. Exoskeleton Description and 
Modelling

The whole rehabilitation exoskeleton walking 
procedure is made of a single-support phase 
(SSP) and a double-support phase (DSP). It is a 
3-D biped multi-mass CoG model with a serial 
link structure as shown in Figure 1. Figure 2 
shows the exoskeleton SimMechanic platform 
structure. Table 1 provides the mechanical 
structure of the parameters of link length and 
mass. The exoskeleton contains two degrees 
of freedom (DOFs) in a coronal plane, two 
DOFs in a transverse plane and six DOFs e.g. 
hip, knee and ankle joint of double legs in a 
sagittal plane. Figure 1 depicts that the origin of 
coordinate is set on the contacted ground of the 
support leg. The x-axis is the forward direction, 
the y-axis is the horizontal direction, and z-axis 
is the vertical direction. 
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Figure 1. Three-Dimension exoskeleton model

Figure 2. SimMechanic platform of lower  
Limb exoskeleton

Table 1. Parameters of link length and mass

Link Structure Length (m) Mass (kg)
Trunk 0.85 10

Waist 0.019 0.154

Thigh 0.52 7
Shank 0.4 5.255
Ankle 0.0 0
Foot 0.282 2.5

Here only the ankle, knee and hip joint are 
considered, and the other DOFs were set to zero. 
According to the Denavit-Hartenberg (D-H) 
theory, the exoskeleton forward kinematic model 
is built at each DOF from the support foot to 
swing foot as follows:

5 1 4 3 4 8 5 10 1 5

4 7 47 47 2 4 5 1 4 3 1 5 4 47 8 5 47 10

4 7 47 47 5 47 10 1 4 5 4 47 8 2 4

1 0 0 2
2 2

2 2
0 0 0 1

a c a c a c a c a s
s s c s a s a s a s a c a c s a c s

T
c s s c a s s a c c a s s a c

− + − − − 
 − − + − + − + =
 − − − − −
 
 

                                                                          (1)
where the applied notations are defined as   

sin , cos , sin( ), cos( ).i i i i iq i q iq i qS C S Cθ θ θ θ θ θ= = = + = +
Given the walking CoG motion trajectory 
and terminate foot trajectory in the cartesian 
coordinate system, the joint degree trajectory 
can be calculated i.e. Inverse Kinematics. The 
steps which illustrate the inverse kinematics are 
given below. First, from support foot and the CoG 
coordinates, the support leg kinematic model can 
be obtained

sup 5 1 2 3 4 5
0 0 1 2 3 4A A A A A A=

where Ai
j represents the transformation matrix 

from ith joint to i-1th joint coordinate. Then using 
the kinematic matrix inversing method, the knee 
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and hip joint solutions of support leg θspk, θsph 
respectively are shown as

2 2 2 2
2 4 3 5 4

4 5

( ) ( )
arccos

2
y x

spk

a s p p a a a
a a

θ
− + − − −

= −
  
(2)

2 1

1 2
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aL bL
aL bL

θ
−

=
+                                         

(3)

with

3 2 4 1 4 5 2 2 5 2, , ,x ya p a b p a s L a a c L a s= − = − = + = −

Assuming the foot parallel to the ground always, 
the support ankle joint θspa could be obtained.

spa sph spkθ θ θ= − −                                                 (4)

Next, according the terminate foot trajectory in the 
cartesian coordinate system and the parallel foot 
constraint, the swing leg knee, hip and ankle joint 
θswk, θswh and θswa are obtained as well.
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So far, the forward kinematics and inverse 
kinematics analysis are completed.

3. Online Balance Gait Generation 
Strategy

The online balance gait generation strategy is to 
enable the patient to acquire and model the healthy 
swing foot trajectory as walking characteristics 
utilized to tune the exoskeleton. It could implement 
balance walking patterns based on ZMP adaption 
theory. The online balance gait generation 
framework shown in Figure 3 is proposed to 
generate the exoskeleton motion trajectories. 

This proposed framework consists of the gait 
planning strategy and gait control strategy. In 
the gait planning strategy, the exoskeleton could 
learn the mild hemiplegia patients’ healthy limb 

motion online. In previous walking cycles, the 
swing foot trajectory from the patient healthy 
limb motion is collected and learned, and then 
it is modeled by the iDE AHopf oscillators. The 
output of iDE AHopf oscillators could be modified 
as the reference exoskeleton swing foot trajectory 
in Cartesian space for current and next walking 
cycles. Additionally, the motion intention is 
estimated to adapt the step length S, and then the 
discrete step planner can generate continuous CoG 
motion according to dynamic estimated S.

In the gait control strategy, the swing foot 
trajectory and CoG motion trajectory in Cartesian 
space have been turned into the exoskeleton 
reference joint trajectory by inverse kinematic. 
The PID controller is used to track motion, and 
the real exoskeleton feedback from exoskeleton 
sensor data is utilized to adapt the gait online and 
to improve the balance walking stability by using 
ZMP compensation theory, which is defined as 
balance gait adaptive regulation in this paper. 
More details about the gait planning strategy 
and gait control strategy are illustrated in the 
following subsections. 

iDE AHopf oscillators Learning

Modification
 for next gait cycles

PID
Controller

Collection
 from previous gait 

cycles

Human

Exoskeleton

Step Length 
Adaptation

Discrete Step 
Planner

Inverse 
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Reference joint 
motion

Balance Gait Adaptive 
Regulation

Gait Control Strategy

Gait Planning Strategy

Human 
healthy limb 

motion

（S,T）

Swing foot 
trajectory

Trajectory in 
Cartesian Space 

Torque

Exos Sensor 
Data

 
Figure 3. Online balance generation framework

3.1 Gait Planning Strategy Design

In this research, the swing foot trajectory are 
learned, modeled and modified based on iDE 
AHopf oscillators. After obtaining the estimated 
step length S, the CoG motion was planned based 
on cart-table model. Thus this gait planning 
strategy consists of the foot trajectory learning 
based on iDE AHopf oscillators, the step length 
adaption and the discrete step planner employed 
to generate CoG motion.
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3.1.1 Foot Trajectory Learning Based on 
iDE AHopf Oscillators

In the procedure of learning periodical signals, the 
AHopf oscillators parameters, coupling driving 
constant  and time constant τ respectively, could 
describe the strength of coupling between the 
oscillator and mechanical system, which influence 
the converge rate and learning error in AHopf 
oscillators learning method. 

Hence in this section, the iDE AHopf oscillators 
learning structure is proposed to learn and generate 
the gait motion, which is used to learn and model 
the swing foot trajectory of a mild hemiplegia 
patient’s healthy limb. The iDE algorithm is 
utilized to regulate the optimal AHopf oscillators’ 
parameters to describe the actual complex varying 
human-exoskeleton interaction system.

In order to determine the parameters, the reference 
periodical signals have been collected exoskeleton 
motion trajectories, which are measured from the 
patients healthy limb motion in advance, and the 
iDE algorithm evaluates on the learning error 
and searches on optimal parameters for AHopf 
oscillators. And by sufficient iteration, its obtained 
parameters are able to describe actual human 
interaction motion better, which could achieve a 
fast learning rate for the desired reference trajectory.

The structure of this system is illustrated in Figure 
4. From Figure 4, the obtained optimal AHopf 
oscillators’ parameters would be used in the swing 
foot trajectory learning, modification and generation.

SUM

Reference swing 
foot trajectory

Exoskeleon swing 
foot trajectory

-

α0x0

α1x1

α2x2

αnxn

.
.
.

AHopf oscillators 
structure

Improved Differential Evolution 
Algorithm

Optimal Parameters
(coupling driving constant (Ɛ) 

and time constant (τ))

Foot trajectory 
modification

Figure 4. The structure of iDE AHopf oscillators 

To illustrate the learning structure, the section is 
divided into two parts: AHopf oscillators learning 
structure and iDE algorithm.

3.1.1.1 Adaptive Hopf (AHopf) Oscillators 
Learning Architecture

This AHopf oscillators learning architecture is made 
of coupled adaptive frequency Hopf oscillators as 
shown in Figure 4. Each Hopf oscillator (Righetti 
et al., 2006), is described as follows:

( )2 cosr r r Fγ µ ε φ= − +                                    (8)

sinw F
r
εφ φ= −

                                                 
(9)

sinw Fτ φ= −                                                    (10)

where r is the oscillators system parameters, φ
represents the phase of oscillators, μ represents 
the amplitudes of oscillation and can be set to 
1, γ controls the speed of recovery perturbation, 
w controls the frequency of oscillation, F is the 
periodic driving signal which motivates each 
Hopf oscillator to alter itself, ε is the strength of 
coupling between the oscillator and mechanical 
system, and τ is the time constant.

The dynamic F drives each Hopf oscillator to 
modify its frequency and motion trajectory, and 
each Hopf oscillator motion is considered a 
weighted sum (Liu et al., 2017) as shown in (11), 
The learning output data, i.e. the interacted foot 
trajectory motion, can then be obtained.

0 0
( ) cos

N N

learn i i i i i
i i

t x rθ α α φ
= =

= =∑ ∑
                        

(11)

where αi represents the gain associated to the 
frequency ωi of oscillator i, N means the number 
of oscillators, here set to 5. Let F(t) represent the 
negative feedback corresponding to the teaching 
signals θrefer(t), while η represents the learning rate 
for amplitude αi.

( ) ( ) ( )learn referF t t tθ θ= −                                     (12)

cos ( )i i ir F tα η φ=                                             (13)
From formula (8) to (13), the AHopf 
oscillators could achieve learning trajectory  
signals autonomously.

3.1.1.2 Improved Differential Evolution 
(iDE) Algorithm

The improved differential evolution (iDE) 
algorithm has been embedded into AHopf 
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oscillators to search the optimal AHopf oscillators’ 
parameters by iterative learning in order to ensure 
a fast convergence to the desired signals. 

The scheme of the iDE AHopf oscillators 
learning algorithm is shown in Figure 5. 
Compared to DE (Qin et al., 2009), an adaptive 
mutation with Levy flight search algorithm was 
utilized in the mutation operation, which was 
defined as the iDE algorithm. It would start with 
arbitrarily generated and evenly distributed initial 
population. Subsequently it repeatedly applies 
ITASE error evaluations, adaptive mutation 
with Levy flight search algorithm, crossover 
and selection operations to keep the best AHopf 
oscillators parameters. 

Initialize Population

Generation = 1

Terminal ?

Selection & 
Reproduction

Crossover
Keep best 

parameters

Generation = Generation + 1

END

Mutation
 with Levy flight search

ITASE 
error

Coupling 
driving 

constant (Ɛ) 

Time constant 
(τ)

Y

N

AHopf oscillators

Reference foot trajectory
(the patients past healthy limb motion)

Evaluate ITASE error of individuals

Figure 5. The scheme of iDE AHopf oscillators 
learning algorithm

Here, the iDE search parameter achieves the 
minimum of Integrated Time, Absolute and Square 
Error (ITASE) fitness function (14).

( ) 2

0 0
( ) 1 ( )t e t dt te t dtλ λ

∞ ∞
+ −∫ ∫ITASE=

         
(14)

where e(t) = y(t) - y0(t), y(t) is the output signal, 
and y0(t) is the reference signal, λ is the weighted 
constant, which has been set to 0.5. The reference 
signal has been set to the patients past healthy limb 
motion periodically. The iDE searched parameters 
are accurate and practical, which could learn the 
patient’s limb motion rapidly.

During population mutation, iDE employs the 
process of creating a mutant vector vi(t) from 
parent vector xi(t) using mutation operator. The 
scaling factor F is regulated adaptively, and 
the levy flight search algorithm in (Kumar et 
al., 2015), a local search approach, is utilized 
to search for the global optimum, to avoid the 
local optimum of search solution space, and to 
maintain the proper balance between exploration 
and exploitation behavior of conventional DE.

The mutation operation with Levy flight search 
algorithm is defined as follow:

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i b m w m wv t x t F t x t x t ss t x t x t= + × − + × −  
                                                                        (15)
where F(t) represents the adaptive scaling factor 
and ss(t) represents the levy flight step size.

Here the F adaptive regulation is defined as:

( )( ) m b
l u l

w b

f fF t F F F
f f
−

= + −
−                          

(16)

where Fl = 0.1, Fu = 0.9, and fb, fm and fw represent 
the ITASE fitness of the best one xb(t), the medium 
one xm(t) and the worst one xw(t) from three 
selected mutant vectors respectively.

Additionally, the local search strategy which is 
inspired by Levy flight random walk has been 
proposed. The walk steps are defined in terms of 
the step-lengths, which have a certain probability 
distribution. The levy flight step size has been 
generated in order to exploit the search area 
based on Mantegna’s algorithm for levy stable 
distribution as shown in formula (17). 

( ) 0.005 ( )ss t s t SLC= × ×                                (17)

where ss(t) represents the levy flight step size, 
which has been established by social learning 
component (SLC) of the global search algorithm 
and 0.005 represents the multiplier utilized to 
maintain the solution within the system boundary, 
and s(t) is defined as  follows:

( ) 1
us t

v
β

=

                                                       
(18)

where u, v are derived from normal distributions: 
, , and β is the constant 

used to calculate the normal  distributions in 
variance (Kumar et al., 2015), which has been set 
to 1.5 defined as follows:
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∫,

                                                                        (19)
Here Γ(.) is the Gamma function, then using 
crossover and selection operation, the best solution 
for the next iteration has been chosen.

Obtained the best parameters using the iDE 
algorithm, the AHopf oscillators are used to learn 
previous swing foot trajectory of the healthy limb, 
the gain αi can be adaptively adjusted, associated 
to the frequency ωi of oscillator i. The gain αi and 
the frequency ωi can be also adaptively adjusted 
according the next excepted step length S and gait 
cycle period T respectively. 

Here two AHopf oscillators have been used 
in order to learn and model the foot motion in 
forward (X) and vertical (Z) direction. The 
original foot trajectory is obtained by using the 
Kinect capture method in (Seleem & Assal, 
2016). In order to describe the different swing 
foot motion with S, it means to modify the gain 
k’. The output of AHopf oscillators ˆ ( )learn tθ  was 
multiplied by the gain k’ to adjust the swing foot 
motion in forward direction as follows:

0

ˆ̂ ( ) ( ) cos
N

final learn i i i
i

t k t k rθ θ α φ
=

′ ′= = ∑
        

(20)

The trajectory results are shown in Figure 6, which 
illustrates the swing foot trajectory in Cartesian 
space according to the variable gain k’  as 0.8, 0.9, 
1.0, 1.1, 1.2 with respect to step length S of 0.3, 
0.35, 0.4, 0.45 and 0.5m respectively.
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Figure 6. Foot trajectories with different parameters 
S based on iDE AHopf oscillators 

3.1.2 Step Length Adaption

In this sub-section, the adaptive step length 
estimation method is employed to determine the 
step length adaption in the DSP and plan a gait 

at the beginning of each step according to the 
patients’ motion intention. In (Chen et al., 2017), 
the relationship between the human CoG position 
and support polygon length in sagittal plane has 
been estimated in order to correct the next step 
length utilized to implement the human dynamic 
balance gait.

XSP

XCoM

XCoM_exos

Exoskeleton
Patient

Figure 7. The relationship between human CoG 
position and support polygon

Here, as shown in Figure 7, the estimated goal S 
used to correct online the length of each step due 
to the patients’ motion intention which is defined 
as follows:

1
ˆ CoG

i i CoG
SP

XS S X
X

α
 

= + − 
 

-

                           
(21)

where i is the step index, Si-1 and Si are the i-1th 
and ith step length respectively, and α is the 
estimation parameter, here is set at -0.25. XSP 
represents the support polygon which equals to 
Si-1, XCoG represents the human CoG position. Here 
one defines:

_

1

ˆ CoG exos
Co

i
G

X
X

S −

=
                                            

(22)

where XCoG_exos represents the exoskeleton CoG 
position. The distance ∆ between XCoG and XCoG_exos 
could be obtained as follows:

_CoG CoG exosX X∆ = −                                    (23)

The exoskeleton could adjust its step length 
according to upper body CoG position XCoG and 
∆. Once the human CoG position exceeds the 
exoskeleton CoG position, the step length S should 
increase. By contrast, the step length S decreases.

And next, foot trajectory could be modified based 
on learned iDE AHopf oscillators according the 
adaptive step length S.
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3.1.3 Discrete Step Planner

After dynamically obtaining the step length 
and the swing foot trajectory with AHopf 
oscillators, the future ZMP reference pref has 
been planned, and  the discrete step planner has 
been designed to generate the next CoG motion 
at instantaneous double-support phase (DSP) 
according the next foot position and current 
CoG position, velocity and acceleration. In 
this section, the ZMP theory has been applied 
into the exoskeleton CoG generation. The 
complicated human and exoskeleton system 
model can be simplified as cart-table model, 
and the following ZMP equation representing 
the relationship between CoG and ZMP (Kajita 
et al., 2003) can be obtained.

c
xc

z
p x x

g
= − 

                                               
(24)

where pxc is the ZMP location of cart-table model 
on the floor around x-axis i.e. forward direction, 
x represents the CoG position in x-axis, zc is 
the model COG height, and g is the gravity 
acceleration.

Here the optimal preview controller could utilize 
the future ZMP information to design the current 
smooth CoG motion, which has been introduced 
in this paper (Wu et al., 2013).

3.2 Gait Control Strategy Structure

From the gait plan strategy structure, the 
swing foot trajectory modeled by iDE AHopf 
oscillators and CoG motion can be obtained, 
Then, the reference joint trajectory θ* is 
obtained by using its corresponding inverse 
kinematic transformation.

Considering the multibody exoskeleton 
model in Figure 1, the simplified cart-table 
model could barely describe the real ZMP 
stability. Additionally, the exoskeleton might 
not implement the planning gait tracking 
performance due to the external disturbance 
from ground and the PID joint controller error, 
which can cause out range of walking stable 
region. Each joint reference should be regulated 
to achieve superior balance gait. The proposed 
gait control strategy is shown in Figure 8.
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Figure 8. The gait control Strategy Structure

The balancing gait adaptive regulation 
approach from (Sato et al., 2008) is utilized. It 
focuses on improving the exoskeleton system 
gait stability with respect to the current joint 
controlling state. It can also calculate the 
walking ZMP real time, and modify each joint 
position and velocity simultaneously according 
exoskeleton feedback gait in order to improve 
the maximum of ZMP stable margin. The real 
joint position could be detected by encoder, and 
the current real ZMP pxm could be calculated 
using formula (25).

( )

( )
1

1

N

i i i i i
i

xm N

i i
i

m z g x z x
p

m z g

=

=

+ −  
=

+

∑

∑




                          

(25)

where pxm represents the multibody exoskeleton 
ZMP response, mi is the mass corresponding 
to link i, xi and ix are the center position and 
acceleration of ith link in forward direction 
respectively, zi and izare the center position and 
acceleration of ith link in vertical direction, g is 
the gravity acceleration.

As seen in Figure 8, the multibody exoskeleton 
ZMP tracking error pdis is obtained by the 
difference between the cart-table model ZMP in 
formula (24) and the current real exoskeleton ZMP 
in formula (25), Then pdis is low-pass filtered, and 
the position compensation is implemented. Here 
g1=4.01, G1=1, G2=2. 

Besides, the external CoG motion bias xcps is 
calculated directly to overcome the sudden ground 
disturbance. Using inverse kinematic function 
f(xcps), the hip, knee and ankle joint increments 
(∆θh, ∆θk, ∆θa) have been calculated to improve 
ZMP tracking ability.

4. Simulation and Results

In this section, the 0~12s walking procedure is 
designed in MATLAB/Simulink and SimMechanics 
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simulation platform. The gait cycle period has 
been set to 2s; the initial step length has been set 
at 0.32m. The swing foot trajectory was collected 
from the normal individual gait in advance. The 
collected periodical trajectory has been used to 
imitate the healthy limb motion for gait generation.

Using the online balance gait generation strategy, 
the swing foot trajectory could be modeled by 
iDE AHopf oscillators; the CoG motion could 
be planned by discrete step planner, and the step 
length could be estimated. Finally, to evaluate the 
proposed strategy, the gait generation results and 
the ZMP stability of the generated gait are taken 
into consideration.

4.1 Gait Generation Results

These results include the swing foot trajectory 
learning, step length adaption and online gait 
generation results.

4.1.1 iDE AHopf Oscillators Learning 
Comparison

In the present method, the swing foot trajectory 
in both vertical and forward direction has been 
learned based on the iDE AHopf oscillators 
learning in order to search the optimal coupling 
parameters. Here the method using DE algorithm 
to optimize the AHopf oscillators is named DE 
AHopf oscillators learning algorithm, which is 
compared with iDE AHopf oscillators learning. 

The iteration number has been set as 150 times, 
the ITASE has been defined as the square 
sum of ITASE value in forward direction and 
vertical direction as seen in Figure 9. It can be 
observed that iDE can search for the parameters 
of the AHopft oscillator more rapidly, which 
demonstrates that the superior performance of iDE 
AHopf oscillators learning algorithm.
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Figure 9. Oscillators learning iteration comparison 

Here, the performance of iDE AHopf oscillators 
has been verified by comparing the AHopf 
oscillators shown in Figure 10. From Figure 10, 
it can be noticed that by comparing DE AHopf 
oscillators learning algorithms, the swing foot 
trajectory could rapidly converge to the desired 
motion signal in one gait cycle, and the learning 
error becomes small enough.
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Figure 10. Foot trajectory learning result comparison
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Besides, to evaluate the effectiveness of iDE 
AHopf oscillators learning methods, the ITASE 
error results calculated in formula (15) have been 
compared as shown in Table 2. It can be observed 
that the ITASE value of iDE AHopf oscillators 
learning is smaller than AHopf and DE AHopf 
oscillators learning error.

Table 2. Learning error comparing results

Compared 
methods

ITASE 
(forward direction)

ITASE 
(vertical direction)

AHopf 3.7814 2.3741
DE AHopf 2.1077 0.7809
iDE AHopf 1.8914 0.5231

4.1.2 Step Length Adaption Result

After 6s, the step length S adapts to the human CoG 
position, the difference ∆ between exoskeleton 
CoG position and human CoG position causes step 
length adaption, ∆ is positive which means that S 
would increase, and ∆ is positive which means 
that the S would decrease as shown in Table 3.

Table 3. The results of each step length

Step Number i Si ∆
1 0 \

2 0.32 \
3 0.32 0.0156
4 0.3322 -0.0464
5 0.2973 0.0349
6 0.3266 -0.0234
7 0.3087 0.0030

4.1.3 Online Gait Generation Result

By obtaining the estimated step length S, the 
collected and modeled healthy limb’s swing foot 
trajectory would be modified with iDE AHopf 
oscillators for inverse kinematic analysis, which 
could adapt to the patient’s walking requirements 
and characteristics.

Firstly, the swing foot trajectory modified with 
iDE AHopf oscillators is given in Figure 11.
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Figure 11. Swing Foot trajectory

Then the exoskeleton gait has been adjusted online 
by using the balance gait adaptive regulation 
in order to implement a better ZMP stability. 
Considering the continuous walking procedure, 
the left and right leg joint motion have been 
provided by the exoskeleton kinematic analysis. 
The planning results and PID controller tracking 
results are shown in Figure 12. 
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4.2 ZMP Balance Simulation Results

Based on the planning joint results, the walking 
ZMP results could be obtained, as the element 
needed to evaluate the balance gait patterns. Here 
the multibody exoskeleton ZMP results in the 
proposed online balance gait generation method 
are compared with those of the conventional 
method i.e. without online balance gait regulation 
in the motion procedure from 8s to 13s as shown 
in Figure 13.

Figure 13. Exoskeleton ZMP simulation result

From Figure 13, the ZMP response1 is 
generated by conventional method, while ZMP 
response2 is generated by the proposed online 
balance gait generation method respectively. 
The two ZMP response trajectories that are in 
the range of the ZMP polygon can be obtained, 
which guarantees the stable walking. Here, it is 
assumed that ZMP supporting polygons are set 
at +0.12m and −0.12m from the center of sole in 
forward direction. Once the ZMP error becomes 
large, the proposed method could prevent the 
ZMP error to increase by comparing to the 
conventional method. 

The unbalance gait usually occurs at DSP, in 
order to illustrate the balance gait evaluation, 
the ZMP margin result at about 0s is shown in 
the following Table 4. The number indicates that 
the minimum distance between sole bounds and 
multibody exoskeleton ZMP position in the whole 
walking procedure, at about 10s has been obtained 
by the difference between the ZMP response and 
ZMP stable polygon.The larger obtained number 
indicates a better walking stability. By contrast, the 
negative number represents the unstable walking. 
The referred Table 4 illustrates that the stability is 

improved, and its effectiveness of online balance 
gait generation method is demonstrated.

Table 4. Compared ZMP margin results at 10s 

Compared methods ZMP margin (cm)
Conventional Method 3.708
Online balance gait 
generation Method

7.984

5. Conclusion and Future Work

In this paper, the online balance gait generation 
strategy based on human-gait oscillators learning 
for a walking assistance lower limb rehabilitation 
exoskeleton has been researched. The mild 
hemiplegia patients’ previous heathy swing foot 
trajectory characteristics have been utilized for 
the next exoskeleton motion generation. This 
proposed method consists of a gait planning 
strategy and a gait control strategy. In the gait 
planning strategy, iDE AHopf oscillators have 
been proposed to learn and model the heathy 
swing foot trajectory and the dynamic step length 
estimation method has been utilized to adapt 
the human motion intension. In the gait control 
strategy, the online balance gait adaption theory 
has been proposed to regulate the gait in order 
to overcome the unbalance gait patterns. From 
the simulation results, it can be noticed that the 
proposed method could learn and modify the 
patients’ foot trajectory, estimate adaptively the 
step length with the patient’s CoG position, and 
improve the walking exoskeleton ZMP margin 
from 3.71cm to 7.984cm. The final results show 
that the effectiveness of the gait strategy is 
verified according to the gait generation results 
and ZMP stable margin simulation results. A 
future work will focus upon an improved ZMP 
correction method especially on its capacity to 
face the ground disturbances. Other tracking 
control methods will also be studied.
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