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1. Introduction

Anomalous and faulty behaviors damage the 
machines like engines, gearboxes and rotor 
systems, causing security reduction, economic 
losses and environmental damages because 
of an increased cost of the maintenance and 
processing time. The fault diagnosis is important 
for anticipating the incipient fault and predicting 
system failure in order to ensure the normal 
operation of an engine. 

It is unfeasible that human operators diagnose 
anomalous faults without this causing them to 
take wrong decisions, no matter if this happens 
in a timely manner (Li-Juan et al., 2013; Zhang 
et al. 2013).

Several researches have introduced the signal 
recognition and fault diagnosis algorithms. 
Statistical techniques such as Linear Discriminant 
Analysis (LDA) (Zhao et al., 2014; Mjahed & 
Proriol, 1989) were the first to be exploited in this 
domain. Recently, artificial intelligent techniques, 
such as Genetic Algorithms (GA) (Mor & 
Gupta, 2014; Mjahed, 2006), Particle Swarm 
Optimization (PSO) (Rini et al., 2011; Jena et al., 
2015), Artificial Bee Colony Algorithm (Chen & 
Xiao, 2019), Fuzzy Logic (Raj & Murali, 2013; 
Xiao et al., 2013) and Artificial Neural Networks 
(Chandra et al., 2013; Devi & Kumar, 2014) have 

been applied successfully to automatic detection 
and to diagnosis. GA and PSO algorithms have 
been effectively used to select the attributes of 
interest (Karimova et al., 2004) and for pattern 
detection and classification tasks (Hewahi, 2017; 
Mjahed, 2010). 

Characterizing signals with appropriate features 
and their classification are the most significant 
issues for machine fault diagnosis (Londhe et al., 
2014; Maaref et al., 2018). To identify the faults 
and achieve a better classification performance, 
it is important that the features selected contain 
necessary discriminative information. A number 
of vibration intensity techniques have been used 
to analyze engine front noise (Chomphan & 
Kingrattanaset, 2014). In (Lajmi et al., 2017) a 
fault diagnosis based on fuzzy Petri net interval 
is designed.

As regards the fault diagnosis in the aeronautical 
field, several works have been elaborated. The 
features for fault diagnosis and prognosis of 
gearbox are proposed (Zhang et al., 2013). A 
vibroacoustic technique for the fault diagnosis 
in a gear transmission of a military helicopter 
is presented by (Zieja et al., 2017). A genetic 
algorithm-based neural network for diagnosing an 
aircraft air compressor bearing is introduced by 
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(Ouadine et al., 2018). In (Ouadine et al., 2019), 
a diagnostic system for PUMA helicopter gearbox 
vibration faults is designed.

In this work, the main focus is on the 
classification of some specific data correspond-
ding to four classes of faulty signals generated 
by Gazelle SA341 helicopter’s main rotor. In 
addition to healthy signals, three fault subclasses 
are considered: the bearing failure, the problems 
with joints and mechanical loosening. Indeed, 
these three types of defects remain the most 
widespread ones (Ouadine et al., 2018, Ouadine 
et al., 2019; Bhowmik et al., 2013). The 
considered vibration signals are characterized 
by 16 discriminant features. 

This research work is divided into three parts. 
The first part is dedicated to the use of LDA, 
NLDA and BPNN methods. In a second part, 
the fault signal diagnosis is improved by 
refining the discriminant functions as well as 
a neural network through GA technique. In the 
third part, one attempts to replace GA by PSO 
for the same goals.

For addressing the topics discussed above, this 
paper is organized as follows. Section 2 presents 
the basic definitions of data and signal features. 
Section 3 is devoted to the implementation of 
the above-mentioned approaches, where the 
results of classifications obtained with LDA-, 
NLDA-, BPNN-, GA/ PSO-based hyperplanes 
and hypersurfaces, in addition to the GA- and 
PSO-based neural networks, are detailed. Finally, 
Section 4 sets forth the main conclusion of  
this paper.

2. Data and Features Extraction

The data used in this survey have been 
collected from a Gazelle SA341 helicopter 
maintenance center and recorded on a test 
bench. Accelerometers are used to measure the 
vibrations created by this helicopter`s main rotors. 
Measurements are made during inspection phase.

The faulty signals (denoted as C1 class) and 
healthy signals (the C2 class) are considered. 
After identifying the fault/healthy signals, the aim 
is to discriminate between 3 types of faults. The 
faulty class C1 is composed of 3 subclasses C11 

(corresponding to problems of the joints), C12 (for 
faulty bearings) and C13 (for mechanical loosening).

The collected data amounted to 1000 signals, with 
500 learning signals and 500 test signals. Each 
class participates with 125 learning signals and 
125 test signals. All the signals are recorded with 
a sampling frequency equal to 12000 Hz. Each 
signal has been divided into 3 segments in order to 
increase the number of elements in each class. The 
number of available signals passes over the initial 
1000 signals to 3000 signals (375 learning signals 
and 375 test signals for each class). One explores 
the Welch estimation method, which provides a 
consistent estimator of power spectral density 
(Rani Gupta et al., 2013). This method consists 
in subdividing data, taking modified periodograms 
for each section and combining those modified 
periodograms. In many situations, this method 
requires less computation than other approaches 
because it includes converting the signal into 
shorter sequences.

The spectrum estimate therefore involves 
estimating the Power Spectral Density based on 
a finite number of noisy data. Welch’s method 
reduces noise at the expense of frequency 
resolution (Polat & Güneş, 2007). The Hamming 
window function has been used in the present 
case, with a period of 100 and an overlap of 30.

After analyzing the 3000 available signals, the 
8 most predominant peaks of the power spectral 
density have been extracted. For each peak, 
two values have been used: the characteristic 
frequency and the spectral density value, which 
have provided 16 characteristics for each signal. 
Each signal was modeled with 16 features (v1 to 
v16), vi and vi+1 (i=1, 3, 5, 7, 9, 11, 13, 15) are 
the frequency and the spectral density value, 
respectively, considered in decreasing amplitude 
values. v1 and v2 are the frequency and amplitude 
of the largest peak, while v15 and v16 correspond to 
the eighth peak. The data has then been organized 
in a matrix of 16 columns and 3000 rows. 

3. Fault Diagnosis Approaches

3.1 Classification Methodology

The classification task focuses on the Gazelle 
SA341 helicopter main rotor fault diagnosis by 
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considering three faulty signals (C11, C12, C13 
classes) and a healthy signal (C2 class). 

The same data has amounted to 1500 learning 
signals, where each class (C11, C12, C13 and C2) 
has participated with 375 signals and has been 
used to train the linear and nonlinear discriminant 
functions as well as the chosen neural networks. 
Validation data consisting in 1500 other signals, 
with the same repartition, was used for validating 
the different methods. It should be noted that, as 
parameters of performance, the efficiency γi and 
the error εi of classifications are computed based 
N24 on the confusion matrix N=(Nij), Nij being the 
value of signals of genuine class Ci classified as 
class Cj (Ci and Cj mean here classes C11, C12, C13 
or C2) (Table 1). 

Table 1. Confusion matrix

Actual class
Predicted class

C11 C12 C13 C2

C11: N1 N11 N12 N13 N14

C12: N2 N21 N22 N23 N24

C13: N3 N31 N32 N33 N34

C2: N4 N41 N42 N43 N44

For each class Ci we have:
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The global performance parameters are then 
calculated as given by (2).
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3.2 Part One: LDA-, NLDA- and NN-
based Fault Diagnosis

This subsection introduces the achieved LDA, 
NLDA and BPNN-based fault diagnosis.

3.2.1 LDA-based Diagnosis

3.2.1.1 Basics of LDA

Linear discriminant functions are computed by 
applying a linear discriminant analysis (LDA) 
(Mjahed, 2005; Peter He et al., 2005). In the 

simple case of 2 classes, with centroids g1 and g2 
and a covariance matrix M, the expression of the 
unique discriminant function (or hyperplane) F1, 
for a signal vector v, is as given by (3).

vavMggvF T1T21
1 =−= −)()( (3)

This discriminant function is calculated for 
each pair of classes, through a training sample 
of vibration signals. This is the purpose of the 
following subsection.

3.2.1.2 LDA-based Diagnosis Implementation

Applied to this learning data set, the best 
discriminant functions have been sought according 
to (3), for best efficiency.

Then three best linear discriminant functions are 
obtained (4): F1 (for the discrimination between 
C1 and C2 signals), F11 (for the two faulty classes 
C11 and C12∪ C13) and F12 (to classify C12 based on 
C13 faulty signals). 

The best discriminant functions correspond 
to the most efficient functions. In fact, as 
illustrated by (4), the most efficient functions 
are those based on the 6 variables v1 - v6, i.e. 
the coefficients corresponding to the variables 
v7 - v16 are almost zero. 
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3.2.2 NLDA-based Diagnosis

3.2.2.1 Basics of NLDA

In order to improve the separation between the 
considered classes Ci and Cj, LDA is  generalized 
to NLDA, by going from the first degree (3) 
to the second degree as given in (5) (Kuhn & 
Johnson, 2016):
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By expanding a to contain the elements of B and 
by expanding v to contain the elements of vvT, the 
linear deduction of the coefficients may be used. 
G1

, G
2 and H are the new centroids for classes (C1 

and C2) and the covariance matrix for the modified 
data, respectively.

3.2.2.2 NLDA-based Diagnosis Implementation

Here a quadratic form has been chosen, which 
consists in calculating parameter B (5) for each 
combination of attributes. The optimal results 
are given in (6), where F2, F21 and F22 are 
hypersurfaces separating the C1 and C2 signals, 
C11 and C12∪C13 signals and the C12 and C13 
classes, respectively. As mentioned above, the 
best discriminant functions are those combining 
the variables v1 -v6.
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3.2.3 BPNN-based Fault Diagnosis 

3.2.3.1 BPNN Principle

The architecture of a multilayered neural network 
is organized into levels of neurons: one input 
layer, one output layer and one or several hidden 
layers (Haykin, 2009). Each neuron i in a level l 
is thus directly connected to all the neurons of the 
following layer (l+1) and produces a response Yi 

( l ) 
after being processed through a nonlinear sigmoid 
function g (7).

∑
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θ i
(l) is the threshold of the neuron i in layer l, 

Wij
(l) the connection weight between the neurons 

i (of layer l) and j (of layer l-1), Nl-1 the number 
of nodes in the layer l-1 and Yj 

( l-1 )the neuron j of 
layer (l-1) output.  

Generally, the training of this network is 
supervised and uses an error back-propagation 
(BP) algorithm. The network seeks to minimize, 
on the output layer, and for each signal data p, a 

quadratic error E(p) (8) which exists between the 
effective output value oi

(p) and the desired output 
value di

(p) of the m neurons.
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3.2.3.2 BPNN-based Diagnosis Implementation

As it has been introduced above, the identification 
of Helicopter main rotor fault signals belonging to 
C11, C12, C13 and C2 classes has been accomplished 
by means of “3-layer” neural network. The 
optimized architecture is reflected by (6, 10, 2).

The number of neurons in the input layer which 
is set at 6 is linked to the number of variables 
reduced from 16 to 6.The tests on the number 
of neurons in the hidden layer have shown that 
10 neurons are sufficient to converge the neural 
network faster and with a very small error. In 
this paper, two neurons are used for the output 
layer. Each signal p described based on the above 
defined variables, X= (v1, v2, v3, v4, v5, v6), was 
processed through the input layer, which in turn 
fed it to the hidden layer, thereby feeding it finally 
to two output neurons o1 and o2. 

The 80 synaptic weights Wij between neurons and 
10 thresholds θi are computed. These parameters 
are adjusted in such a way that the error function 
E (8) is minimized using the back-propagation 
algorithm. The desired outputs (d1, d2) for the four 
classes C11, C12, C13 and C2 are (+1,+1), (+1,-1), 
(-1,+1) and (-1,-1), respectively.

3.3 Part Two: GA-based Fault Diagnosis

3.3.1 GA Principle

The genetic algorithms are based on the principles 
of genetics and Darwin’s natural selection theory 
(“the one that is best endowed, survives”). Simple 
GA is based on three essential operators: selection, 
crossover and mutation (Mor & Gupta, 2014; 
Mjahed, 2010).

GA operates on a population consisting of a 
number of prospective solutions. The population 
at time t is characterized by the time-dependent 
variable S(t), with the random initial population 
S(0). The design parameters to be searched are 
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the real components of S(t). S(t) = (Sij(t)); (i={1…
,Nind}; j={1,…,Npar}), Nind being the population size 
and Npar the number of parameters to be optimized.

Based on the specified parameter ranges, these 
components are then developed generation by 
generation and new solutions are gained. After a 
number of generations (Ngen), the GA is completed. 
The best solution corresponds to the minimal 
fitness function.

3.3.2 Fault Diagnosis Using GA-based 
Hyperplanes (GAHP)

According (9) it can be proposed to seek the three 
GA-based hyperplanes (GAHP), namely F3, F31 
and F32, separating between the classes (C1 and C2), 
(C11 and C12∪C13) and (C12 and C13) respectively.
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where vi (i={1,...,16}) are the variables  
defined above.

For this approach, the global misclassification rate 
ε has been used as fitness function.

The parameters to be explored, by using GA, 
are the 51 (3×17) factors of F3, F31 and F32 (αi, 
αi1, αi2 (i={0,...,16})). To accomplish this search, 
one uses a population of 20 solutions and 1000 
generations, a crossover probability equal to 0.8, 
a mutation probability equal to 0.3, a mutation 
rate equal to 0.02 and a selection pressure equal 
to 8. The best GAHP-based discriminant functions 
(best results over 100 runs) are given in (10).
The results obtained once again unveil functions 
with 6 variables, illustrating the predominance of 
variables v1-v6. Here too, the coefficients relating 
to the variables v7-v16 are practically zero. 
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3.3.3 Fault Diagnosis by GA-based 
Hypersurfaces (GAHS)

After some investigations, the simple expression 
given by (11) was selected, which has the same 
form as (6). F4, F41 and F42 are three hypersurfaces 
separating between classes (C1 and C2), (C11 and 
C12∪C13) and (C12 and C13) respectively.
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For the three surfaces mentioned above, the 
parameters to be searched are the 51 afore-
mentioned coefficients (ρi,ρi1, ρi2, (i={0,..., 16})). 
The same parameters expressed in GAHP search 
have been used for GAHS. The best GAHS-based 
discriminant functions obtained over 100 runs are 
expressed by (12), revealing again the relevance 
of the variables v1-v6.
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3.3.4 Fault Diagnosis by GA-based Neural 
Network (GANN)

In subsection 3.2.3.2, a neural network has been 
optimized to achieve the architecture reflected by 
(6, 10, 2). Here, for a NN architecture (n1, n2, 2), 
GA is used to optimize the neuron numbers (n1, 
n2) in the input and hidden layers as well as the 
different connection weights and thresholds.

The number of parameters to be optimized is 
therefore n1n2 + 2n2 connection weights, in addition 
to n2 thresholds. To carry out this task, one uses 
a population of 50 solutions, 1000 generations, 
a crossover probability equal to 0.8, a mutation 
probability equal to 0.3, a mutation rate equal 
to 0.02 and a selection pressure equal to 8. The 
GANN error E is used as a fitness function. The best 
architecture obtained is identical to that obtained in 
the previous section as reflected by (6, 10, 2). 
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3.4 Part Three: PSO-based  
Fault Diagnosis

3.4.1 PSO Basic Notions 

Particle swarm optimization (PSO) is the 
most well-known and popular nature-inspired 
optimization algorithm. 

By means of the PSO algorithm, a swarm of 
particles (solutions) is randomly initialized 
(position (x) and velocity (φ)). The movement of 
the particles is directed by their own best-known 
position xpbest and the swarm best-known position 
xgbest which are related to the best solution (fitn	
ess) (Rini et al., 2011; Jena et al., 2015). For every 
generation, and at each time step t, the position 
and the velocity of each particle are updated 
according to (13)-(14): 

)()1()( ttxtx φ+−= (13)

))1((
))1(()1()(

22

11

−−+

−−+−φ=φ

txxRc
txxRctwt

gbest

pbestt
(14)

where c1 and c2 are the constants designated 
as acceleration/learning factors that represent 
the weighing of the stochastic terms pulling 
each particle toward the xpbest and xgbest positions 
respectively. R1 and R2 are obtained by a uniform 
distribution in the interval [0 1]. The inertia weight 
wt is calculated, using (15).

w w wt t damp� �0 05 1. (15)

where wdamp is the inertia weight damping ratio.

3.4.2 Fault Diagnosis by PSO-based 
Hyperplanes (PSOHP)

In this subsection, PSO is employed for 
determining three hyperplanes as defined by (16). 
These hyperplanes F5, F51 and F52 are separating 
the classes (C1 and C2), (C11 and C12∪ C13) and (C12 
and C13) respectively.
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where vi (i=1, ..., 16) are the 16 features  
already defined.

The parameters to be optimized, by PSO, are then 
the 51 aforementioned coefficients (δi, δi1,δi2 (i=1, 
..., 16)). The PSO parameters have been efficiently 
tuned in order to get optimal results. This method 
is run up to 1000 iterations and uses a population 
size of 20 solutions. In this approach, the learning 
factors c1 and c2, which are both equal to 1.49, 
have been used. The linearly decreasing inertia 
weight (wt) was implemented using an inertia 
weight damping ratio wdamp = 0.99. 

The best PSOHP-based discriminant functions 
obtained are given by (17), also showing the 
significance of the first 6 variables. The coefficients 
corresponding to v7-v16 in (16) are zero. 
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3.4.3 Fault Diagnosis by PSO-based 
Hypersurfaces (PSOHS)

To separate between the two classes, one uses 
the same expression utilised for the NLDA and 
GAHS approaches, as given in (18), where F6, 
F61 and F62 are three hypersurfaces separating 
classes (C1 and C2), (C11 and C12∪ C13) and (C12 
and C13) respectively.

F v v

F v v

F v v

i ii

i ii

i

6 0

2

1

16

61 01 1

2

1

16

62 02 2

( )

( )

( )

� �

� �

� �

�

�

�
�

� �

� �

� � iii
2

1

16

��

�

�
�
�

�
�
�

(18)

This approach aims to optimize the 51 
aforementioned coefficients (σi, σi1, σi2, (i=0, ..., 
16)) using PSO algorithm tuned with the same 
parameters defined in the previous subsection. 
The best PSOHS-based discriminant functions 
are grouped in (19), allowing to make the same 
observation as previously concerning the weight 
of the variables v1 -v6.
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3.4.4 Fault Diagnosis by PSO-based 
Neural Network (PSONN)

It should be mentioned that for the PSO-based 
neural network (PSONN) approach, the same 
analysis carried out for GANN has been extended. 
PSO is employed for optimizing the (n1, n2, 2) 
NN architecture and the connection weights and 
thresholds. The PSONN method is run up to 
1000 iterations and it uses a population size of 50 
solutions, with the same number of optimization 
parameters as the GANN approach. The learning 
factors c1 and c2 are set to be equal to 1.49. The 
inertia weight damping ratio is 0.99. 

Here again, the best architecture is: (6, 10, 2). 

3.5 Decision Rules

It should be noted that, after calculating or 
optimizing functions Fi, Fi1 and Fi2, (i=1, ..., 6) 
based on training set, in the framework of the 
LDA, NLDA, GAHP, GAHS, PSOHP and PSOHS 
approaches, a test signal v0 is assigned to one of 
the four classes according to decision rule (20).

if F v then
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(20)

It should be mentioned that in order to conduct a 
proper comparison, the same form of discriminant 
functions ((4), (10), (17)) have been used for 
LDA, GAHP, and PSOHP approaches and another 
same form of non-linear discriminant functions 
((6), (12), (19)) have been selected for NLDA, 
GAHS and PSOHS approaches. 

For establishing a diagnosis linked to the use of 
neural networks (BPNN, GANN and PSONN 
approaches), and since the desired neural 
networks’ outputs (d1, d2) for the four classes 
C11, C12, C13 and C2 are (+1,+1), (+1,-1), (-1,+1) 
and (-1, -1), respectively, this paper  proposes a 
decision rule for every faulty signal v0, depending 
on effective NN outputs as indicated in (21).
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3.6 Validation Results and Analysis

This section is devoted to the validation of the 
discriminant functions given by (4), (6), (10), 
(12), (17) and (19) as well as the optimal BPNN, 
GANN, PSONN neural networks, with the (6, 10, 
2) architecture, obtained in subsections 3.2.3.2, 
3.3.4 and 3.4.4 respectively.

The validation results for the best discriminant 
functions and neural networks, using the validation 
data, are achieved by means of classification 
matrices, based on which the efficiency rates are 
extracted and reported in Table 2.

Since PSO and GA are stochastic optimization 
methods, they produce different results in different 
runs. In this sense, the discriminant functions 
(10), (12), (17) and (19) illustrate the best results 
obtained over 100 runs based on the GAHP, 
GAHS, PSOHP and PSOHS approaches. 

Table 2. Efficiency Rates γi obtained by using LDA, 
GAHP, PSOHP, NLDA, GAHS, PSOHS, BPNN, 
GANN and PSONN approaches (validation data)

Method
γi (%)

C11 C12 C13 C2 All

LDA 91.73 92.80 91.46 92.26 92.06

GAHP 94.13 94.66 95.46 95.20 94.86

PSOHP 93.86 94.93 94.66 95.46 94.72

NLDA 97.06 97.60 97.06 96.00 96.93

GAHS 98.13 98.93 97.60 97.60 98.06

PSOHS 98.13 98.40 97.60 97.60 97.93

BPNN 98.93 99.20 98.66 98.66 98.86

GANN 99.20 99.46 99.20 99.46 99.33

PSONN 98.93 99.20 98.93 99.20 99.06

The first observation concerns the number of 
attributes required for a good classification of the 
different faults. When computing or optimizing 
discriminant functions by GA and PSO, it turned 
out that six attributes (v1, v2, v3, v4, v5, v6) were 
sufficient to achieve the best results (formulas 
(4),(6), (10), (12), (17) and (19)). In fact, the six 
best variables are those corresponding to the first 
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3 peaks of the power spectral density. This finding 
has also been validated by forcing combinations 
with more than six attributes (see Figures 1a-c).

The Figures 1(a)-(c) illustrate the evolution of the 
classifications` efficiency rates according to the 
number of attributes involved. 

Figure 1. Efficiency vs number of variables in 
classification (a) between healthy (C1) and faulty (C2) 

signals, (b) between faulty signals (C11 / C12∪C13) 
and (c) between (C12 / C13), obtained based on GAHP, 

PSOHP, GAHS and PSOHS approaches

For the separation between healthy main rotors 
(C1) and faulty main rotors (C2), the efficiency 
rates do not increase beyond 6 attributes, for 
GAHP, PSOHP, GAHS, PSOHS approaches 
(Figure 1a). The same can be noticed with regard 
to the classification between three faulty behaviors 
(C11 / C12∪C13) in Figure 1b and (C12 / C13) in 

Figure 1c. In fact, efficiency rates tend to increase 
as the number of variables used increases. Beyond 
six variables, these rates become almost constant 
and tend to decrease in some cases. 

Even in the case of the neural approach, the 
input layer is more efficient when it contains 
six neurons.

With respect to BPNN optimization, Figure 2a 
shows the evolution of the BPNN efficiency with 
architecture (n, 10, 2) as a function of the number 
n of neurons in input layer (for n ranging from 
4 to 14). Similarly, an analysis was performed 
by plotting the BPNN efficiency variation with 
respect to n (the hidden layer neuron number), 
with n taking values between 4 and 20.  

Figure 2b illustrates the decrease of the (6, 10, 2) 
BPNN error as a function of epochs. This neural 
network converged after 25 epochs with a mean 
squared error E = 0.00006.

 Figure 2. (a) BPNN efficiency vs n  for (n, 10, 2) 
and (6, n, 2) architectures, (b) BPNN training and 

validation error for (6, 10, 2) architecture 

As suggested by the GANN and PSONN 
approaches, a fitness evolution as a function of n1 
and n2 (the number of neurons in input and hidden 
layers) is shown in Figures 3-4, where n1 ranges 
from 1 to 14, and n2 ranges from 1 to 25. 
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Figure 3. GANN fitness as a function of n1 (a) and n2 
(b) for different NN architectures

Figure 4. (a) PSONN fitness as a function of n1 and 
(b) PSONN fitness as a function of n2 (for different 

NN architectures)

The illustrated results express the accuracy of 
the optimal architecture (6, 10, 2) regardless of 
the approach used. It should be noted that the 

efficiency and fitness plots as functions of the 
number of variables (Figures 1, 2a, 3a and 4a) are 
given up to 14 variables. 

The fault diagnosis performed by neural networks 
is more efficient compared to other methods. In 
this case, it would be wise to mention a slight 
improvement for GANN and PSONN compared 
to BPNN. 

The efficiency of the classifications obtained via 
the GA and the PSO algorithms are clearly better. 
The efficiencies of the GA and PSO algorithms 
are similar. Moreover, the classifica-tions based 
on hypersurfaces (NLDA, GAHS, PSOHS) are 
more efficient than the ones based on hyperplanes 
(LDA, GAHP, PSOHP). 

The computation code for these different analyzes 
was compiled under the Matlab environment 
(R2017b) on an Intel Core i73.0 GHz processor, 
with 8GB of RAM. The execution times of the 
considered approaches, carried out offline during 
the training step, are mentioned in Table 3. 

Concerning the choice of attributes, the present 
results indicate the relevance of the amplitudes 
and frequencies of the spectrum peaks  compared 
to other types of attributes generally used (Li-
Juan et al. 2013; Zhang et al. 2013). Given the 
complexity of the classification task, these results 
compare favorably to those obtained in other 
works (Raj & Murali, 2013; Xiao et al., 2013). 
Due to the employment of neural networks and 
their GA- and PSO-based hybridization used in the 
aeronautical fault diagnosis, results comparable 
to those published in the works (Londhe et al., 
2014; Chomphan & Kingrattanaset, 2014) have 
been obtained.

Table 3. Run times for LDA, GAHP, PSOHP, 
NLDA, GAHS, PSOHS, BPNN, GANN and PSONN 

Approaches (training step)

Method LDA GAHP PSOHP

CPU Time (min) 1 3 3

Method NLDA GAHS PSOHS

CPU Time (min) 3 7 7

Method BPNN GANN PSONN

CPU Time (min) 8 14 14
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4. Conclusion

The aim of this paper is to use the Genetic 
Algorithms and Particle Swarm Optimization 
methods to improve the discrimination between 
faulty and healthy signals generated by Gazelle 
SA341 helicopter’s main rotors. 

GA and PSO were exploited in order to improve 
the discriminant functions’ parameters as well as 
the neural network architecture and parameters. 
A database of vibratory signals collected during 
periodic inspections has been used for this 
purpose. It can be easily noticed, that all the 
results obtained by using the GA- and PSO-
based techniques display a higher efficiency and 
therefore a higher discrimination ability. 

The LDA optimization is comparable to the 
hyperplane search approaches (GAHP and PSOHP) 
and the NLDA optimization is comparable to 
the hypersurface search approaches (GAHS and 
PSOHS). According to Table 2, GAHP and PSOHP 
outclass LDA with total efficiency rates of 94.86%, 
94.72% and 92.06%, respectively. Similarly, 
GAHS and PSOHS perform better than NLDA 
with total efficiency rates approaching 98.06%, 
97.93% and 96.79%, respectively.

The GA- and PSO-based Neural Networks have 
shown better results and performances than the 
discriminant analysis. PSONN outperforms 
BPNN with efficiency rates of 99.06% and 98.86% 
(respectively). Very satisfactory results have been 
obtained by using the GANN approach, with a 
classification rate of 99.33% for validation data. 
The GANN method was validated and retained 
for a possible computer implantation for main 
rotor faults’ diagnosis, considering in this regard 
more than three fault sub-classes. The overall 
performances are interesting and in agreement 
with the complexity of the above-mentioned 
classification task. Based on all simulation scores, 
it can be noticed that GA and PSO have been able 
to find optimal factors of discriminant functions 
and neural networks. These results are promising 
and suggest that GA and PSO can also be employed 
for other complex designs. GA and PSO allow one 
to improve the efficiency rates of classifications 
and to minimize classification errors.

GANN (or PSONN) is characterized by 
quick diagnostic decision-making and ease of 
implementation on ground-based computers or in-
flight systems. Its advantage lies in its ability to 
know the state of the helicopter main rotor without 
making it necessary to disassemble its elements.
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