
77

ICI Bucharest © Copyright 2012-2020. All rights reserved

ISSN: 1220-1766  eISSN: 1841-429X	

1. Introduction

Optimization is a mathematical problem often met 
in practical engineering disciplines. Optimization 
is often defined as a process or methodology of 
finding the best possible solution. Bioinspired 
meta-heuristics are trying to mimic the behaviour 
of living organisms that could be found in nature 
and have demonstrated very good results in solving 
complex optimization problems. The bioinspired 
heuristics, especially the swarm intelligence 
algorithms, have significantly gained popularity 
over the past 20 years, due to their efficiency 
in finding suboptimal solutions to intractable 
optimization problems. Swarm intelligence 
represents the cooperative behaviour of dispersed, 
self-organized systems, natural or artificial. Swarm 
is defined as a very large number of small animals, 
especially insects that are collaborating and 
interacting with each other. Swarm intelligence 
algorithms are inspired by the social behaviour 
of insects, fish or birds. Algorithms based on the 
social behaviour of honey bees are among the 

most popular ones, especially the one presented by 
Karaboga (Karaboga, 2005) and later developed 
by Karaboga and Bastruk (Basturk & Karaboga, 
2006), (Karaboga & Basturk, 2007b). 

Among different types of optimization problems, 
continuous constrained numerical functions are 
one of the most computationally demanding. 
The optimum solution must be feasible, 
hence it must satisfy the given equality and/or 
inequality constraints. The mathematical form is  
given below. 
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The original ABC algorithm has been successfully 
modified so it could be applied to constrained 
optimization problems (Karaboga & Basturk, 
2007a), (Karaboga & Akay, 2011). Motivated 
by good results, (Akay & Karaboga, 2012) have 
tested modified ABC on 5 real-life engineering 
problems and managed to improve the quality 
of the results. Later, further modifications have 
been introduced, which additionally improved 
the version of the ABC algorithm for constrained 
optimization problems (Akay & Karaboga, 2017).

Another extension of the original ABC has been 
oriented towards discrete optimization problems 
(Ozturk et al., 2015).
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During this period the ABC algorithm has been 
applied to different real-world optimization 
problems that would be very hard or impossible 
to solve by the conventional, deterministic 
technics. There have been various successful 
attempts in solving them with ABC. (Secui, 
2015) and (Marzband et al., 2017) have used the 
ABC algorithm to solve the economic/emission 
dispatch problem. Additionally, portfolio 
optimization problems were solved by the ABC 
algorithm (Chen, 2015) and optimization of an 
industrial process as demonstrated by (Zhang et 
al., 2017).

ABC has gained a lot of popularity in researchers’ 
community, hence a lot of effort has been invested 
to further improve the original algorithm. The 
self-adaptive search process, in which the best 
strategy for producing candidate solutions is 
selected dynamically,  has been implemented by 
(Xue et al., 2018) and a similar approach has been 
used by (Kiran et al., 2015). The use of crossover 
operator in scout bee phase has been proposed by 
(Brajevic, 2015). Aiming to improve the quality of 
the results, (Sharma et al., 2016) has added Lévy 
flight to the search process of the original ABC. 
Another improved version of the original ABC, in 
which infeasible solutions with small constraint 
violation are allowed in the early stages of the 
algorithm execution, has been introduced by 
(Liang et al., 2017).

As (Shi et al., 2016) have pointed out, ABC has 
strong global search ability but slow convergence 
speed which has been a weakness. Parallelization 
can be one of the methods that could be utilized 
to compensate for this shortcoming.

In the last two decades, there has been a dramatic 
increase in the number of computers based on 
multicore architecture. It has begun with super 
computers and later has shifted toward PC and 
handheld devices like tablets and smart phones. 
A dramatic change can be witnessed in computer 
architecture due to the multicore paradigm shift, 
as every electronic device from cell phones 
to supercomputers confronts parallelism of 
unprecedented scale (Williams et al., 2007). The 
main idea is to divide the problem into smaller 
chunks that will be solved at the same time. In 
general, a system of n processors, each of speed 

k, is slower than the system with one processor of 
speed *n k , given that the same Central Processing 
Unit (CPU) architecture is used. The development 
tempo of modern semiconductor industry has 
slowed down due to the physical limitations of 
manufacturing process. In order to further increase 
the performance of produced chips, it is not 
possible to rely solely on increase of clock speed 
any more. With higher clock speeds, issues like 
excessive power consumption, heat dissipation, 
and current leakage are becoming more apparent 
and harder to deal with. Heat dissipation and 
power consumption are especially important for 
the development of handheld devices which, at 
the moment are more used than classic PCs. A 
parallel system is usually cheaper to build and it 
is energy-efficient. Modern hardware is composed 
of a greater number of less power cores. However, 
for this type of hardware, it is more complicated 
to develop software.

Swarm intelligence algorithms have natural 
parallelism but practical implementations in 
parallel and distributed computational systems are 
nontrivial. Execution time for swarm intelligence 
algorithms has always been long since they are 
usually applied to complex problems with a 
large number of parameters. It is advisable, due 
to the heuristic nature of swarm intelligence 
algorithms, to run them multiple times so that 
more accurate results may be obtained. In every 
run of the algorithm, each individual swarm 
member has to compute the value of the function 
that is being optimized multiple times. The clear 
segregation of these computational tasks makes 
swarm intelligence algorithms very suitable 
for parallelization. Parallelization of swarm 
intelligence algorithms reduces the execution 
time. In addition to this apparent benefit, another 
effect has been observed. Division of the whole 
population into subpopulations often produces 
synergetic effect that allows the whole population 
to obtain the higher quality of the results compared 
with those obtained by the non-parallelized 
version of the same algorithm.

There are different ways to parallelize a population-
based algorithm. Table 1 shows taxonomy applied 
to Ant Colony Optimization algorithm, that has 
been presented by  (Pedemonte et al., 2011).  In 
Table 1, strategies are differentiated according 
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to the number of colonies and to the existence 
of cooperation between units.  A very similar 
classification can be applied to all population-
based heuristics.

Table 1. Different approaches to parallelization of 
population-based algorithm

Parallel approach

no. colonies One colony Several Colonies

cooperation no yes no yes

model master 
slave cellular

parallel 
independent 

runs

multi-
colony

In master-slave model, there is the main process, 
master that delegates computational tasks and 
synchronizes their execution between sub 
processes – slaves. In cellular model, the whole 
colony is divided into cells - small units that 
consist of a very small number of individual 
agents. Each cell communicates with adjacent 
cells only. In multi-colony model, the whole 
population is divided into a few sub colonies that 
communicate between themselves. Approaches 
without the communication among subpopulation 
are trying to shorten the execution time, while 
models which are emphasizing communication 
try to improve the quality of results compared 
to the ones obtained by the serial version of the 
algorithm. Granularity level can differ from very 
fine, like the one where one thread/core is assigned 
to only one agent, to very course, where the whole 
population is divided into several subpopulations 
and each of them has its thread. Finer grained 
population is more suitable for devices with 
greater number of less powerful cores like modern 
GPUs, while courser grained parallelization 
is more appropriate for systems with fewer, 
more powerful cores, like modern CPUs. If the 
decision about the granularity is based on the 
computational demands of the problem being 
optimized, finer granulation is a better option for 
the optimization problems that don’t require a high 
amount of computation, while courser granularity 
is more suitable for the computationally intensive 
optimization problems. In master-slave model, 
the computational intensity of delegated jobs can 
range from the evaluation of objective function 
and its constraints to running the serial version 
of an algorithm on a part of the search space. 
Cellular models are usually very fine-grained and 
every population agent has its dedicated execution 

thread. All interactions between agents occur 
between neighbours to avoid communication load. 
This approach is very suitable for optimization 
problems with high computational demands. In 
the parallel independent runs approach, there 
is no communication between threads. Each 
thread represents independent run of original, 
non-parallelized swarm intelligence algorithm. 
The main goal of this approach is to speed up 
the execution of the algorithm, hence there is no 
influence on the quality of the obtained results. 
The parallel independent runs approach can 
achieve speedups up to n times where n represents 
the number of execution cores. 

The main goal of a multi colony approach is to 
improve the quality of the obtained results. The 
reduction of the execution time is a beneficial 
side effect. Every colony runs a serial version 
of an algorithm at the same time and each of 
the colonies has its dedicated process. Colonies 
communicate among themselves and, depending 
on migration policy, exchange the results. After 
the exchange of the results, each colony continues 
with the execution of an algorithm, but with the 
results from other colonies in its matrix. It is 
observed that this approach has synergetic effect 
and that n colonies with population size k, often 
produce better results than one colony with n x k 
agents in the population. 

A lot of researchers have tried a parallel approach, 
aiming to improve the quality of the results. 
(Subotic & Tuba, 2014) have been successfully 
used the parallelization to improve the quality 
of the results of unconstrained optimization 
problems. (Asadzadeh, 2016) has improved the 
quality of the solutions of job shop scheduling 
problem by using parallel ABC, (Huo et al., 2018) 
tried to obtain better parameters for parameter 
calibration of hydrological model by dividing 
original ABC population into subpopulations and 
(Hei et al., 2015) have improved the solution of 
cooperative spectrum sensing problem by using 
parallel ABC. The author of the original ABC also 
saw parallelization as a way to increase the quality 
of the results (Karaboga & Aslan, 2015).

The rest of the paper is structured in the following 
manner. Section 2 briefly summarizes the original 
ABC algorithm, and an adjustment of the original 
ABC algorithm, which allows it to be applied on 
the constrained optimization problems, following 
with detailed presentation of the proposed 
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modification. Section 3 describes benchmark 
functions used for testing and algorithm 
parameters. Section 4 presents the results of the 
paper while section 5 draws the conclusions.

2. PMS-ABC (The proposed 
modification)

Artificial Bee Colony Algorithm is inspired 
by the foraging behaviour of honey bees. One 
thing that distinguishes ABC from other swarm 
intelligence algorithms is the representation of the 
solutions. In ABC solutions are not represented by 
individual bees, but by the food source. The nectar 
amount shows the quality of the solution and it is 
represented by the fitness value of the objective 
function. The population in ABC contains three 
types of bees, employed bees, onlooker bees, and 
scout bees. The role of employed and onlooker 
bees is to exploit existing food sources, while 
scout bees are exploring for new, promising food 
sources. There is an equal number of employed 
and onlooker bees in one colony and their 
number is equal to the number of food sources. 
Every employed bee is assigned to one of the 
food sources and it leads the search process in 
the proximity of their food source. Employed 
bees share information about the richness of 
their food source with the onlooker bees helping 
them to increase search intensity around good 
food sources. Sometimes food source becomes 
depleted and in that case employed bee abandons 
it and becomes scout bee. Scout bees perform a 
random search for new food sources. Like other 
population-based algorithms, ABC performs 
search process through numerous iterations. 

Two modifications of the original ABC are 
performed, so it could be applied to the optimization 
of the constrained functions. In the original ABC, 
for the unconstrained optimization problems, only 
one, randomly selected, parameter of the objective 
function is modified by employed and onlooker 
bees. The rest of the parameters are copied from the 
original solution. In the ABC for the constrained 
problems, a new control parameter is introduced. 
It is called modification rate (MR). For every 
parameter of the objective function, a uniformly 
distributed pseudo-random number in the range 
[0, 1] is generated. If this number is smaller than 
MR, this parameter will be modified. After a new 
solution is produced, it has to be compared with the 
selected solution and only one of them will be kept 
in the solutions matrix. In the original ABC greedy 
selection process is applied and a solution with 

a higher fitness value is kept. In modified ABC, 
instead of greedy selection, Deb’s rule is applied. 
Deb’s rule promotes feasible solutions compared 
to infeasible ones and drives the whole population 
towards feasible region. Deb’s rule compares two 
solutions at the time, using tournament selection. 
It is based on three criteria:

1.	 Any feasible solution is preferred to any 
infeasible solution

2.	 If both solutions are feasible, the one with a 
better value of objective function is kept

3.	 If both solutions are infeasible, the one with 
smaller constraint violation is kept.

Population-based algorithms are very suitable for 
conversion to a parallel version. The CPU load 
is already naturally and logically divided among 
the population individuals, hence one of the key 
decisions is how many individuals are going to 
be assigned to each of CPU threads (cores). This 
is called the granularity of the parallelization. 
Granularity has the most significant impact on 
the performance of parallel implementation of 
the algorithm, both in terms of the quality of 
the obtained results and the execution times. 
Granularity could vary from scenario where 
each population unit has dedicated execution 
thread, on one end of the spectrum, to scenario 
where the whole population is divided into only 
two subpopulations and each subpopulation is 
bounded to one execution thread, at the other end 
of the spectrum and everything in between. The 
number of individuals that will be assigned to 
each of the execution cores is determined by the 
complexity of an evaluation function and speed 
of the individual core. The main goal is to avoid 
excessive thread creation and synchronization. 
If the number of CPU cycles used for algorithm 
calculation is denoted by nca, the number of CPU 
cycles used for managing the threads by ncm 
and the efficiency of CPU utilization by eu, the 
following equation can be formulated:

/eu nca ncm=                                                 (2)
It is clearly shown that is desirable to have a 
denominator as small as possible when compared 
to the numerator. As the complexity of evaluation 
function increases, the suitability for finer grained 
parallelization also increases. On the other hand, 
functions that require a smaller number of CPU 
cycles for the evaluation are more suitable for 
courser granularity since that requires fewer 
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threads to create and manage. Regarding the 
power of individual cores, systems with a greater 
number of slower cores are a better fit for finer 
granulation of parallelized algorithm, while 
systems with more powerful cores are more 
appropriate for courser granularity. The first type 
of system is very well represented by Graphical 
Processing Units (GPU) and smartphones while 
the second type of system is well illustrated by 
modern multi-core CPUs and workstations with 
multiple CPUs. If fine granulation would be used 
for the fairly simple objective function, great 
overhead in the creation and synchronization 
of threads would be introduced. Since modern 
CPUs have a significant number of instructions 
per clock (IPC), hence great efficiency per clock, 
a small number of cycles is used for calculating 
an objective function while a large portion of CPU 
cycles is used for thread management. Modern 
GPUs have a very large number of slow and 
inefficient (compared to CPU) cores, which makes 
them a good match for fine grained parallelization. 
In this study, a very coarse-grained parallelization 
model is implemented. This parallelization model 
is also known as the island-based model, which 
means that the whole population is divided into 
a very few subpopulations. According to the 
parallelization pattern used in this study, the main 
population has been divided into N subpopulations 
and the serial version of the algorithm has been 
run by each of the subpopulations simultaneously. 
Subpopulations are called swarms, hence the 
name of this modification, Parallelized Multiple 
Swarm ABC, (PMS-ABC). This model mainly 
aims at improving the quality of the results, but 
a shortening of the execution time is a welcomed 
side effect.

The other two important issues that arise, 
when serial algorithm is converted to a parallel 
version, are which communication pattern and 
which exchange policy should be used. Quality 
of the results and execution times are strongly 
influenced by the communication strategy among 
subpopulations. Two main communication 
types are widely used, synchronous and 
asynchronous. Synchronous communication type 
is determined by the number of execution steps 
of an algorithm, hence for every n execution 
steps, subpopulation will exchange results. 
In this model, at a predetermined point of an 
algorithm, all subpopulations will wait until all 
of them reach that same point of the algorithm, 
exchange the results, and then continue at the 

same time. In the asynchronous parallelization 
model, synchronizations are performed when 
subpopulation reaches a plateau in improving the 
quality of the solution. In this study, synchronous 
communication model is used. Migration policy 
is another key factor that affects the quality of the 
obtained solutions. Migration policy describes 
the way solutions are exchanged between 
subpopulations. There are different migration 
policies used, but the most popular and widely 
used is the one where the best solutions are 
exchanged. This will ensure that each of the 
subpopulations contains the best solution found in 
the whole population. PMS-ABC uses a variation 
of migration policy based on exchanging the best 
solutions. Solutions from all subpopulations are 
collected, and then n randomly selected solutions 
in each of the subpopulations are replaced with 
the n best from the whole pool of the solutions.

The original ABC algorithm modified for the 
optimization of the constrained function has four 
control parameters: population size, number of 
iterations, limit and modification rate. Limit is 
parameter that is used in process of replacement 
of depleted food sources. If some solution has not 
been improved for the certain predefined number 
(limit) of attempts, it will be replaced by the 
randomly generated solution. This parameter is 
used to prevent the population from being stuck 
in the local minimum. PMS-ABC relies on the 
same parameters as the original ABC but requires 
a few additional ones, that are specific for the 
parallelization. The additional parameters are used 
to tune swarms’ communication strategy and they 
determine when the swarms start to communicate 
and how often they will communicate. Parameters 
used for controlling communication strategy are 
First Exchange Cycle (FEC) and Exchange Cycle 
Rate (ECR). FEC shows in which iteration of 
the algorithm communication will start, in other 
words when the first communication is going 
to be performed. FEC should be very carefully 
chosen, since if it is too small, the number of 
iterations of the serial version of the algorithm, 
that each of the swarms is performing prior to the 
first communication, becomes too small to find 
the meaningful solutions. In this way, there is an 
increased probability that subpopulations will 
start to exchange poor quality solutions. But if 
FEC is too big, the algorithm loses the ability to 
search multiple spaces and becomes similar to the 
multiple independent runs approach. ECR denotes 
the frequency of the communications, hence it 



https://www.sic.ici.ro

82 Miloš Subotic, Aleksandar Manasijevic, Aleksandar Kupusinac

shows the number of iterations (cycles) between 
two communications among subpopulations. 
The ECR has a great impact on the final results. 
If communication occurs very often, the risk of 
premature convergence rises, since there won’t be 
enough cycles for swarms to improve exchanged 
solutions. However, if communication rarely 
occurs, the chance of being trapped in local 
optimum increases. This parameter should be 
very well balanced. The third control parameter 
used in PMS-ABC is number of solutions that 
won’t be replaced by random ones in the scout 
bee phase and it is called Elitism Factor (EF). 
This parameter is introduced due to the use of 
elitism, a concept introduced and established in 
Genetic Algorithms at the first, and later widely 
used in other bio-inspired heuristics. It is used to 
preserve the best genes and ensure their presence 
in the next generation. PMS-ABC uses elitism to 
ensure that the best solutions won’t be replaced 
by the random ones, hence the algorithm will try 
to improve the best EF solutions more times than 
the other solutions. Each solution in the solution 
matrix has a counter that is increased every time 
an original solution is better compared to the 
candidate solution. This counter is called number 
of trials. At the end of each cycle, for each of 
the solutions, number of trials is compared to a 
limit. If it is larger than a limit, a solution will 
be replaced by a new, randomly generated, 
solution. For EF best solutions, counter will 
not be increased if a candidate solution is not 
better compared to the original one. The use of 
elitism wouldn’t be recommended in the original 
ABC since it could cause colony to be trapped 
in the local minimum, but in PMS-ABC other 
subpopulations will exchange the results with the 
subpopulation that has been stuck allowing it to 
leave local optimum.

At the beginning of the PMS-ABC algorithm, the 
whole population is divided into subpopulations 
(swarms) of an equal size and all subpopulations 
continue to execute serial version of the original 
ABC. Subpopulations start the search process with 
different random seeds. After the FEC number of 
iterations, communication between subpopulations 
starts and it is performed every ECR iteration. 
In each communication, random solutions in 
every subpopulation will be replaced by the best 
solutions from the whole colony. Pseudo-code for 
the PMS-ABC algorithm is presented:

initialize swarms with different random seeds
for each swarm:
     evaluate population
     while MFEC is not reached:
          send employers
          calculate probabilities
          send onlookers
          send scouts
          increase noTrial except for EF best solutions
          if (cn > FEC and cn mod ECR = 0) exchange
          memorize bestSolution
     end while
end for
find the best solution from all swarms

3. Benchmark functions and 
parameter settings 

The set of 13, well known,  benchmark functions 
(Karaboga & Akay, 2011) has been used to 
evaluate the performance of PMS-ABC. The 
dimensionality of functions is in the range from 
2 up to 20 parameters. To cover various types of 
constrained optimization problems, different forms 
of functions are used, like linear, nonlinear and 
quadratic. Besides, five real-world engineering 
problems (Akay & Karaboga, 2012) have also 
used for testing.

For the comparison, the original Artificial Bee 
Colony Algorithm, modified for the optimization 
of constrained functions, presented by (Karaboga 
& Akay, 2011) (Akay & Karaboga, 2012) is 
used. In Karaboga’s study, modified ABC for 
constrained optimizations uses four parameters: 
population size, number of iterations of an 
algorithm, limit, and modification rate. For the first 
group of experiments, colony size, for serial ABC, 
has been set to 40, the number of iterations has 
been set to 6000, which gives 240000 evaluations. 
For evaluating PMS-ABC, an equal number of 
function evaluation has been used. Colony is 
divided into three swarms, each having 20 bees. 
The number of iterations has been set to 4000. 
Both algorithms use the following equation (3) to 
calculate the limit:

limit = *SN D                                                (3)

where D is the dimension of the problem and SN 
is the number of food sources. For both ABC and 
PMS-ABC MR has been 0.8. PMS-ABC requires 
a few additional parameters. The first one is 
FEC and finding the right FEC value requires 
good balance. For the constrained optimization 
problems, it has been experimentally shown 



	 83

ICI Bucharest © Copyright 2012-2020. All rights reserved

Parallelized Multiple Swarm Artificial Bee Colony (PMS-ABC) Algorithm...

that the best results are obtained when FEC is 
set to 600. Communication frequency should 
be determined when island based parallelization 
model is used. The empirical experiments have 
demonstrated that the best performance of an 
algorithm, in terms of result quality, is reached 
when swarms communicate more often, hence, in 
this study, ECR has been set to 80. Elitism factor 
(EF) shows how many solutions will be copied to 
the next iteration of the algorithm regardless of 
their trial counter value. In this study, EF has been 
set to 2 and the best results are obtained when, on 
each exchange of the results, 3 solutions in each 
of the swarms are replaced by the best solutions 
from all of the swarms. The parameters used for 
testing the engineering optimization problems are 
shown in Table 2.

Table 2. Parameter values used for testing

Parameter Value
Colony size 30
Iterations 1000
Swarms 3

MR 0.9
FEC 200
ECR 40
EF 2

4. Results

For the performance analysis of PMS-ABC 
algorithm, for each of the test functions, 30 
independent runs of the algorithm have been 
conducted. For each of the runs, a different 
pseudo-random seed has been used. The results 
of the experiments are presented in tables 3 and 
4. Quality of the results is compared by using 
best value, mean value, worst value and standard 
deviation. Best, mean and worst results are used 
to illustrate the ability of the algorithm to reach 
quality solutions, while the standard deviation 
has bee n included to show the consistency and 
robustness of algorithms. Quality of the best and 
mean results will be analysed first. In 7 out of 
13 functions (G01, G03, G04, G06, G08, G11, 
G12), both algorithms have performed the same 
in terms of the best results and both algorithms 
have reached known optimums. The suboptimal 
result has been reported for G5 function when an 
original ABC has been used. This might be due to 
violated constraints. PMS-ABC has reached the 
known optimum for G5 function. PMS-ABC has 
reached optimum for G09 also. 

Table 3. The results of experiments (1)

Function Optimum ABC PMS-ABC

G01

Best

-15

-15 -15
Mean -15 -15
Worst -15 -15

St. Dev. 0 0

G02

Best

-0.803619036

-0.803598 -0.803613
Mean -0.792412 -0.792832
Worst -0.749797 -0.750225

St. Dev. 0.012 0.013221

G03

Best

-1.0005001

-1 -1
Mean -1 -1
Worst -1 -1

St. Dev. 0 0

G04

Best

-30665.53867

-30665.539 -30665.539
Mean -30665.539 -30665.539
Worst -30665.539 -30665.539

St. Dev. 0 0

G05

Best

5126.496714

5126.484 5126.497
Mean 5185.714 5134.298
Worst 5438.387 5169.360

St. Dev. 75.358 12.753

G06

Best

-6961.813876

-6961.814 -6961.814
Mean -6961.813 -6961.814
Worst -6961.805 -6961.814

St. Dev. 0.002 0

G07

Best

24.30620907

24.330 24.312
Mean 24.473 24.434
Worst 25.19 24.838

St. Dev. 0.186 0.119

G08

Best

-0.095825041

-0.095825 -0.095825
Mean -0.095825 -0.095825
Worst -0.095825 -0.095825

St. Dev. 0 0

G09

Best

680.6300574

680.634 680.630
Mean 680.640 680.639
Worst 680.653 680.665

St. Dev. 0.004 0.007

G10

Best

7049.248021

7053.904 7051.484
Mean 7224.407 7154.818
Worst 7604.132 7428.969

St. Dev. 133.87 104.271

G11

Best

0.75

0.75 0.75
Mean 0.75 0.75
Worst 0.75 0.75

St. Dev. 0 0

G12

Best

-1

-1 -1
Mean -1 -1
Worst -1 -1

St. Dev. 0 0

G13

Best

0.053941514

0.760 0.054
Mean 0.968 0.296
Worst 1 0.443

St. Dev. 0.055 0.183
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Table 4. The results of experiments (2)

Function Original 
ABC PMS-ABC

Welded 
beam

Best 1.724852 1.724852
Mean 1.741913 1.731123

St. Dev. 3.1E-02 9.5E-03

Pressure 
vessel

Best 6059.714736 6059.714286
Mean 6245.308144 6171.501958

St. Dev. 2.05E+02 2.25E+02

Ten/comp. 
spring

Best 0.012665 0.012666
Mean 0.012709 0.012792

St. Dev. 0.012813 1.3E-04

Speed 
reducer

Best 2997.058412 2996.347849
Mean 2997.058412 2996.347849

St. Dev. 0 0

Gear train
Best 2.700857E-12 2.700857E-12
Mean 3.641339E-10 9.385241E-11

St. Dev. 5.525811E-10 2.008979E-10

For G02, G07, G10, and G13 PMS-ABC has 
performed better in terms of best results. When 
analysing the mean values, both algorithms have 
achieved a global minimum for mean results for 6 
functions (G01, G03, G04, G08, G11, and G12), but 
for the rest of the tested functions, PMS-ABC has 
always reached better mean result. A good illustration 
of the PMS-ABC superiority is especially visible 
when the results of G13 function are observed.  If 
the worst solutions out of 30 runs are observed, it is 
visible that the original ABC has better worst result 
only once, for G09 function, while PMS-ABC has 
reached better worst results for 6 functions, G03, 
G05, G06, G07, G10 and G13. In terms of result 
quality, it is clear that PMS-ABC outperforms 
original ABC in the three observed parameters, 
best, mean and worst result. Standard deviation is 
used as a robustness and consistency measure of an 
algorithm. PMS-ABC has obtained a better standard 
deviation for 4 functions, while the original ABC 
has obtained a better standard deviation value for 
three functions. One of the functions for which ABC 
has shown better consistency is G13, but the best, 
mean and worst results obtained by PMS-ABC for 
G13 are much better. Hence, PMS-ABC has shown 
better exploration performance, while the whole 
colony in original ABC has remained stuck around 
local optimum.  

For the analysis of the results of real-world 
engineering problems, the best result out of 30 
runs, the mean result and the standard deviation 
will be used as criteria of comparison. PMS-ABC 
has obtained better best result twice, for Pressure 
vessel and Speed reducer problems, while the 

original ABC has outperformed PMS-ABC once, 
for Tension/compression spring problem. When 
comparing the mean results, PMS-ABC has 
obtained better results for all the optimization 
problems except the Tension/compression spring 
problem. When comparing the algorithms in terms 
of consistency, PMS-ABC has managed to reach 
better values for standard deviation 3 times, while 
the original ABC has done it only once. Hence, 
in terms of consistency, PMS-ABC has an edge 
when it is compared to the original ABC.

5. Conclusion 

This study has presented a parallel implementation 
of the original ABC algorithm modified for the 
optimization of the constrained functions. The 
island-based model of parallelization was used 
and the entire bee population has been divided into 
three subpopulations called swarms.   Each swarm 
executed serial version of the algorithm using a 
different pseudo-random seed. The best results 
have been periodically exchanged among swarms 
after a predefined number of cycles. Elitism, a 
well-known and proven concept from Genetic 
Algorithms, has been used in this study. Elitism 
has allowed a greater number of attempts to 
modify the best solution, without replacing it with 
a random one. In PMS-ABC the best solution is 
never going to be replaced by a random one in the 
scout bee phase.  This prevents the abandonment of 
high-quality solutions. The possibility of trapping 
swarms in local optimum has been avoided by 
the communication which occurs among them. 
A better solution has been chosen by applying 
Deb’s rule, same as in the original ABC for the 
optimization of constrained functions. Multi 
swarm artificial bee colony algorithm has been 
compared to the original ABC modified for the 
optimization of constrained functions using a set 
of 13 well-known benchmark functions and a set 
of five real-world engineering design problems. 
Algorithms have been compared in terms of best, 
mean, worst result and standard deviation. Both 
algorithms have been run 30 times independently 
using different pseudo-random seeds. 

PMS-ABC has consistently demonstrated a better 
performance both in terms of quality of the results 
and consistency of the algorithm.

PMS-ABC’s advantage is visible especially when 
the results obtained for the G13 function are 
analysed. The best result reached by ABC is 0.76 
while PMS-ABC has almost managed to find an 
optimum and has reached 0.054 as the best result. 
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In the modern multi-core CPU era, it is very 
desirable to utilize more than one core. By using 
a separate thread for each of the swarms, PMS-
ABC reduces execution time almost linearly. This 
result is comparable to the research conducted by 
(Huo et al., 2018).

These results show that parallelization has a great 
potential to improve the quality of the results 
compared to the original ABC. An even brother 
conclusion would be that all swarm intelligence 
algorithms could benefit from the parallelization. 
This has been demonstrated by (Dao et al., 2018) 

who have applied parallelization on bat algorithm 
and by (Atashpendar et al., 2018) and (Gülcü 
& Kodaz, 2015) who have demonstrated the 
parallelization of PSO algorithm. Additionally, 
some researches have demonstrated the reduction 
of the execution time like the ones conducted by  
(Thiruvady et al., 2016) and (Ouyang et al., 2015).

The main conclusions are that parallelization of 
swarm algorithms can make full use of the multi-
core resources and improve the quality of the 
obtained results.
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