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1. Introduction

Time-delay is a property present in many 
dynamical systems. When the delay is significant, 
compared with the main time constant in the 
process, it causes undesirable behaviours in a 
control system like poor performance, oscillations 
or even instability, (Kharitonov, 1998). This 
phenomenon can be found in many engineering 
systems such as: tele-operated process, chemical 
and biochemical engineering process, information 
and material transmission, (Wu et al., 2015). The 
particular problem of unstable systems with time-
delay is usual in the chemical processes, such as 
continuously stirred-tank reactor (CSTR), (Qing-
Chang, 2006). Thus, the control and stabilization 
of delay processes becomes an interesting topic 
in which the explicit stability conditions for many 
unstable processes are not available yet.

Several solutions have been studied in order to 
face the stability problems for time-delay systems, 
for instance: (De Paor & O´Malley, 1989) who 

propose a modification to the original Ziegler-
Nichols method, the Smith Predictor (SP), whose 
main objective is the elimination of the delay from 
the characteristic equation of the system. This last 
technique as originally presented can only be used 
in stable plants (Smith, 1957). 

However, many authors have proposed 
modifications to the traditional SP to address the 
limitations of the original structure. In (Márquez 
et al., 2010), SP modifications are proposed to 
control and stabilize unstable first-order systems 
with time-delay. (Liu et al., 2005; Seshagiri et al., 
2007) propose a control scheme based on a SP 
with two degree-of-freedom in order to stabilize 
the delayed systems. 

A different proposal to stabilize time-delay systems is 
represented by the employment of simple controllers; 
for instance: (Silva et al., 2004) characterize the 
entire set of stabilizing Proportional – Integral - 
Derivative controllers, (Xiang, 2006) investigates 
the stabilization of several delayed process with 
unstable poles by employing simple controllers. The 
mentioned works do not take into account the case 
when zeros are present in the transfer function of  
the process.

To address the case of controlling time-delay 
systems containing zeros in their transfer 
functions, (Kwak et al., 2000; Lee et al., 2010b) 
propose the use of P controllers for first and 
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second-order unstable systems. An extended 
result is obtained in (Lee & Wang, 2010) where 
the authors analyze a system with n stable poles 
using different controllers. In these works, the 
authors establish explicit sufficient stabilizability 
conditions, but they only take into account the 
case when only one left half-plane (LHP) zero is 
considered in the transfer function of the original 
system. Nevertheless, in other recent research 
works, more general results addressing the case of 
systems with various zeros and poles can be found. 
In (Vázquez et al., 2017), sufficient conditions are 
provided to stabilize Single-Input-Single-Output 
(SISO) high-order delayed systems with only one 
unstable pole and containing m real LHP zeros, 
using proportional (P) controllers.

On the other hand, in practical cases, typical 
design requirements like the disturbance rejection, 
speed of response, and unmodeled dynamics must 
be ensured. In order to satisfy these requirements, 
H∞  control theory is a very useful tool to handle 
control systems with disturbances, uncertainties 
and parameter variations.

In this article, sufficient conditions are provided in 
order to guaranteed the stabilization of high-order 
delayed systems including m real LHP zeros, by 
using Proportional (P)-Derivative (D)-Integral (I) 
controllers, i.e., P, PI, PD, and/or PID controllers. 
A frequency domain analysis is used to perform the 
formal proof. Then, a systematic design procedure 
using the H∞  theory is proposed in order to obtain 
the optimal gains for PI/PID controllers. The non-
smooth H∞  synthesis proposed in (Apkarian & 
Noll, 2006) has been considered, which is an 
extension of the H∞  central design method 
(Doyle et al., 1989). The paper is organized in the 
following way: Section 1 gives an introduction 
of time-delay systems (definition, importance and 
challenges). The problem statement is the subject 
of Section 2. The purpose of the Section 3 is to 
present the preliminary results; a useful series of 
lemmas for the proofs of the main results.  The 
proposed solution is presented in Section 4, which 
also includes the H∞  control design procedure. 
Numerical examples are presented to verify the 
design methods in Section 5 and finally in Section 
6, the conclusion summarizes the paper.

2. Problem Statement

Consider the next linear time-invariant (LTI) 
system, SISO with time-delay in the direct path:

( ) / ( ) ( ) ,sY s U s H s e τ−=   (1)

where ( )Y s  is the output signal, ( )H s  is the 
transfer function without delay, ( )U s  is the input 
signal and 0τ >  is the time-delay.

Applying a control strategy ( )C s  in the form:

( ) ( )[ ( ) ( )],U s C s R s Y s= −                       (2)
produces the next closed-loop system:

( ) ( ) ( ) ,
( ) 1 ( ) ( )

s

s

Y s C s H s e
R s C s H s e

τ

τ

−

−=
+                       

(3)

Take into account the process characterized by (1) 
with a ( )H s  given by:

1
1

1
2

( )
( ) ,

( ) ( )

m

l
l

n

i
i

s b
H s

s a s a

=
+

=

+
=

− +

∏

∏
                      

(4)

where 1, , , , 0l ib m a a τ > , 1m n≤ +  and 0.n ≥
For simplicity of developments and without loss 
of generality, a unitary open loop gain has been 
considered, in the transfer function. Now consider 
the output feedback given by (2) and the following 
four types of ( )C s  compensators:

P pC k=
                                                

(5)

i
PI p

kC k
s

= +
                                                 

(6)

( )PD p DC k s k= +
                                   (7)

i
PID p d

kC k k s
s

= + +
                                   

(8)

Few works have addressed the case of unstable 
delayed system including zeros using these simple 
controllers. Recent research on the subject only 
considers the case of one zero in the original plant. 
For instance, stabilization problem for unstable 
time-delay systems with only one LHP zero by 
using simple controllers is considered in (Kwak et 
al., 2000; Lee et al., 2010b). The authors present 
the following result:
Lemma 1 (Kwak et al., 2000; Lee et al., 2010b). 
The process (1) with

( ) ( ) / ( )H s s b s a= + −

and , , 0a b τ > , is stabilized by using a P 
controller shown in (5) if and only if 1 1a b− −>  
and 1 1a bτ − −< + .

On the other hand, (Kwak et al., 2000; Xiang et 
al., 2007) demonstrate how to address the problem 



 383

ICI Bucharest © Copyright 2012-2019. All rights reserved

Stabilizing High-order Delayed Systems with Minimum-phase Zeros Using Simple Controllers

of stabilization for second order unstable time-
delay system with one LHP zero, and present the 
next result:

Lemma 2 (Kwak et al., 2000; Xiang et al., 2007). 
The process (1) with

( ) ( ) / ( )( )H s s b s a s c= + − +

and , , , 0a b c τ > , is stabilized by using 
a P controller if 1 1 1b a c− − −< +  and 

1 1 1a b cτ − − −< + − .

For high-order delayed systems with one 
minimum-phase zero, (Lee & Wang, 2010) present 
the following result:

Lemma 3 (Lee & Wang, 2010). The process (1) with:

1

( ) ( ) / ( ) ( )
n

i
i

H s s b s a s c
=

= + − +∏

is stabilized by  using a P controller

 if 1 1 1
1

n
ii

b a c− − −
=

< +∑  
and

1 1 1
1

n
ii

a b cτ − − −
=

< + −∑
The principal objective of this article is to find a 
controller *( )C s  (if any) such that it may stabilize 
the process (1) with ( )H s  in the form shown in 
(4), in the closed-loop configuration.

Auxiliary open-loop transfer function *( )Q s  can 
be formulated in the form:

* *( ) ( ) ( ) .sQ s C s H s e τ−=                       
(9)

3. Preliminary Results

Now consider the open-loop transfer function (9) 
and the unitary feedback loop shown in (2), which 
result in the next closed-loop transfer function:

*

*

( )( )
( ) 1 ( )

Q sY s
R s Q s

=
+                                  

(10)

The following results are related to the stability 
of the closed-loop transfer function (10). The 
Nyquist stability criterion is stated as first 
preliminary result.

Lemma 4 (Nyquist, 1932). The Nyquist stability 
criterion. Given the open-loop transfer function 

*( )Q s  with P+  unstable poles, the associated 
closed-loop system shown in (10) is stable if and 

only if the Nyquist plot of *( )Q ω  encircles the 
critical point (-1,j0), P+  times anticlockwise.

Lemma 5 (Lee et al., 2010; Xiang, 2006). Given the 
open-loop transfer function *( )Q ω , 

*
lim ( ) 1QM
ω

ω
→∞

<  
is  a necessary condition for the stability of the 
associated closed loop system shown in (10), 
where 

*
( )QM ω  denotes the magnitude of  *( )Q ω .

Lemma 6 (Lee et al., 2010a; Xiang, 2006). If a 
process   defined in (1), with ( ) 0N s ≠  can be 
stabilized by using a P controller, then it also 
can be    stabilized by a PI controller. Similarly, 
stabilizablity achieved by means of a PD 
controller implies stabilizablity by employing a 
PID controller.

4. Main Results

This section presents the sufficient conditions in 
order to stabilize the delayed process given by (1) 
with ( )H s in the form shown in (4) by employing 
simple controllers.

4.1 P/PI Controller

Theorem 1. Consider the time-delay system given 
by (1) with ( )H s in the form shown in (4) and the 
P/PI controller given by (5)/(6), the associated 
closed-loop is stable if: 

2 2

1 1
1 1

2 2

1 1

( )
, 0

( )

m m

l l
l l
n n

i i
i i

b b

a a

ω
ω

ω

= =
+ +

= =

+
> ∀ >

+

∏ ∏

∏ ∏
      

(11)

and
1

1 21

1 1 1m n

l il ia b a
τ

+

= =

< + −∑ ∑
                                 

(12)

Let the main idea of the proof be introduced; a 
frequency domain analysis is used.

For P controller pC  and the system given by (1) 
with ( )H s in the form shown in (4), the open-loop 
frequency response is:

( ) ( ) j
p pQ j C H j e τ ωω ω −=                     (13)

1
1

1
2

( )

( ) ( )

m

l
jl

p n

i
i

j b
k e

j a j a

τ ω
ω

ω ω

−=
+

=

+
=

− +

∏

∏
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The open- loop magnitude expression is:

1
2 2 2 2

1 1

( ) ( ) / ( )
p

m n

Q p l i
l i

M k b aω ω ω
+

= =

= + +∏ ∏
  
(14)

And the associated open-loop phase is given by:

1 1

11

( ) ( tan ) tan
p

m

Q
l la b

ω ωφ ω π − −

=

= − − +∑
     

(15)

1
1

2
tan

n

i ia
ω ωτ

+
−

=

− −∑
  

with its derivate as

1
2 2 2 2

11

( )
p

m
Q l

l l

d ba
d a b

φ ω

ω ω ω=

= + −
+ +∑

      
(16)

1

2 2
2

n
i

i i

a
a

τ
ω

+

=

−
+∑

For the auxiliary system (13) and taking into account 
the Nyquist criteria, the system has  1P+ =  
unstable root. Then the Nyquist diagram should 
encircle once the point (-1, j0) counterclockwise to 
guarantee the closed-loop stability. 

As a first step, the phase of the system showing a 
growing stage for 0ω ≈  (the required condition 
for the correct direction of the Nyquist plot) is 
analysed. Next, the expression for the magnitude 
of the system showing a decreasing magnitude for 

0ω ≈  assuring the correct direction of the Nyquist 
plot is examined. Finally, the high frequencies 
dynamic behaviour of the system is investigated in 
order to prevent the possibility of some additional 
encirclement around the critical point for ω →∞ .

In order to obtain the required encirclement for 
achieving closed-loop stability, it is necessary to 
have two intersections with the real negative axis 
of the s-plane, one intersection should occur into 
[ , 1]−∞ −  and the second one should  appear into
[ 1,0]− . That is: 1 1( ) 1, ( )

p pQ c Q cM ω φ ω π> = − ,

2 2
( ) 1, ( )

p pQ c Q cM ω φ ω π< = − . 

where 
1c

ω  and 
2cω  are non-negative crossover 

frequencies and 
1 2c cω ω< . A desirable behaviour 

of the Nyquist and Bode plots is illustrated in 
Figures 1 and 2.

Furthermore, to ensure the mentioned 
encirclement, the behaviour of 

pQM  and 
pQφ  are 

analyzed so as to complete the proof.

Figure 1. Nyquist diagram

Figure 2. Bode diagram

Proof. Assume that the conditions shown in 
Theorem 1 are satisfied. To analyze the behaviour 
of the phase 

pQφ  given by (15), it should be taken 
into consideration that the phase plot starts at 

(0)
pQφ π= − . Then, the first necessary intersection 

is obtained with 
1

( )
pQ cφ ω π= − , therefore 

1
0cω = . To guarantee the desired direction of 

the Nyquist plot, as it is illustrated in Figure 2, 
the phase should be greater than π− ,  for some 

0ω >  that is:

max( ( ))
pQφ ω π> −

                                 (17)

In order to assure the condition (17), a growing 
of ( )

pQφ ω  is necessary since (0)
pQφ π= − , 

this implies 
0

( ) / 0
pQd d

ω
φ ω ω

→
> . In this way 

and taking into account 
1

0cω =   the following 
expression is evaluated:

1

1 210

( ) 1 1 1 0p
m n

Q

l il i

d

d a b a
ω

φ ω
τ

ω

+

= =→

= + − − >∑ ∑
.

Then, it can be established that under 
condition (12), there exists a positive ω  such 
that max( ( ))

pQφ ω π> − . Analyzing the 
behavior of the phase 

pQφ  for high frequencies: 
( ) /

pQd d
ω

φ ω ω τ
→∞

= − .  Then ( )
pQφ ω  

decreases for high frequencies. From the above 
developments, it can be observed that 

pQφ  increases 
from 1( )

pQ cφ ω π= − , after this, the phase 
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decreases back to π− . This implies the second 
necessary intersection with 

2
( )

pQ cφ ω π= −  , for 
some 

2
0cω > . From this, it immediately follows 

that 
1 2c cω ω< .

Further on, the desired performance of ( )
pQM ω  

is analyzed. As it is illustrated in Figure 1, 
pQM  

should decrease for 0ω > . The value of ( )
pQM ω   

with 0ω =  is 
1

1 1

(0) /
p

m n

Q l i
l i

M b a
+

= =

=∏ ∏ . Thus, to 

achieve the closed-loop stabilization and assuming 
that condition (11) is fulfilled, it can be assured 
that ( )

pQM ω  behaves like a decreasing function 
since 0ω = , getting the desired direction of the 
Nyquist diagram.

Following Lemma 5, it is also required to keep 
lim ( ) 1

pQM
ω

ω
→∞

<  to prevent the possibility of 
some additional encirclement around the point 
(-1,j0) for ω →∞ . If m<n+1, ( )pQ s  is a strictly 
proper system, then the behavior of 

pQM  for high 
frequencies is: ( ) 0

pQM
ω

ω
→∞

= . For m=n+1, 
( )pQ s  has the same number of zeros and poles, 

then ( )
pQ pM k

ω
ω

→∞
= . For the first case, the 

condition of Lemma 5   is fulfilled. For the second 
case, it is necessary that 1pk < . Therefore it can 
be concluded that if the conditions obtained in  
Theorem 1 are fulfilled, then there is exactly one 
anticlockwise encirclement to the point (-1,j0). 
Thus the Nyquist criteria is satisfied ensuring the 
stability of the closed-loop system as long as the  
gain pk  is well selected. 

Remark 1. Following Lemma 6, P-stabilizabilty 
condition automatically becomes sufficient 
for the PI-stabilizabilty condition. In this way, 
similar stability analysis can be performed for the 
auxiliary system ( )PIQ s  obtaining the same result.

Remark 2. The magnitude of the unstable delayed 
system without zeros, decreases monotonically in 
all the cases, reducing the drawback of stability 
analysis to the phase condition. The stabilizability 
analysis becomes more difficult in the present work, 
due to the presence of additional zero dynamics in 
the transfer function. As a consequence, condition 
(11) is derived from the analysis. 

Remark 3. In order to design the P controller
( )pC s , the proportional gain pk , can be obtained 

from the following facts; it is required that 
( ) 1

pQM ω >  for some positive frequency, in 
order to encircle the point (-1, j0), that is:

1 1

1
2 2 2 2

1 1

( ) / ( ) 1
m n

p c l c i
l i

k b aω ω
+

= =

+ + >∏ ∏
      

(18)

Taking into account that 
1

0cω = , the lower bound 
of the gain pk  can be obtained. 

1

1 1

/
n m

p i l
i l

k a b
+

= =

>∏ ∏
                                 

(19)

From 
2

( ) 1
PQ cM ω < , the upper bound for pk  can 

be stated as follows:

2 2

1
2 2 2 2

1 1

( ) / ( )
n m

p c i c l
i l

k a bω ω
+

= =

< + +∏ ∏
      

(20)

The stabilizing proportional gain pk  should satisfy:

2

2

1 1
2 2

1 1

2 2

1 1

( )

( )

n n

i c i
i i

pm m

l c l
l l

a a
k

b b

ω

ω

+ +

= =

= =

+
< <

+

∏ ∏

∏ ∏
                    

(21)

Remark 4. The sufficient stability conditions 
for PD/PID controllers can be obtained with a 
similar analysis, in the same way that the proof 
from Theorem 1 has been shown. Consider the 
system (1) with ( )H s  in the form shown in (4),  
m<n+1 and the PD/PID controller given by (7)/
(8). Therefore, the associated closed-loop is 
stable if:

2 2 2 2

1 1
1 1

2 2

1 1

( ) ( )
, 0

( )

m m

D l D l
l l

n n

i i
i i

k b k b

a a

ω ω
ω

ω

= =
+ +

= =

+ +
> ∀ >

+

∏ ∏

∏ ∏
 

                                                                        (22)
and

1

1 21

1 1 1 1m n

l il i Da b a k
τ

+

= =

< + − +∑ ∑
                    

(23)

There are two approaches to apply the sufficient 
conditions (22)-(23). The first proposal consists 
in choosing, 2 3min( , ,..., )D nk a a a= . The 
main idea is to perform a zero-pole cancelation 
to obtain a better time-delay condition than the 
P/PI controller condition. On the other hand, 
the second proposal consists in improving 
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the time-delay condition following the next 
methodology: a Dk  can always be selected such 
that max( ( ))

PDQφ ω π> −  if: 
1

1 21

1 1 1 1m n

l iD l ik a b a
τ

+

= =

> − − +∑ ∑
                    

(24)

From (23) Dk  can be selected such that the 
condition (22) is satisfied, that is:

1

1 21

1
1 1 1D m n

l il i

k

a b a

ε
τ

+

= =

= +
− − +∑ ∑

      

(25)

with ε  being a positive real constant.

It can be easily noticed that for a sufficient small  ε , 
one gain Dk  can be found such that the condition 
(23) is satisfied. Taking into account (25), the 
magnitude expression can be written as follows:

2 2 2 2

1
1

2 2

1

( ) ( )
( )

( )
PD

m

D l
l

Q n

i
i

k b
M

a

ω ω
ω

ω

=
+

=

+ +
=

+

∏

∏
      

(26)

It is necessary to select Dk  such that 
(0) ( )

PD PDQ QM M ω> , ω∀  (equivalent condition 
to that shown in (22)). The proportional gain pk  
can be picked into the following interval: 

2

2 2

1 1
2 2

1 1

2 2 2 2

1 1

( )

( ) ( )

n n

i c i
i i

pm m

D l c D c l
l l

a a
k

k b k b

ω

ω ω

+ +

= =

= =

+
< <

+ +

∏ ∏

∏ ∏
(27)

Section 5 will illustrate that a better time-delay 
condition with respect to other similar solution 
taken from the recent related literature can be 
achieved by employing these last methodologies.

Remark 5. Following the Lemma 6, PD-
stabilizabilty condition automatically becomes 
sufficient PID-stabilizabilty condition. In this 
way, similar stability analysis can be performed 
for the auxiliary system ( )PIDQ ω  obtaining the 
same result.

4.2. H∞ Control Design Procedure

The authors propose the use of the optimum H∞  
theory in order to provide optimal gains for PI/

PID controllers with respect to some design 
specifications. A non-smooth H∞  optimization 
method is applied to tune the controller parameters.

Figure 3 shows the generalized plant for H∞  
mixed sensitivity problem that involves two 
or more sensitivity functions. Each element is 
assumed to be LTI, ( )P s  is a polynomial open-
loop plant. eW , uW , dW  are weights for specifying 
the system performance, 1e  and 2e  are regulated 
outputs, y is the measured output, r is the reference 
input, u is the control input, d is the disturbance 
input and *C  is the controller that combines all 
tunable control parameters. The transfer matrix 
from r and d can be defined as follows:

1

*2

e e d

u u d

W S W SPWe r
W C S W TWe d
    

=     
           

(28)

where 1
*(1 )S PC −= +  is the sensitivity function 

and *T C PS=  is the complementary sensitivity 
function. The principal result of the  H∞  standard 
problem is: for γ  as small as possible, find a 
stabilizing controller *( )C s  such that: 

*

e e d

u u d

W S W SPW
W C S W TW

γ
∞

<
                    

(29)

The objective of this research work is to use the 
H∞  theory and the mixed sensitivity design 
method to pattern a robust H∞  controller, i.e., to 
find optimal tunable gains for PI/PID controllers.

Figure 3. Generalized plant for H∞  mixed 
sensitivity problem

In other way, the controller *( )C s  cannot be 
designed taking into account H∞  control theory  
if the delay involved in the plant is treated strictly 
(Zhang, 1998).  When a Padé approximation is 
introduced, the system (1) becomes:

( ) ( ) ( ) ( )s
pH s e H s G s P sτ− ≈ =                     (30)

where ( )pG s  represents the Padé approximation 
and ( )H s  is the delay-free plant. Using (30), 
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design techniques developed for systems without 
delays can be applied and therefore a controller 
using H∞  theory can be calculated. Therefore, 
in this work, a Padé approximation is used to 
perform the H∞  optimization method.

Weighting functions selection. The weighting 
functions eW , uW , dW  are chosen taking 
into account the basic requirement of mixed-
sensitivity design (Lundstrom et al., 1991). 
The main objective of eW  is to reduce the error 
sensitivity in the low-frequency interval for output 
disturbance rejection. eW  is defined as (Skogestad 
& Postlethwaite, 2005):

1( ) b s
e

s b

s MW s
M s

ω
ω ε

+
=

+                                  
(31)

where sM  is the maximum allowable peak for the 
frequency response of the S and bω  is the lowest 
allowable bandwidth of the system.

The principal objective of uW  is to ensure the 
stability of the closed-loop system under diverse 
operating conditions. uW  is defined as follows:

1( )

h

u
u

hu

u

s
MW s

s

ω

ωε
ε

+
=

+
                                 

(32)

where uM  represents the effort of the controller.

uε  must be chosen as a small constant to ensure 
a good rejection of the measurement errors. The 
pulsation hω  limits the bandwidth. Here, dW  is 
chosen as a constant function in order to ensure 
the rejection of disturbances. 

Augmented plant structure. The augmented plant 
model can be obtained, as seen in Figure 3. The 
augmented system contains the nominal system, 
the weighting functions, the Padé approximation, 
and the PI/PID controller.

Controller using H∞  structured design. A H∞  
structured design method is used to synthesize 
the controller in order to get a stable solution 
guaranteeing that the cost function γ  is minimized. 
The theory behind is described in (Apkarian & 
Noll, 2006). The algorithm iteratively adjusts 
the parameters of weighting functions until the 
design objective is satisfied. To apply the H∞  
optimization method, it is necessary to provide 

an initial controller value as a starting point. The 
initial controller value can be selected taking into 
account the gains where the system (1) is stable 
using a P/PD controller. In this way, equations 
(20), (24) and (26) can be used to select this value.

5. Examples

The effectiveness of the proposed methodologies 
is evaluated by means of two examples.

Example 1: Application of a non-ideal CSTR. 
This example will show the design method 
of P and PI controllers through the following  
practical example.

Consider the mathematical model for an isothermal 
CSTR, this example is taken from (Liou et al., 
1991). The nonideal mixing is described by the 
Cholette’s model shown in Figure 4.

Figure 4. Nonideal CSTR

A simplified model of the dynamics of the process 
can be described by the following nonlinear 
differential formulas:

1
2

2

( )
(1 )f

k Cdc nQ C C
dt k CmV

 
= − −  +        

(33)

(1 ) f enC n C C+ − =
                                 

(34)

The controller variable is the concentration 
of the reactant in the exit stream eC  and the 
manipulated variable is fC  (feed concentration), 
C is the concentration of the reactant in the well-
mixed zone, n  is the fraction of the reactant feed 
that enters the zone of perfect mixing and m  is the 
fraction of the total volume of the reactor where 
the reaction occurs. Constants 1k  and 2k  describe 
the reaction rate, and q is the inlet flow rate. 

For the present simulation study, 0.75n m= = ,1
1 10k s−= , 1

2 10( / )k mol l −= , 1V l= . For 
3.288fC = /mol l ,  1.8eC = /mol l  and 
1.304C = /mol l  are considered. The 
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nonlinear model around this nominal operating 
point taking into account a delay of 20s gives the 
next transfer function:

20( ) 2.21(11.13 1)( )
( ) (98.3 1)

se

f

C s sG s e
C s s

−∆ +
= =
∆ −    

(35)

The mathematical model equation for a CSTR 
with nonideal mixing assuming a measurement 
delay of 20 s is given by (Liou et al., 1991). From 
Theorem 1 it follows that the sufficient conditions 
for P and PI controllers are satisfied, that is:

1 120 109.17
0.0898 0.0102

τ = < + =
      

(36)

For P controller design, from equation (21) the next 
range for pk  is obtained: 0.1136 0.8035pk< < . 
A gain 0.3pk =  is selected. The Nyquist plot of 

( ) ( )PC s G s  is given in Figure 5 which indicates 
a stable closed-loop system.

Figure 5. Nyquist diagram of Example 1 using  
a P controller

The dynamic behaviour of the controlled system 
is shown in Figure 6.

Figure 6. Closed-loop behaviour of Example 1 using 
a P controller

To obtain disturbance rejections and reference 
tracking, the optimal gains for a PI controller are 
provided. Consider the PI controller ( )PIC s . 
Using the methodology presented in Section 5, 

taking into account a Padé-approximation of third 
order, ( )eW s  is considered with the following 
parameters: 1.2sM = , 0.1bω = , 0.0103ε =  
The weighting function ( )uW s  is considered 
with the parameters: 10uM = , 10hω = , 

0.0001hω =  and ( ) 0.001dW s = , the initial 
controllers values selected are 0.001ik =  and 

0.1pk = . The gains obtained by the optimization 
algorithm are 0.02ik =  and 0.55pk =  which are 
used in simulation experiments. Additionally, a 
conventional PI controller (without optimization) 
used to stabilize the plant shown in (35) is 
presented in order to make a comparison and show 
the advantages of H∞  structured design method. 
The gains values for the simulation of conventional 
PI are 0.205pk =  and 84.75ik e−= .

The dynamic behavior of the closed-loop system 
using a PI controller is shown in Figure 7. The blue 
line indicates the simulation of the conventional PI 
controller and the red line indicates the simulation 
of the proposed strategy. The results obtained for 
the optimized PI controller do not overshoot 20% 
this value being lower than the response of the 
conventional PI controller (overshoot of 120%). 
The PI H∞  presents a faster response compared 
with the conventional PI controller. Both 
controllers have the same performance tracking 
of the reference. The analysis results confirm the 
validity of the proposed control technique. 

Figure 7. Closed-loop behaviour of Example 1 using 
a conventional PI controller and the proposed method

Example 2. The results about PD/PID stabilization 
shown in this paper are compared with alternative 
strategies taken from the recent related literature.

Take the example proposed in (Lee & Wang, 2010).

( 0.833)( )
( 1)( 0.909)( 5)( 5)

ssG s e
s s s s

τ−+
=

− + + +          (37)

The maximum time-delay allowed to stabilize 
the system given by (37) in (Lee & Wang, 2010) 
using a PD/PID controller is 1.039τ < , but the 
authors take into account a delay 0.1τ <  to show 
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the feasibility of this proposal. Now, consider 
the system shown in (37) with 1.04τ = , the 
stability condition proposed in (Lee & Wang, 
2010) is violated. In this second proposal, the 
methodology shown in Remark 4 is used in order 
to solve the problem.

For PD controller design, using the equation (25) 
a 2.2212ε =  and  a gain 2.273Dk = are selected 
such that the condition (22) is satisfied.  From 
equation (27) the next range for pk  is obtained: 
12.0255 12.971pk< < . A gain 12.3pk =  is 
selected. The Nyquist plot of ( ) ( )PDC s G s   is 
given in Figure 8 which indicates a stable closed-
loop system.

Figure 8. Nyquist diagram of Example 2 using  
a PD controller

6. Conclusion

This paper addresses the stabilization and 
control problem of a particular kind of linear 
delayed systems containing zero dynamics in 
the input-output path. The sufficient conditions 
needed to ensure the stabilization of this 
class of systems are provided. The results 
consider the employment of P, PI, PD, and PID 
controllers. A frequency domain analysis is 
used to demonstrate the principal results. Using 
H∞  theory the controller parameters for PI/
PID controllers are tuned taking into account 
a non-smooth H∞  optimization method. 
Finally, examples by numerical simulations are 
provided in order to confirm the feasibility of the  
proposed controllers.
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