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1. Introduction

Time-delay systems (also called dead-time 
systems) are commonly found in industrial 
processes (Richard, 2003). Modeling of chemical 
processes, production chains, etc., can induce time-
delays. Also, this delay term can be introduced by 
the physical properties of the equipment involved, 
when transporting some kind of mass or energy 
(distillation columns, heat exchange processes, 
etc.), by the measurement of the variables of 
the system, by the time consumed in computing 
the control law and so on (Liu, Zhang & Gu, 
2005). Time-delay systems are challenging from 
the viewpoint of control and they should be 
approached through control strategies with an 
acceptable performance and closed-loop stability. 
Several control strategies have been developed 
in order to deal with time delay systems. The 
Smith Predictor Compensator (SPC) has been 
widely used as a prediction strategy (Owens & 
Raya, 1982; Palmor, 1996). However, the SPC 
can only be applied to stable processes. In order 
to overcome this limitation, some modifications 
to the original SPC structure have been proposed 
for unstable processes (Márquez-Rubio et al., 
2015; Fragoso-Rubio et al. 2019). For example, 
in (Márquez-Rubio et al., 2015) an observer-
based approach to first-order unstable systems is 
presented, where the stability condition is stated 
in terms of the delay size related to the inverse 
of the dominant pole position in unstable process. 
Such an approach has reported time delays as 
large as four times the unstable time constant of 
the open-loop system. Also certain extensions of 
the SPC to control processes with one integrating 

and large time-delay have been reported (García & 
Albertos, 2008; Visioli & Zhong, 2011). In (García 
& Albertos, 2013) a Generalized Predictor (GP) 
has been presented to control stable, integral and 
unstable delayed processes. This GP considers 
a discrete approach and proposes a predictor-
based control structure with two filters and a PID 
controller. On the other hand, the classical PI/
PID controllers have also been employed with a 
view to controlling delayed systems, namely for 
integrating and unstable processes with time-delay 
(Seshagiri & Chidambaram, 2012; Gang-Gyoo & 
Yug-Deug, 2019). These control strategies perform 
acceptably in the control response when the delay 
is relatively small when compared to the unstable 
time constant of the system (Hagglund, 1996). 

In this work a discrete control methodology is 
presented in order to deal with systems with large 
time-delays. The proposed control structure is 
based on a polynomial approach and on a two-
degree-of-freedom controller. One important 
contribution of this work lies in the simplicity 
of the proposed methodology, since this new 
proposal does not consider any prediction stage 
to design the control law. This methodology uses a 
discrete time approach to tune the two-degree-of-
freedom controller, which is able to improve the 
closed-loop performance with respect to previous 
works in literature (García & Albertos, 2013; 
García & Albertos, 2008).  

The above-mentioned control strategy is also 
compared with the prediction-observer approach 
presented in a recent work (Fragoso-Rubio et 
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al. 2019). Additionally, this paper considers the 
problems of step tracking reference and the step 
disturbance rejection. This paper is organized as 
follows. In Section 2 the problem statement is 
presented. Section 3 sets forth the main results 
obtained. Further on, the numerical simulations 
in Section 4 illustrate the performance of the 
aforementioned methodology. Finally, the 
conclusion of this paper is included in Section 5.

2. Problem Statement

Let us consider the following class of Linear 
Time Invariant (LTI), Single-Input Single-Output 
(SISO) systems with delay at the input/output path

,)(
)(
)(

)(
)( sesGse

sM
sN

sU
sY ττ −=−=

                  
(1)

where )(sU  and )(sY  are the input and output 
signals, respectively; 0≥τ  is the constant time-
delay; )(sN  and )(sM  are polynomials of the 
complex variable s , and )(sG  is the delay-free 
transfer function. Consider a traditional control 
strategy based on an output feedback 
U s R s Y s F s( ) [ ( ) ( )] ( ),� �

which yields to the closed-loop system given by 
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where the exponential term ( se τ− ) located in the 
characteristic equation of the transfer function 
(2) leads to a system with an infinite number of 
poles. Then, the properties pertaining to closed-
loop stability should be carefully stated.

The stability analysis is complicated due to 
the delay term. In this proposal a discrete 
time representation of the time-delay term is 
considered. This consideration allows to obtain a 
controller tuned via polynomial approach.

3. Main Results

In this section a digital control methodology for 
stable, integrating and unstable systems with large 
time-delay is presented. In this methodology the 
time-delay term is expressed by a multiple of the 
sampling period ,nT τ= where τ  is the time-delay 
and n N∈ . This consideration on the sampling 
period was also used in (García & Albertos, 2013) 
in order to obtain a rational transfer function 
representation into variable z  domain (without 

transcendental terms). In the present work such 
a sampling period is taken into account with the 
same intention. Based on this assumption, let us 
consider the discrete time representation of (1), 

),()(
)( zGdzU

zY = ,

where dG  represents the z-transform of (1), for a 
zero-order hold ( )ZOH . Therefore, the transfer 
function )(zGd , can also be expressed as

( )
( )( ) ( )

( )zA
zBn

zM
zN

d zzG == −)(                              (3)

It should be noticed that the transfer function  

)(zGd   includes the terms of the delay-free system  

)(
)(

zM
zN

and the (large) delay, which is expressed as 
n  unitary delays ( nz− ). It should be taken into 
account that the discrete representation of the 
delay operator increases the relative degree of the 
whole discrete process representation due to the 
chosen sampling period. The following subsection 
presents the procedure employed in order to design 
the proposed discrete controller with two-degree-
of-freedom via the polynomial approach. 

3.1 Control Structure

Consider the discrete representation of the process 
equation (3), which can be rewritten as 

( )
( )

( )
( ) ,)( zA
zB

zU
zY

d zG ==    (4)
where ( )zB  and ( )zA  are polynomials of the 
complex variable z . ( )zU  and ( )zY  are the 
input and the measurable digital output signals, 
respectively. The proposed two-degree-of-
freedom controller can be represented as follows:

( ) ( )
( ) ( ) ( )

( ) ( ),zYzYzU czS
zT

zS
zR +−=              (5)

where ( )zYc  is the new reference input variable. 
The proposed digital controller structure with two-
degree-of-freedom is illustrated in Figure 1. The 
transfer functions 

( )
( )zS
zT

 and ( )
( )zS
zR  are considered 

to be strictly proper. By substituting the control 
law given by (5) into transfer function (4), 
the following closed-loop transfer function is 
obtained, 

( )
( )

( ) ( )
( ) ( ) ( ) ( ) .zRzBzSzA

zTzB
zY
zY

c +=
                   

(6)
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Figure 1. Digital controller with two-degrees-of-
freedom and disturbance input

The characteristic equation induced by the digital 
controller is given by

( ) ( ) ( ) ( ) .0=+ zRzBzSzA          (7)
It should be noticed that one has complete freedom 
to design the polynomials ( )zS  and ( )zR  in 
equation (7), thus the closed-loop poles can be 
relocated freely. However, the dimension of such 
polynomials should be established adequately. In 
that case, the characteristic polynomial (7) should 
be equaled with a desired characteristic stable 
polynomial  ( )zD , where  ( )zD  should be of 
the same order as (7) , 

( ) ( ) ( ) ( ) ( ).zRzBzSzAzD +=                        (8)

It can be seen that the output response of the 
system depends on ( )zD . The desired closed-
loop poles must be relocated into the unitary circle 
in the complex plane z  in order to obtain a stable 
response. It is recommended to place the poles 
on the interval )1,0[ , into the real axis in order to 
obtain  a transient overdamped output response 
i.e., without transient oscillation performance. 
On the other hand the control parameters ( )zS  
and ( )zR  can be calculated by solving a set of 
algebraic equations, which are derived from 
equation (8). The details for solving the induced 
system of equations will be provided later.

The proposed methodology can be applied for 
systems without delay by considering a discrete 
representation (3) with n=0 and using any sample 
period T defined for the user.

3.2 Step Disturbance Rejection

In order to analyse the disturbance rejection 
problem, let us consider the disturbed process input 

( ) ( )
( ) ( ) ( ),zQzBzU zS
zR +−=                               (9)

where ( )zQ  is a step input disturbance. By 
substituting expression (9) into transfer function 

(4), the disturbance-output transfer function can 
be obtained:

( )
( )

( ) ( )
( ) ( ) ( ) ( ) .zRzBzSzA

zBzS
zQ
zY

+=
                  

(10)

Figure 1 illustrates the digital controller with 
two-degree-of-freedom and disturbance input  
( )zQ . The classical Final Value Theorem can be 

applied to ( )zY  derived from transfer function 
(10), when the disturbance step signal is given 
by ( )1)( −= z

zzQ β , with an amplitude R∈β . The 
following expression is obtained, 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ).(1limlim

1
zQ

zRzBzSzA
zBzSzky

zk 







+

−=
→∞→

It can be easily shown that when the polynomial 
( )zS  is chosen as ( ) ( ) ( )zCzzS ′−= 1 , where 

)(zC′  is a new polynomial with degree 
( ) 1)(deg −zS . Then,  ( ) 01 =S ,  i.e., the output 

( )zY  is zero for the steady-state of the system. 
Therefore, the system is able to reject input step 
disturbances. Then, one can present the following 
property of the proposed methodology.

Property 1. The control scheme shown in Figure 
1 is able to reject input step disturbance, if the 
polynomial S(z) is given by 

( ) ( ) ( )zCzzS ′−= 1                                        (11)

where C′(z) is a new polynomial with the degree 
deg(S(z))-1.

3.3 Step Reference Tracking 

The following analysis considers the problem of 
step reference tracking. Let us consider the transfer 
function given by equation (6). By applying the 
Final Value Theorem with ( )1−= z

z
cY β ,  )( R∈β  as 

the input reference, to the transfer function given 
by (6), one obtains:

( ) ( ) ).(
)()()()(

)()(1limlim
1

zY
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(12)

Considering the polynomial )(zS  given by (11), 
the limit given by (12) becomes, 

.
)(
)(lim

1
β







→ zR

zT
z

                                               
(13)

Notice that in the limit given by (13), ( )zT should 
be equal to the sum of the ( )zR   coefficients in 
order to track step references. ( )zT  also can be 
also expressed as 

( ) ....10 αrrrzT +++=
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Therefore, the second property of the proposed 
methodology can be stated as:

Property 2. The control scheme shown in Figure 
1 is able to track reference step changes, if T(z) is 
considered as

( ) ( ).1RzT =

3.4 Controllers Degree

Considering the previous developments, the 
degrees of the polynomials satisfying step 
disturbance rejection and step reference tracking 
are given by

( ) ( )
( ) ( )

( ) ( )
,

1)(deg)(deg
)(deg)(deg

1)(deg2)(deg

+=
=

+=
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where the corresponding coefficients are defined as,
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The degrees of ( )zD , ( )zR , ( )zS  and ( )zT  
depend on ( ) ))deg zA=α . The values of 
the coefficients ( )zR , ( )zS  and ( )zT  can be 
obtained by solving a system of simultaneous 
linear equations. Further on, a method employed 
with a view to generalizing the proposed discrete 
polynomial control is presented.

3.5 General Discrete Polynomial 
Equation.

In this section the coefficients of the polynomial 
controllers ( )zS  and ( )zR  are obtained. 
Equation (8) is known as the Bezout identity 
and the solutions for )(zS  and )(zR  are 
guaranteed. By substituting equation (15) into 
equation (8), equation (8) can be expressed as a 
matrix representation, 

Mx = d,                                                          (16)

where M  is a square matrix of dimension 
( ) )2)(deg2( +zA . M  consists in the known 

coefficients of polynomials ( )zA  and ( )zB , 
given by the model process (3). x  is column  
vector, which contains the unknown coefficients 
( )zS  and ( )zR . And finally, d is a known vector 

with the coefficients of the desired polynomial 
characteristic ( )zD . Thus, the coefficients of the 
polynomials  ( )zA  and ( )zB  can be generalized 
as follows: 

( )
,

...)(
...

2
2

1
1

2
2

1
1

α
αα

α
ααα

bzbzbzB
azazazzA

+++=
++++=

−−

−−

such that the equation (16) is expressed by, 
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Therefore, equation (16) is solved for x  and the 
values of the unknown coefficients  )(zS  and 

)(zR  are obtained. This system of equations can 
be solved by means of Matlab, Maple, etc.

The control formulation developed above can 
be applied to all transfer functions (4), strictly 
proper. Even when the methodology seems to 
be just applicable to systems with one pole more 
than the number of zeros, (see the order of )(zB  
and )(zA previously defined). This situation is 
illustrated in Example 1, where some coefficients 
of )(zB  are considered as zero in order to set up 
the methodology.

3.6 Internal Stability of Digital 
Controller

In order to ensure internal stability of the closed-
loop system the following particular cases should 
be taken into account.

Case 1.  ( )zC′  is unstable and )(zR  is stable. 
For this case the scheme shown in Figure 2 should 
be employed. Thus when ( )zR  is stable the pre-
filter )(

)(
zR
zT  does not cause closed-loop internal 

instability in the control scheme shown in Figure 2.

Figure 2. Digital control scheme for the Case 1.

Case 2. ( )zC′  and )(zR  are unstable. Here 
internal stability can neither be guaranteed for 
the control scheme illustrated in Figure 1, nor for 
the one in Figure 2. In this case, the polynomial 
controllers should be designed by considering 
a different sampling time or a different desired 
polynomial, )(zD . This will be taken into account 
in Procedure 1, which illustrates on a step-by-step 
basis how to obtain the aforementioned control 
scheme. Now, based on the previous discussions 
and results, the proposed methodology can be 
summarized as follows. 

Procedure 1. To obtain the proposed control scheme.

1. Choose an initial sampling time dT , for 
instance, its value can be chosen to be half the 

value of the stable or unstable  time constant 
(dominant) of the delay-free system. Then, 
select n  )( N∈n  so that 

dTn τ= . Compute 
the sampling time as nT τ= .

2. Obtain the discrete transfer function 
representation of the plant. 

3. Identify the degrees of )(zB  and )(zA .

4. Obtain the degrees of polynomials )(zD , 
)(zR  and )(zS . 

5. Propose the desired stable polynomial )(zD , 
where the order of )(zD  should be the same 
as the order of the equation (7). 

6. Solve the system of simultaneous linear 
equations (16) in order to obtain the value of 
the coefficients )(zR , )(zS  and )(zT . 

7. Check the roots of polynomials ( )zC′   
and )(zR :

a. If ( )zC′  and )(zR  are stable or only 
( )zC′  is stable, implement the control 

scheme shown in Figure 1 and go to 
step 8. 

b. If ( )zC′  is unstable and )(zR  is stable, 
implement the control scheme shown in 
Figure 2 and go to step 8. 

c. If ( )zC′  and )(zR  are unstable, two 
options are available:

i. Decrease the sampling time and go to 
step 2. 

ii. Propose a new desired polynomial )(zD  
and go to step 6. 

8. Use the obtained controllers and verify how 
they perform via simulation

4. Examples

In this section the proposed digital control 
methodology is applied to different processes in 
order to illustrate its effectiveness. 

Example 1. Let us consider a stable process with 
time-delay, 

( )
( ) .1

1 s
ssU

sY e−
+=                                          (17)

For the discrete time representation of the 
process expressed by (17) a sampling period 

5.0=T  is used. Thus, the discrete transfer 
function is given by 
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where 021 == bb ,  39347.03 =b  and 
6065.01 −=a , .032 == aa  The degrees of the 

polynomials ( )zD , ( )zR   and  ( )zS  are obtained 
from (14), as 

( ) ( )
( ) ( )

( ) ( ) .41)(deg)deg(
,3)(deg)deg(

,71)(deg2)deg(

=+=
==
=+=

zAzS
zAzR

zAzD

Therefore one should propose seven poles 
for the desired polynomial ( )zD . Thus the 
location of the closed-loop poles is proposed 
as { }1.0,3.0,2.0,1.0,3.0,2.0,1.0 . Then, the 
polynomials can be written as
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                                                                        (19)
Finally, based on the parameters given in equations 
(18) and (19), equation (16) is solved for x . The 
values of the coefficients ( )zR , S ( )z  and )(zT  
are obtained,
R z z z z

S z z
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z
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In this example the polynomials ( )zR  and ( )zC′  
are stable, therefore the scheme in Figure 1 is 
used. Figure 3 shows the performance of the 
digital control methodology subject to an unit 
step in the reference at t = 0sec and a disturbance 
step-signal acting at t = 20sec with a magnitude 
of 0.05 units. 

Figure 3. Output response of the system (17) with 
the proposed digital controller.

Example 2. Let us consider an integrating process 
with time-delay,

( )
( ) .4

)1(
1 s
sssU

sY e−
+=

                                   
(20)

This example is used in (García & Albertos, 
2013), where an equivalent scheme to the Smith 
predictor called GP with two stable filters and a 
PID controller is proposed. As it can be proved, the 
GP has performed substantially better than many 
other previous approaches, thus the proposed 
control methodology will be compared with the 
GP control strategy. Now for comparison purposes 
a suitable sampling period, such as 2.0=T  is 
considered for both strategies. For this example 
certain requirements such as a %0  overshoot 
and recovery time of 60s for step-type load 
disturbance are proposed by (García & Albertos, 
2013) and these design specifications have been 
taken into account. Based on the methodology 
proposed in this work, the discrete representation 
of the process expressed by (20) is given by,

G z zd
N z
M z
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z
z z z
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. ( . )
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(21)

According to the requirements from (García 
& Albertos, 2013), one proposed to locate a 
dominant pole in 975.0  and the leftover poles in 

1.0 . Based on these considerations, the equation 
(16) is solved for x . For this example only the 
polynomial ( )zR  is stable, therefore the scheme 
shown in Figure 2 is employed in order to ensure 
internal stability of the closed-loop system. 

The controller parameters peculiar to 
the GP (García & Albertos, 2013) were 
obtained as the authors have suggested 
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with d = 20  and 
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from ( ) ( )( ) ., 8187.01 −−

∼

= zz
zzG λ ( )

( )mz
zNzF
λ
λ

−

∗

= ,~

2 )( , 
where m  is the number of zeros of the 
polynomial ( ).zN ( )λ,~ zN ∗ can be obtained from  

G z c zI A A bd N z
D z

�� � � �
� �� � � �� � �

�

, .
,� �1 

 
Then, the PID controller for the delay-free 
plant given in (García & Albertos, 2013) is 

K s s s
s s� � � �� � �� �

�� �
0 21 1 1 20

0 1 1

. /

.
.  The discrete time 
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controller ( )zK  is obtained by discretizing ( )sK . 
Finally z zd� �� 20 and ( ) .1=zFk  

The simulation results for the two aforementioned 
control strategies are provided in Figure 4. It can 
be seen that the proposed methodology improves 
the system performance for both, the set point 
tracking and load disturbance rejection. It should 
be emphasized that the control structure presented 
in this work is simpler than the control strategy 
proposed by (Garcia & Albertos, 2013), if one 
takes into consideration that this new approach 
does not use any structure prediction to design 
the control law. 

Moreover, the order of the controller involved in 
(Garcia & Albertos, 2013) reach up to 230th order 
meanwhile the order of the controllers related to 
the proposed methodology is of 45th order.

Figure 4. Comparative output response of the system 
(20) with a step disturbance acting at t=80s. with a 

magnitude of 0.1 units.

The corresponding control signals are shown in 
Figure 5. It can be observed that the control signal 
obtained by employing the proposed method 
shows a smooth variation in comparison with the 
one obtained by using the approach proposed by 
(García & Albertos, 2013).

Figure 5. Control signal of the system

Example 3. Let us consider a triple integrating 
process with time-delay,

( )
( ) .41

3
s

ssU
sY e−=

                                    
(22)

In this example a sampling period of 2.0=T  is 
considered. Thus, ( )zB  and ( )zA  are obtained 
through the discretization of the process in (22), 
then the degrees of the controllers are calculated. 
This experiment shows the output performance 
of the system involved based on the position of 
two different closed-loop poles location, i.e, two 
different desired polynomials )(zD . In the first 
case, all poles of the desired polynomial ( )zD  
are located at 0.2. In the second case, the dominant 
pole has been located at 0.94 and the other poles 
at 0.2. In this example only the polynomial ( )zR  
is stable in both locations, therefore the scheme 
in Figure 2 is used. Figure 6 shows the output 
performance response from the proposed digital 
methodology when a step disturbance acts at t = 
50s with a magnitude of 005.0  units.

Figure 6. Output response of the system (22) with 
the proposed digital controller and different locations

Example 4. Let us consider an unstable process 
with large time-delay, 

( )
( ) .5

1
1 s

ssU
sY e−

−=
                                 

(23)

In this case, a sampling period 1.0=T  is used. 
The dominant pole has been located at 0.95 and 
the leftover poles at 1.0 . In this example the 
scheme in Figure 2 is used, as only the polynomial 
( )zR  is stable. It is important to highlight that 

this system cannot be stabilized by the proposed 
strategy from (Márquez-Rubio et al., 2015), since 
its stability condition cannot be satisfied ( a/4<τ  
with 5=τ  and 1=a ). The delayed system (23) 
is stabilized in (Fragoso-Rubio et al, 2019) using 
a prediction-observer scheme with the parameters 
m = 20 (which implies an observer of 20th order), 
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5.1=L  and 1.1−=k . Figure 7 shows the output 
performance of both strategies. It can be noticed 
that the results are similar.

Figure 7. Output response of the system (23) with 
the digital controller.

5. Conclusion

This work proposes a digital control 
methodology for systems with large time 

delay processes. The proposed methodology 
can be applied to all kinds of systems (stable, 
integrating and unstable) with time delays. It 
is based on a discrete time representation of 
the dynamics of the system involved and uses 
a polynomial approach. By employing it the 
problems of step reference tracking and step 
disturbance rejection are also solved. It should 
be mentioned that the sampling period is an 
important parameter for this methodology, as 
the degree of the controllers depends on it. In 
order to ensure internal stability of the closed-
loop system two different implementations are 
presented. The two implementations are based 
on the stability of the polynomials ( )zC′  and 

)(zR . Numerical simulations show improved 
results with respect to recent control strategies 
in literature, in terms of stability, step tracking 
and rejecting step disturbances.
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