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1. Introduction

The reliability and dependability of critical 
systems are of paramount importance especially 
for aerospace systems such as unmanned aerial 
vehicles (UAVs) and airplanes. Indeed, detecting 
and identifying a technical fault is no longer 
sufficient, UAVs must be able to instantly correct 
or tolerate the respective anomaly in order to 
fulfill the objectives it was designed for or at least 
to ensure stability. The system is a so-called fault-
tolerant control system (FTCS).

Various FTC strategies were reported in 
specialised literature: linear matrix inequality 
(Andrade et al., 2017), the pseudo-inverse (Tchon  
& Janiak,   2009), multiple model (Pandey, Kar & 
Mahanta, 2017) and  adaptive control methods (Yu 
et al., 2019), robust controls (Zhi & al., 2018), the 
Algebraic Riccati Equation (ARE), the Hamilton-
Jacobi Equation (HJE), the sliding mode control 
(SMC) (Zhang et al., 2018) and intelligent 
controls based on artificial neural network (Yen 
& Ho, 2004). The “suitable” technique for FTC 
depends on the type of system considered and the 
nature/gravity of the fault.

(Andrade et al., 2017) employed the LMI 
technique to guarantee the stability and the 
robust performance of an F-16 aircraft and to 

improve its damping factor. Similarly, (Zhi & 
al., 2018), presented a robust FTC technique in 
order to deal with disturbances and unmodelled 
dynamics of an over-actuated system. However, 
despite the effectiveness and the robustness 
of these methods, they remain “passive”. That 
means that they are pre-computed offline and 
specific to a presumed set of faults. Indeed, unlike 
“active” approaches, passive ones use neither a 
fault detection and identification (FDI) block, nor 
controller reconfiguration which puts the global 
stability of the system at risk. Various active 
approaches can be mentioned such as (Tchon & 
Janiak, 2009; Yen & Ho, 2004). However, they 
lack the important property of the SDRE-based 
technique which allows the designer to trade-off 
between control accuracy and control effort using 
weighting matrices.

Moreover, with regard to nonlinear systems, it is 
hardly feasible to implement FTC laws using the 
HJE, especially for complicated systems. Several 
numerical algorithms were proposed to provide 
an approximate solution such as the iterative 
“Heuristic Dynamic Programming” (HDP) 
approach (Mu, Wang & He, 2018). However, the 
latter suffers from a heavy computational load. 
The SDRE approach (Korayem & Nekoo, 2015), 
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on the other hand, does not require the resolution 
of the HJE. It was conceived as an extension of the 
ARE in order to solve nonlinear optimal control 
problems in real time while conserving the same 
state-space “linear aspect”.

Owing to the last property, the SDRE technique 
has the advantage of combining the simplicity 
of linear methods and the effectiveness of NL 
ones in dealing with complicated systems, 
which is generally not provided by other  
FTC strategies.

As UAVs are concerned, their field of application 
has expanded significantly in recent years to 
include industrial applications, agriculture, 
security (such as border and coastal surveillance, 
traffic surveillance and protection of sensitive 
sites), delivery (such as the transport of 
medicines in urban environments, food and postal 
deliveries), etc… Consequently, the reliability 
of UAVs has gained increased attention with a 
focus on the use of FTC strategies. (Emran & 
Najjaran, 2018) presented a high-quality review 
of FTC for UAVs. (Merheb, Noura & Bateman, 
2014) employed the SMC in order to stabilize 
the quadrotor in the degraded mode, but they 
considered a partial loss of only one motor. 
(Saied et al., 2015) referred to a total failure of 
one motor which was compensated by controlling 
the built-in redundant motor instead of the failing 
one. This redundancy allows full controllability 
of the damaged UAV, but its drawbacks are the 
additional costs it incurs and the complexity of 
its architecture.

Moreover, the methods considered in the 
aforementioned papers apply the reconfigurable 
control right after the fault diagnosis is established, 
which is not realistic and assumes the system 
be “ideal”. During that delay (between the fault 
detection and the application of the new control), 
the post-fault system is still driven by the nominal 
control and can face the risk of instability. The 
theory of the PA was conceived for minimizing 
these risks.

(Ciubotaru & Staroswiecki, 2009) presented 
a comparison between two PA strategies: The 
NR algorithm and the Matrix Sign Function 
(MSF). Simulations have shown that the NR 

algorithm needs more steps to converge but has 
a more satisfactory performance concerning 
the cost functional value and the closed loop 
admissibility. The work of (Menon et al., 2002) 
also features a good comparison between the 
iterative methods of “Kleinman/NR” and “the 
discrete time transformation”. The authors used 
3 different processors to evaluate the execution 
time of the 2 above-mentioned algorithms. The 
“Kleinman” or “NR” method yielded a minimum 
computing time which proved that it is suitable 
for real-time applications.

Specialised literature includes several 
works based on the PA such as (Ciubotaru & 
Staroswiecki, 2006; Staroswiecki, Yang & Jiang, 
2007) where the authors used the NR algorithm 
in order to solve the ARE in a recursive way, 
and applied it to the linear model of an aircraft. 
However, this linear approximation, despite its 
simplicity, becomes non-valid for certain initial 
conditions (ICs).  This happens when the fault 
occurs near the boundary of the linearization-
validity domain. A solution to this problem 
was presented by (Raharijaona et al., 2009; 
Ghachem, Benothman & Benrejeb, 2012) who 
used the NL PA, but its application was limited 
to first- and second-order equations and never 
involved a real NL system. Besides, in all the 
aforementioned studies, only one actuator 
failure was considered.

This paper proposes a NL PA for a quadrotor’s 
recovery process when partial failures affect its 
four rotors simultaneously. The NL modelling of 
the aforementioned system is presented, as well 
as the simulations of the healthy, affected, and 
recovered system using both the PA and the direct 
SDRE methods.

The remainder of this paper is organized as 
follows. Section 2 describes the UAV and its 
dynamics as well as the control strategy adopted 
for stabilizing the attitude of the quadrotor in 
normal conditions. Section 3 presents the system 
recovery process based on the iterative strategy of 
PA. Before the conclusion, section 4 sets forth the 
simulations and analysis of the healthy, affected 
and recovered system, with a comparison between 
the iterative and direct methods. 
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2. Quadrotor Modelling and  
Control Strategy

First, this section presents an overview of the 
quadrotor and its dynamics. Then, it sets forth 
the control strategy employed for stabilizing the 
quadrotor attitude.

2.1 Quadrotor Dynamics

The UAV analysed in this paper is the “DraganFly” 
quadrotor. (Bresciani, 2008) presented a basic 
structure of the UAV with its body and global 
coordinate system, and the Euler angles of roll, 
pitch and yaw. The quadrotor is composed of 
counter-rotating motors arranged in pairs along 
each of its arms. If all motors are spinning at 
the same speed, this counter-rotation allows the 
vehicle to maintain a constant heading while 
hovering. Moreover, some assumptions have to 
be made for this model:

-- The atmosphere or wind effects are negligible.

-- The quadrotor is equipped with an inertial 
measurement unit (IMU) that provides the 
necessary output measurements related to the 
body frame.

-- The Euler angles are small enough to consider 
that angular velocities ( , , )p q r  are equal to 

the derivatives of Euler angles ( , , )ϕ θ ψ  .

Based on the Newton-Euler formalism (Bresciani, 
2008), the following rotational dynamics can be 
obtained for the quadrotor: 
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, ,ϕ θ ψ  denote the roll, pitch and yaw angles, 
respectively. , ,x y zI I I  are the body moments of 
inertia and rI  is the rotational moment of inertia 
around the propeller axis. L  is the length of the 
arm (measured from the center of mass) and 1..4U  
are the control inputs of the system defined by: 
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Where iW  denote the speed of the rotor  i
( 1..4)i = and ,b c  are the thrust and drag 
coefficients, respectively.

2.2 Control Strategy

This section presents the SDRE method which 
is an optimal control strategy that was adopted 
for stabilizing the quadrotor. Let us first consider 
equation (1) in the following nonlinear form:

( ) ( )x F x G x u= + (3)

Where nx∈ℜ and mu∈ℜ are the state and 
control vectors respectively and ,F G  are 
nonlinear functions. The optimal control problem 
is designed using the cost function (4). The aim is 
to find a control law  that ensures the stability of 
the closed-loop system and drives the state ( )x t  
to 0  (as t →∞ ), while minimizing the following 
performance index:

( ) ( ) ( )( )
0

T T
p pJ x x Q x x u R x u dt

∞
= +∫ (4)

( )pQ x  and ( )pR x  are penalization matrices that 
affect the state and control actions. The concept 
of the SDRE method is to rewrite equation (3) 
in a state-dependent coefficient (SDC) form (5) 
where all matrices become a function of the 
current state.

( ) ( )x A x x B x u= +        (5)

Where ( )A x  and ( )B x  are matrices of 
appropriate dimensions. For simplicity, it is 
assumed that all states are known. Thus, no 
observer is incorporated in this study. It’s also 
worth mentioning that the choice of ( )A x  and  

( )B x  is not unique, a suitable parameterization 
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must ensure the system (5) controllability for any 
state denoted by x  i.e., ( )( )trbrank C x n= where 

trbC  is the controllability matrix:

( )
( ) ( ) ( ) ( ) ( )1    

trb

n

C x

B x A x B x A x B x−

=

 … 
(6)

Since all matrices are “state-dependent”, the 
concept of the SDRE method consists in computing 
the control law “on line” at each sample time. 
This aspect makes this method advantageous as 
it avoids heavy computations and generates simple 
algorithms that can be conveniently implemented 
to UAVs. The following steps can summarize the 
design theory:

1.	 Obtain the measured states x  from sensors.

2.	 Compute the model states ( )A x , ( )B x   and 
the weighting matrices ( )pQ x  and ( )pR x .

3.	 Form and solve the SDRE (7) evaluated at 
the current state (for ( ) 0T x > ):

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1

T

T
p p

A x T x T x A x

T x B x R x B x T x Q x−

+ −

= −
(7)

4.	 Evaluate the feedback control law:

( ) ( ) ( ) ( ) ( )1 T
pu x R x B x T x x t−= − (8)

It can be noticed that, if all former conditions 
are provided, the SDRE method ensures local 
asymptotic stability of the system presented in 
this paper.

3. The iterative FTC

This section sets forth the concept of the iterative 
strategy (PA), adopted to stabilize the quadrotor 
after failure occurrence.

The majority of FTC methodologies apply the 
accommodated control right after the diagnosis 
is established, as in (Saied et al., 2015), which 
is not right for real-time applications. Indeed, 
as it was mentioned in the Introduction, the 
transient period needed to compute the new FTC 
is necessary and critical because it can lead to 
system instability.

Therefore, it is useful to shorten this period as much 
as possible by applying an iterative scheme known 
as the PA. The concept of the aforementioned 
theory is to use an iterative algorithm (such as 
the “NR”), applied online, that converges to the 
final FTC. Each control law produced by this 
algorithm ensures the stabilization of the system 
and improves as computation time increases.

The concept of the NR algorithm, in a NL system 
case, consists in starting with an initial matrix 
( )0

n nT x ×∈R  and in solving the “Lyapunov” 
equation (9) in order to obtain the next iteration 

( )1kT x+  where ( 0,1, 2,3...)k =  represent the 
Newton steps.

( 1)

( 1)
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T
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Where:

( ) ( ) ( ) ( )1 T
k p kG x R x B x T x−= (10)

Each time a new iteration ( )1kT x+  is computed, 
the control law is applied online using equation (8). 
The algorithm stops when ( )1( )k kT x T x+ = . Let 

( )T x∞  be the final solution to which the algorithm 
converges. It represents also the unique solution 
of the SDRE as defined in (7) which leads in fact 
to the optimal control (8).

As convergence and stability are concerned, 
(Kleinman, 1968) proved that the above-
mentioned algorithm implies a monotone quadratic 
convergence once certain conditions are fulfilled:

-- There exists a matrix ( )0
n nT x ×∈R  

that is positive semi-definite, such that 
( ) ( ) ( )( )0A x B x G x−  is of the Hurwitz 

type i.e., all its eigenvalues have negative 
real parts.

-- The stabilizability and detectability 
conditions must be verified. 

If the above assumptions hold, then all produced 
iterations ( )1kT x+  defined in (9) will ensure the 
stability of the closed-loop system and converge 
monotonically to the stabilizable solution ( )T x∞ . 
It can also be stressed that the choice of an accurate 
starting matrix makes the convergence faster.
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4. Simulation Results

This section will focus on applying the SDRE-
based control strategy (section 2.2) so that the 
quadrotor attitude in the fault-free case can be 
stabilized.  Then the affected system will be 
simulated with and without the recovery process. 
In the latter case, both the iterative method (PA), 
and the direct one will be employed.

4.1 Controlling the Fault-free System

Let us consider 
T

x ϕ ϕ θ θ = Ψ Ψ 
 



as the state vector. In order to apply the SDRE 
method, one should first make up the SDC 
matrices so that the system (1) can take the 
form expressed by equation (5). All calculations 
worked out, the following parameterization (11) 
can be obtained: 

( )
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. The different parameters of the 

UAV were presented by (Bresciani, 2008).

Then, the controllability condition defined by (6) 
should be checked: 

( )( ) 6 16 trbrank C x x ×= ∀ ∈R

Further on, the above-mentioned model can take 
the following state-space form:

( ) ( )n nx A x x B x u= + (12)

where the subscript n denotes the nominal 
system (before fault occurrence). Finally, in 
order to solve the SDRE in (7) and to obtain the 
nominal control nu  (8), the penalization matrices 
should be defined. The matrix ( )pQ x  is used 
for weighting the system states, while ( )pR x  is 
used for weighting the control inputs and they are 
commonly chosen as identity matrices. For this 
system, one chose 6pQ I=  and 4pR I=  (where 
I  denotes the identity matrix). For simulations, 
a small step size 410st

−=  was chosen, which 
makes results more accurate. Starting with the 
following ICs:

[ ]0.12; 0; 0.08; 0; 0.5; 0IC = − (13)

The objective is to stabilize the attitude of the 
quadrotor by driving the Euler angles and the 
angular velocities to the equilibrium position 
( 0)eqx =  with respect to a speed constraint (the 
response time being ideally: ( )4 7s t s≤ ≤ . Here, 
one can consider that the outputs of the system are 
the variable states. 

Figure 1 and Figure 2 show the responses of 
the Euler angles and the angular velocities in  
normal conditions.

Figure 1. Stabilization of Euler angles before failure 
occurrence

Figure 2. Stabilization of angular velocities before 
failure occurrence
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It can be noticed that the quadrotor attitude is 
successfully stabilized during hovering. It’s also 
vivid that the system needed no more than 5s to 
converge which makes the overall performance of 
the controller satisfactory.

4.2 Fault Injection

For quadrotors, it is more interesting to consider 
actuator faults rather than sensor faults due to 
their direct impact on system stability and the 
high probability of their occurrence. Moreover, a 
sensor fault does not require control modification, 
it requires only that redundant sensors or 
observers provide the correct estimation for the 
recovery process. 

This study considers partial actuator failures 
occurring at time 4 ft s= , and affecting the 
4 rotors of the UAV. Depending on the type 
of failure, the FDI module provides a pair of 
matrices ( ) ( )( ),f fA x B x  describing the affected 
system where  stands for faulty. In this case, 

( ) ( )( )   f nA x A x= .

The actuator failure can be modelled either 
by means of a multiplicative coefficient that 
indicates the control effectiveness, or by means 
of an additive term representing a deviation 
of the system parameters. For the system 
presented in this paper, the faulty control  
matrix becomes:

( ) ( )f nB x B x Bδ= + (14)

Where: ( )310 6,4B Iδ = × . 

Figure 3 and Figure 4 illustrate the impact of the 
aforementioned failures. The affected system is 
simulated by using the same nominal control nu  
without any accommodation procedure. The 
control sequence for the faulty system is described 
in Figure 5.

It can be seen that the outputs deviate quickly 
from their steady-state value after the failure 
occurrence. One can also notice that the yaw 
angle and yaw rate are not affected by failures 
because of the location of additive terms  
in Bδ .

Figure 3. Euler angles after failure occurrence

Figure 4. Angular velocities after failure occurrence

Figure 5. Control sequence for the system  
before recovery

4.3 Recovery Procedure

In section 4.2, the nominal control nu  was not 
sufficient to preserve the system stability in the 
presence of failures. Hence, the necessity to use 
the FTC law for the recovery process. 

Although various studies have proven the 
advantages of the iterative method over the direct 
one, a real NL case was never approached. To 
this aim, both the NL PA and the direct SDRE 
method were employed in order to accommodate 
the faulty system.

The direct method of SDRE consists in applying 
the same steps as in section 2.2 and in taking into 
consideration the faulty input matrix in (14). A 
switching procedure is used to monitor the new 
computed control. 

As regards the iterative strategy, the control 
sequence for the accommodated system is 
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illustrated in Figure 6. For illustration purposes, it 
is assumed that the delay related to fault diagnosis 
be 0,5fdit s=   and 0.5et s=  be the time needed 
to compute each control law  iu .

Figure 6. Control sequence for the system under 
the PA

As it was explained in Section 3, one starts 
applying 0 ( )G x  at time 0it , then the Lyapunov 
equation (9) is solved and the obtained control iu  
is applied online until the algorithm converges at 
time fct . When the gain matrix ( )iG x  remains 
constant (i.e., when ( ) ( )1i iG x G x+= ), ( )fcG x  
(15) will correspond then to the final solution 
to which the algorithm converges. The matrix 

( )fcG x  (of dimensions ( )4 6× ), is computed 
using equation (10) and it ensures the stability of 
the closed-loop system ( ) ( ) ( )( )f fcA x B x G x− .

( )

0.9999 0.0158 0 0.0001 0.0001 0.0006

0.0148 0.9997 0.0058 0.0153 0.0142 0.0753

0 0 0.9258 0.0004 0.3779 1.0028

0.0003 0.0153 0.3779 1.0003 0.9257 4.9067

G xfc =

−

− − −

− − −

 
 
 
 
 
 

(15)

Finally, the FTC  fcu  (16) for both methods is 
obtained as:

 fc fcu G x= − (16)

Figure 7, Figure 8 and Figure 9 illustrate the 
stabilization of the quadrotor attitude.

 Figure 7. Euler angles after recovery: PA vs. the 
direct SDRE method

Figure 8. Angular velocities after recovery, using PA

Figure 9. Angular velocities after recovery, using the 
direct SDRE method

Figure 10 illustrates the simulation results for the 
control inputs, which were obtained by using the 
PA strategy. One can notice the peaks that appear 
at time 5t s=  which correspond to the first 
application of the corrective control. After that, 
all control inputs converge to 0  and the speeds 
of the rotors are equalized (2).

Figure 10. Control inputs using the PA

It should be reminded that the main objective of 
FTC is to avoid critical situations and to ensure 
that the faulty system can still achieve the control 
objectives of the healthy one. 

Figure 7, Figure 8 and Figure 9 show that, for both 
aforementioned methods, the recovery process has 
led to a successful accommodation of the faulty 
system and it managed to bring the Euler angles 
back to the stable position.

However, it can be seen that the NL PA was 
advantageous in terms of convergence speed. 
When using the NL PA it took 5s  to stabilize the 
system, as compared to 7.5s  when employing the 
direct method.

Another important advantage of the PA is the 
minimization of the recovery delay. The lower 
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this delay is, the smaller the deviation from the 
stable position. 

Indeed, for the NPA case and in relation to 
Figure 6, the first corrective iteration (which 
was sufficient to make the system converge) 
was applied at 0 5i f fdi et t t t s= + + = . Thus, the 
faulty system was driven by nominal control nu  
for only 0 1i ft t s∆ = − = . The iterative algorithm 
converged after 5 iterations i.e., the final FTC 

 fcu  (16) was applied at 0 5 7.5fc i et t t s= + =
. However, in the case of the direct approach, 
the first corrective control  fcu  was applied at 

7.5fct s=  and the faulty system was driven by 
the nominal control  nu  for the entire period of 

3.5fc ft t s∆ = − = . 

As regards the practical aspect, several studies 
have proven the feasibility of a real-time 
implementation of the SDRE method. 

(Bogdanov et al, 2003) presented results from 
initial flight tests of the SDRE control on an 
instrumented X-Cell-60 acrobatic helicopter. 
The real-time SDRE controller has successfully 
stabilized the autonomous vehicle. Even in the 
presence of wind (estimated at 3-6 km/hour), the 
SDRE controller has maintained a continuous 
control of the helicopter. 

For the system presented in this paper, the 
implementation of the SDRE controller (using the 
direct method) on a small onboard computer is not 
easily feasible. Indeed, solving the equation (7) in 
real-time with a small sampling step ( )st  and for 
a complex system, is computationally demanding. 
However, the combination of the online iterative 
technique of PA (using the “Kleinman” algorithm) 
and a modern computing hardware can achieve a 
higher level of computational performance and 
enable a real-time implementation of the solution.

For experimental setup, a basic platform structure 
can be described as follows. The quadrotor is 
equipped with an IMU sensor that measures the 
orientation of the vehicle and provides data as a 
basis for feedback control. The computer running 
the SDRE controller receives the feedback data 
and generates the control inputs which are sent to 
the quadrotor through a radio link or a wireless 
modem. For safety measures, the quadrotor can 
also be controlled manually using the remote 
control system. 

5. Conclusion

This paper presented a NL FTC for a quadrotor 
UAV. The aim of this study was to stabilize the 
vehicle attitude when partial failures affected its 
four rotors simultaneously.

Simulations were performed using the NL model 
of the quadrotor in fault-free and post-fault cases. 
By applying the iterative PA strategy and the 
direct SDRE method, the system has resumed its 
normal behaviour and the quadrotor attitude was 
successfully stabilized. The simulations allowed to 
compare the performance of the PA with that of the 
classical direct method. The efficiency of the PA 
was proven in terms of stability and convergence 
time namely by minimizing the recovery delay 
(needed for the computation of the FTC).

Although solving the SDRE in a recursive way 
has many advantages, some limitations can be 
encountered in this context: The only criterion of 
choosing the SDC matrices ( ) ( )( ),A x B x   is to 
guarantee the controllability of the system. This 
implies that each choice of the aforementioned 
matrices yields a different solution ( )T x  of the 
SDRE. However, theoretically, there exists only 
one ( )T x that is considered an “optimal” solution. 
Since it is difficult to choose the SDC matrices 
that yield optimal control, the produced solution 
is only “suboptimal” which reveals to be a 
potential drawback of the SDRE method. Another 
limitation of this approach is its approximation 
nature i.e., it requires a very small sampling time 
in order to increase the accuracy of the control 
law which makes simulation time last longer. 
Finally, as regards the iterative technique, the 
main difficulty encountered is to find the initial 
stabilizing gain which is a hard-task when all 
matrices are state-dependent.

For future works, it could be interesting to 
establish a full scheme related to fault diagnosis 
and FTC such as the one described by (Saied et 
al., 2015) which would allow one to investigate 
the SMC for the FDI procedure. This work could 
also be extended with the purpose of attaining 
a full control of the UAV which would include 
controlling its altitude and position. 
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