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1. Introduction

Recently, an increased attention has been given 
to the examination of the class of nonlinear 
switched systems considered as a particular 
category of hybrid systems (Li & Yang, 2019; 
Niu et al., 2017). These systems can be examined 
as remarkable as special types of hybrid system 
classes that are theoretically have advantageous 
in the application (Chesi, 2018; Luk & Chesi, 
2015). Switched systems can be described as 
dynamic systems that display numerous dynamic 
behaviors concurrently, in diverse portions of 
the systems under study. These are otherwise 
schemes that combine continuous or discrete time-
based commands, jump occurrences, and logical 
commands (Pezeshki et al., 2018; Jerbi, 2017). 
These implementations involve a broad variety, 
including automotive, power grids, robotics, 
chemical processes, air traffic management 
networks and communication systems (Donkers 

et al., 2011; Charfeddine et al., 2011). Stability 
analysis and the stabilization of nonlinear 
switched system types represent a problem 
addressed within many studies (Hamidi et al., 
2009; Kermani & Sakly, 2015; Pang & Zhao, 
2017). In the analysis of the stability of switched 
systems, certain outcomes have been achieved by 
means of a regular Lyapunov function, several 
Lyapunov function sets (Hamidi et al. (2011) 
and the idea of dwell time (Chesi & Colaneri, 
2017). As a consequence, drawn from this, it is 
notable that in the analysis of stabilities, numerous 
approaches have been recommended for linear 
switched systems (Liberzon, 2003; Zhang, 2014). 
Nevertheless, not many approaches have been 
recommended for nonlinear switched systems.

In this study, a novel nonlinear switched system 
stabilization strategy will be developed. The 
strategy is derived from the enlargement of an 
Attraction Domain for a localized subsystem 
(Hamidi et al., 2013; Jerbi et al., 2014). The 
design problem of specifying a subsystem relies 
on the necessary performance and control law 
objective considerations. The objective of the 
latest research is to develop precise techniques 
in order to enable the maximization of the DA, 
utilizing the genetic algorithmic (GA) methods 
as an enhanced optimization approach and also 
the quasi-convex methods entailing linear matrix 
inequalities (LMI) (Hamidi et al., 2013; Jerbi et 
al., 2014). The considered parametric optimization 

Studies in Informatics and Control, 28(4) 391-400, December 2019

https://doi.org/10.24846/v28i4y201903

An Enhanced Stabilizing Strategy for Switched  
Nonlinear Systems* 

Faiçal HAMIDI1, Houssem JERBI2*, Severus Constantin OLTEANU3, Dumitru POPESCU3

1 University of Gabès, Laboratory “Modelisation, Analyse et Commande des Systemes”, LR16ES22, Gabès, Tunisia  
faical.hmidi@isimg.tn
2 University of Ha’il, College of Engineering – Department of Industrial Engineering KSA  
h.jerbi@uoh.edu.sa (*Corresponding author)
3 University Politehnica of Bucharest, Faculty of Automatic Control and Computer Science, Bucharest, Romania, 
dumitru.popescu@acse.pub.ro

Abstract: This study examines a computational technique used to design a novel feedback control law based on an expansion 
strategy of the Attraction Domain (DA) for a class of nonlinear switched systems. It is supposed that the state space is 
distributed into numerous regions without any intersections and modelled by polynomial inequalities. The main concept 
involves the maximization of the DA for local subsystems surrounding particular operational points. It was demonstrated 
that the DA can be ascertained by joining a Genetic Algorithmic method (GA) as an enhanced optimisation approach with the 
LMI method for a specified Lyapunov function. The feedback controller can then be constructed in order to ensure a global 
stability by using the Multiple Lyapunov function sets via switching signals. The effectiveness of this evolved strategy is 
eventually confirmed via a simulation examination by means of the benchmark Van der Pol oscillator. 

Keywords: Nonlinear switched models, Multiple Lyapunov function, Stability, LMI, Genetic Algorithms, Domain  
of Attraction (DA).

* This paper is an extended version of the paper called 
“Enlarging the Domain of Attraction in Nonlinear 
Polynomial Systems”, published in the International 
Journal of Computers Communications and Control, 
8(4), 538-547. In the current paper, a feedback controller 
has been constructed to ensure a global stability for a 
class of hybrid systems by using the multiple Lyapunov 
function sets via switching signals. The control strategy 
is detailed and a synthesized algorithm is recommended. 
The effectiveness of this evolved strategy is eventually 
confirmed via a simulation examination. A numerical 
simulation analysis is carried out proving the satisfactory 
performances of the developed control scheme.
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strategy manages the Lyapunov function (LF) and 
the controller input parameter set concurrently. 
The major purpose of this work is to develop a 
novel technique for facilitating the stability of 
a category of nonlinear switched systems. In 
particular, the objective of this paper is to extend 
the strategy synthesized in (Hamidi et al., 2013) 
and to make a full use of the obtained results to 
achieve the stabilization objective for a class of 
switched system. Generalized expressions will be 
given to describe the global stability of nonlinear 
switched systems.

This study is structured as follows: In section 2, 
the class of the examined systems is defined and 
the strategy for expanding the DA is presented. 
The control law hypothesis formulation is given 
in this section as well.  In section 3, the stability 
problem of the switched nonlinear systems where 
the subsystems exhibit stability will be introduced. 
Primary outcomes are illustrated in this section, 
where the designed conceptual algorithmic 
method is recommended. Section 4, is dedicated 
for an assessment of numerical simulations 
expanded towards validating the recommended 
strategy. Lastly, section 5 offers the conclusion 
and prospects for other areas in a future research.

2. Problem Formulation

2.1 System Description

Consider the nonlinear switched system defined by: 

( ) ( ) ( )
( )

{ }, 1, 2, ,
x f x g x u x

N
y h x

σ σ σ

σ

σ
= + =
=





        
(1)

wherein nx∈ℜ  represents the vectors of 
continuous state variables, puσ ∈ℜ denotes the 
control input vectors, and qy ∈ℜ denotes the 
quantifiable outputs. The index σ denotes the 
discrete states sets assuming finite values. The 
vector function sets ( ) ( ),f x g xσ σ  and ( )h xσ  
express the polynomial functions defining the 
mode σ  and verifying ( ) ( )0 0, 0 0f gσ σ= =  
and ( )0hσ . The equilibrium point of interest, 
stable even for non-zero control input is the 
origin. Let nDσ ⊆ ℜ  denotes the region of nℜ  for 
piecewise non-linear system (1) expressed by:

( ){ }: 0nD x z xσ σ= ∈ℜ ≥                                    (2)

where ( ): n nz xσ ℜ →ℜ is considered as a polynomial 
vector function. The studied switched systems are 
assumed to satisfy the following constraints:

1.	  jD Dσ ∩ = ∅ for all jσ ≠  and nDσ σ = ℜ

such that the defined systems (1)  
are deterministic;

2.	 A step variation must occur before the path 
in mode σ  discards the matching continuous 
time state space Dσ  so that the nonlinear 
switched systems (1) do not engender the 
blocking behavior. This means that the 
switching law must be performed for each 
subsystem in its own definition domain 
where the switching occurs only when the 
state trajectory leaves region Dσ  1 or leaves 
region Dσ 2.

3.	 There is only a finite number of shifts in a 
finite time (i.e. the class of systems defined 
in model (1) does not show Zeno dynamics).

4.	 Sliding modes on the switching area do not 
take place.

2.2 Control law Synthesis

Control objectives involve the regulation of 
states of switched nonlinear systems towards 
the required equilibrium points with randomized 
switching in order to asymptotically stabilize 
their schemes. In every subsystem, the 
controller input is presumed to be expressed as 
a polynomial function:

( )( )u y U yσ σφ=                                             (3) 

wherein ( ) ryφ ∈ℜ  is a provided polynomial for 
each sub-system’s output y .

Consequently, the control law can be expressed 
using Kronecker vector notation as follows:

,
1

( )
l i

i
i

u y U yσ σ
  

=
=∑

                                        
(4)

wherein l   is a truncation order and ,
p r

iU Rσ
×∈  

is a coefficients matrix belonging to the interval 
matrix defined by the set:

, ,1 ,2 ,

min max
, , ,

1, , 1, ,

i l

i i i

U U U U where

U U U for
N and i l

σ σ σ σ

σ σ σ

σ

  =    Μ = ≤ ≤ 
 = =  



 

           

(5)

For sake of clarity, the expression of the control 
law described by (3) developed under the 
polynomial form for ( )y h x xσ= =  and 3l = , 
can be expressed as follows:

( ) 1 2 3
,1 ,2 ,3u y U y U y U yσ σ σ σ

     
     = + +         

(6)
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where:

[ ]
[ ]
[ ]

,1 11 12

,2 21 22 23 24

,3 31 32 33 34 35 36 37 38

U U U

U U U U U

U U U U U U U U U

σ σ σ

σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

 =


=
 =

2.3 Description of the LMI method 

Let us consider, for every subsystem described by 
(1), a positive definite function ( )V xσ ∈ℜ  which is 
positive definite, radially unbound and continually 
differentiable. The bounded sets for all the 
subsystems are provided in the following equation:

( ) ( ){ }|nc x V x cσ σ σ σΩ = ∈ℜ ≤
                             (7)

which approximates the domain of attraction if  
( )c Dσ σ σΩ ⊂  wherein ( ){ } { }/ , 0 0nD x V x Uσ σ σ= ∈ℜ < ∪

. The time-based derivative of ( )V xσ , down the 
system trajectory (1) is provided by:

( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

,

   

   f g

V x
V x U f x g x U h x

x
V x V x

f x g x U h x
x x

L V x L V x U h x
σ σ

σ
σ σ σ σ σ σ

σ σ
σ σ σ σ

σ σ σ σ

φ

φ

φ

∂
= +

∂
∂ ∂

= +
∂ ∂

= +



       

(8)

( )fL V x
σ σ , “ ( )gL V x

σ σ  respectively” denotes the Lie 
derivative of ( ) ,V xσ ∈ℜ along the vector ( )f xσ  “

( )g xσ  respectively”. As follows, it is denoted with:

( ) ( ) ( ) ( )( ), gg UL V x L V x U h x
σσ σ σ σ σ σφ=

.
The greatest approximation of the attraction 
domain is  ( )( )*c Uσ σ σΩ  and

( ) ( )

( )

* inf

, 0

nx R
c U V x

V x U

σ σ σ

σ σ

∈
 =


=                                           
(9)                                       

resulting in optimal values for ( )*c Uσ σ  

( )* * sup
U

c c U
uσ

σ σ σ
∈

=
                                          

(10) 

It was demonstrated in (Hamidi et al., 2013) that for 
all the specified *,c c cσ σ σ∈ℜ ≤  if U σ  and positive 
definite function ( )s xσ are obtained wherein:

( ) ( )( ) ( ), 0V x U c V x s xσ σ σ σ σ+ − <

                 (11)

then the polynomial degrees for ( )V xσ  and 
( ),V x Uσ σ

 , “ 2 Vδ  and Lδ , respectively. When 
selecting ( )s xσ degree as 2 sδ for

2
L

s V
δδ δ≥ −

                                                   
(12)

therefore, the polynomial degree of:

( )( ) ( ) ( )( ) ( ), , ,  is ,t x U c s x V x U c V x s xσ σ σ σ σ σ σ σ σ= + −

  (13)

is equal to 2 tδ  and t s Vδ δ δ= + . For this 
study, square matrix representations (SMR) and 
complete-square matrix representations (CSMR) 
of polynomial expressions (Hamidi et al., 2013) 
are utilized so as to obtain suitable optimizable 
problems. These CSMR stipulate every possible 
representation of the polynomials under the 
quadratic forms.

The CSMR of:

( )( )
{ } ( ) ( ) ( ) ( )( ) { }' '

1 2

, , ,

     t t
gf

t x U c s x

x D D U c W S W S x
σσ

σ σ σ σ

δ δ
σ σ σ σα

=

+ + −
     

(14)

is provided by:

( ) ( ) ( ) ( ) ( )1 2, , , f gT U c S D D U c W S W S
σ σσ σ σ σ σ σ σ σα α= + + −    (15) 

Wherein ( )fD
σ
α  denotes the CSMR of 

( ) ( ),f gL V x D U
σ σσ σ  denotes the SMR of 
( ) ( ) ( )1, ,g UL V x W S

σ σ σ σ and ( )2W Sσ  represent the 
SMR of ( )s xσ , and ( ) ( )V x s xσ σ .

The conditionalities (11) and (17) indicates that if:

( )

*ˆ
, , 0

, , , 0

sup
U S

c c
u

T U c S
σ

σ σ

σ

σ σ σ σ

α

α
∈







=
>

<
                                    

(16)

then * *ĉ cσ σ≤ .

The above description results in a non-convex 
problem (as cσ  multiplies every parameter of Sσ  
in ( ), , ,T U c Sσ σ σ σα ). The preceding hypotheses 
re-express the studied problem as a generalized 
eigenvalue type (GEVP) enabling the overcoming 
of the constraint (Hamidi et al., 2013).

Theorem 1 see (Hamidi et al. 2013) Lower bound 
*ĉσ  as provided by

( )
( )

*
*

*ˆ
1

U
c

U
σ σ

σ
σ σ

λ
µλ

−
=

+                                           
(17)

wherein ( )* Uσ σλ  the solution for GEVP is as follows

( )

( ) ( ) ( ) ( )

*

, , 0,

1 2

inf

1 0

s. 0

U S

f g

u
U

U M
t S

W S D D U W S

σ σ

σ σ

σ σ σα λ

σ

σ

σ

σ σ σ σ

λ λ

µλ

λ α

∈ >
=

+ >
 ∈
 >
 > + −    

(18)
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wherein µ  is an arbitrary positive scalar, and:

( )1

1 0
0

TW S K S K
Vσ σ
σµ

  
= ⊗  

                   
(19)

                
wherein⊗   denotes the Kronecker product and 
one has:

{ }
{ } { }1

s m

v
x Kx

x
δ δ

δ

 
 
  

⊗ =
                               

(20)

wherein:
{ } ( ) ( )

{ } ( ) { } ( )

, ,

, ,

, ,

,

t t t

s sV V

n n

n n

x

x x

δ ς δ τ δ

δ ς δ δ ς δ

α∈ℜ ∈ℜ

∈ℜ ∈ℜ   
, , 1 ,s tVn n n

K
ς δ ς δ ς δ                

+ ×
∈ℜ

including ( ), mnς δ  and ( ), mnτ δ  are provided by

!
, 1! !

t
t

t

n
n n

δ
ς δ δ

 
     

 
 

+
= −

                                      
(21)   

( ) ( ) ( )1, , , 1 ,22t t t tn n n n nτ δ ς δ ς δ ς δ
 

  
    

= + − +
   

(22)  

3. Recommended Strategy

3.1 Stability Problem Analysis

For the purpose of introducing the stability 
problem for the class of the studied systems, the 
oscillating element of the hybrid Van der Pol 
system (Rozgonyi et al., 2010; Liu et al., 2017) 
) will be examined. This scheme may comprise 
the hybrid attribute whenever the values used in 
constructing the circuit are indeterminate. These 
results in a modelled state for indeterminate 
coefficients that can be regarded as a hybrid 
scheme described by numerous subsystems. For 
this instance, “the hybrid Van der Pol system is 
described by using dual dissimilar models with 
continuous dynamics provided by: 

Subsystem 1

( ) 1 2
1 2

2 1 2 1 2

1.2
2 0.65 1.1

x x
x f x

x x x x x




= −
= =

= − +





     (23)
Subsystem 2 

( ) 1 2
2 2

2 1 2 1 2

1.2
1.86 1.01 2.1

x x
x f x

x x x x x




= −
= =

= − +





  (24)
To assess the stabilities of the subsystems (23) and 
(24), the linearized systems are examined at their 
origin, corresponding to these matrices as follows:

1 2
0 1.2 0 1.2

;
2 0.65 1.86 1.01

A A   
   
   

− −
= =

− −       
(25)

having dual complex conjugate poles 
corresponding to 

( ) ( )0.325 1.5147 , 0.325 1.5147i i− + − −

and ( ) ( )0.505 1.406 , 0.505 1.406i i− + − −

with negative real parts. This demonstrates 
that both subsystems feature global asymptotic 
stability. Diverse dynamics are described in their 
domains in order to fully accomplish the hybrid 
Van der Pol system.

( ){ }2
1 1 1 2 1

2 1

0.6 0.36 0.14

\

D x x x x

D X

= > ∧ − >

=ℜ             
(26)

Switching signals are illustrated in Figure 1.

Figure 1. Switching signals

As shown in Figure 2, the asymptotically 
stable region contains the equilibrium point  
( )0,0 . Nevertheless, from the initialised 
condition ( )0.69, 1.9 and with the randomised 
switching signals, the developing state dynamics 
of the switched systems deviate since, at the final 
commutation at time

1
3.59ct s= , these states lie 

beyond the asymptotically stable region. 

Figure 2.  Regions of asymptotic stability RAS1 
(solid blue lines), RAS2 (dashed) and ( )x t  

trajectories of switched systems (solid red lines).

In accordance with such simulations of switched 
systems, it can be determined that switching 
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among stable subsystems does not inevitably 
result in a stable dynamic scheme. Therefore, 
the stabilities of switched systems rely not just 
on the continuously dynamic natures of these 
subsystems but also on exploitation of the 
switching approach.

3.2 Description of GA Method

In what follows, the primary outcomes that 
have been achieved in the current study will 
be introduced. Hence, the Reverse Trajectory 
Method (RTM) presented in (Hamidi et al. 2013) 
will be applied to approximate the Region of 
Asymptotic Stability (RAS) via a reversal of 
the systemic trajectory flow. the primary aim of 
this work is to expand the RAS that results from 
the technique defined in (Hamidi et al. 2013), 
enabling the determination of the analytical 
formulations of the maximum DA within the 
RAS. To simplify the proposed approach, two 
subsystems have been assumed. The results can 
be generalized for several subsystems. Thereby 
the Lyapunov function of the quadratic form is 
the following:

( )1
TV x x Px=                                                (27)

( )2
TV x x Qx=                                               (28)

wherein 0, 0T TP P Q Q= > = >  for maintaining 
simplicity, it is assumed that 2,P Q∈ℜ , where 

11 12

12 22

p p
P

p p
 

=  
 

 and  11 12

12 22

q q
Q

q q
 

=  
 

such that 

( ) 2 2
1 11 1 12 1 2 22 22V x p x p x x p x= + +                     (29)

( ) 2 2
2 11 1 12 1 2 22 22V x q x q x x q x= + +                      (30)

The resulting expressions can be generalised for 
larger-sized matrices. Through the utilisation of the 
Lyapunov functions, the RAS can be formulated 
as being determined by the RTM see (Hamidi et 
al., 2011), in the form of ellipsoids in the ( )1 2,x x  
plane. The procedure involves a parametric 
estimation of ( ), ; 1, 2; 1,2j jp q jσ σ σ = = and 

( ), 1, 2; 1,2ju jσ σ = =  through genetic algorithmic 
methods see (Moussa et al. 2018, Serban et al., 
2016). By joining such algorithmic methods 
through LMI optimisations, the largest ellipsoid 
bounded within the RAS can be determined. The 

set of candidate solution, ( ), ; 1, 2; 1,2j jp q jσ σ σ = =  
and ( ), 1, 2; 1,2ju jσ σ = =  is randomly selected and 
can be assumed to be represented by discrete 
elements. Every variable can be examined as a 
genetic factor, with various phases of this genetic 
algorithmic method expressed via the dissimilar 
operation of GA see (Moussa et al. 2018; Serban 
et al., 2016).

Remarks: 

(i)	 For this study, a GA is utilised in 
order to approximating the parameters

( ), , 1, 2; 1,2j jp q jσ σ σ = = a n d ( ), 1, 2; 1,2ju jσ σ = =  wherein the limit is satisfied by: 
( )2

11 22 11 22 120, 0,p p p p p> > ⋅ >           (31)
( )2

11 22 11 22 120, 0,q q q q q> > ⋅ >            (32)

(ii)	 Every reiteration of the GA optimisation 
sequence leads to new parametric values,

( ), , 1, 2; 1,2j jp q jσ σ σ = = , 
( ), 1, 2; 1,2ju jσ σ = = and *ĉσ that represent 

a solution set of the LMI with respect to 
this parameter set. GA approach results 
in the most appropriate parameter set,

( ), , 1, 2; 1,2j jp q jσ σ σ = =  and 
( ), 1, 2; 1,2ju jσ σ = =  that can be utilised 

for calculating of the superior solution 
*ĉσ  (described in (17)), representing the 

resolution of LMI (18). 
The variable sets

( ){ }, ; 1, 2; 1,2j jp q jσ σ σ = = and 
( ){ }, 1, 2; 1,2ju jσ σ = = are encoded into 

genetic candidates. Fitness values are 
provided by the maximal value of *ĉσ
for which there are possible solutions 
to the optimisation of the LMI. Global 
optimisations of the variable set

( ), 1,2; 1,2j jp q jσ σ σ = =
 ( ), 1,2; 1,2ju jσ σ = =  

are conducted using the genetic operators 
(recombination, mutation, and selection 
see (Moussa et al., 2018; Serban et  
al., 2016).

(iii)	The Expansions of attraction domain 
are associated with the optimisation 
criteria of ellipses, as described in the 
following expression:

( ) { }* *ˆ ˆ|n Tc x x Px cσ σ σΩ = ∈ℜ ≤            (33)

Volumes are expressed by:

( )
*ˆ

det( )
c

Vol
P

σ
σΩ =

                           
(34)
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3.3 Synthesis of the Algorithmic Method

The primary pseudo code is required for executing 
the synthesised algorithmic method, where 
accordingly, the optimal values for the parametric 
radii of domains of attraction, is expressed as:

Algorithm. Computing the largest DA estimates 
for each subsystem
Input:
•	 A Quadratic Lyapunov function for each 

subsystem,

( ) 2 2
1 11 1 12 1 2 22 22V x p x p x x p x= + +

( ) 2 2
2 11 1 12 1 2 22 22V x q x q x x q x= + +

•	 A controller law

1
; 1,2

q
j

j
j

u U xσ σ σ  

=
= =∑

Output: a larger domain of attraction and a 
corresponding controller law for each subsystem.

Set ( ), , 1, 2; 1,2j j jp q u jσ σ σ σ = =  as candidate 
genetic factors
whereas

( )
( )

2
11 22 11 22 12

2
11 22 11 22 12

0, 0,

0, 0,

p p p p p

q q q q q

> > ⋅ >

> > ⋅ >

1;k =

while k <= +∞  do
solve the LMI optimisation (17)-(18);

if  ( ), 1kV xσ +  exists then

( ){ }
[ ]

, 1 , 1 , 1

, 1 , 1
1

:

, : 1

k k k

q
j

k k
j

D x V x c

u U x k k

σ σ σ

σ σ

+ + +

+ +
=

≤

= = +∑

end if
end while
return

( ){ }, , ,

, ,
1

:k k k
q

j
k k

j

D x V x c

u U x

σ σ σ

σ σ
 
 

=

≤

=∑

The flowchart provided in the following 
Figure 3 depicts the design methodology, the 
asymptotically stable region has been maximised 
and the stabilisation for the switched nonlinear 
system has been validates, where appropriate. “LF 
denotes Lyapunov function”.

Figure 3. Flowchart of the design methodology

4. Study of an Illustrative Example  

4.1 System Modeling

To explain the primary operation of the 
recommended approach, this switched Van der 
Pol system is examined as follows see (Rozgonyi 
et al., 2010):

Subsystem 1: 

( ) ( )
1 2

1 2
2 1 2 1 2 1

1.2

2 0.65 1.1

x x
x f x

x x x x x u x
= −= = 
= − + +





   
(35)

Subsystem 2: 

( ) ( )
1 2

2 2
2 1 2 1 2 2

1.2

1.86 1.01 2.1

x x
x f x

x x x x x u x
= −= = 
= − + +





   
(36)

Formulations of the recommended controllers (4) 
are determined for [ ]1 1 2, Ty x x=  and  [ ]2 1 2, Ty x x=  
by ( )1 11 1 12 2u x U x U x= +  and   ( )2 21 1 22 2u x U x U x= +  
as with

[ ]{ }
[ ]{ }

11 12 11 12

21 22 21 22

1

2

, : 2 , 2

, U : 2 , 2

U U U U

U U U

U
U

= − ≤ ≤

= − ≤ ≤
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As the aim of this study is to confirm the stabilities 
of hybrid Van der Pol models, these analytical 
processes have been initially employed in order 
to expend their domains of attraction as depicted 
in (Hamidi et al., 2013). For this purpose, the 
polynomial Lyapunov functions, describing every 
subsystem and truncating to the first order, have been 
applied as follows:
•	 The first subsystem 

( ) 2 2
1 11 1 12 1 2 22 22V x p x p x x p x= + +

Given that the degree Lδ  of ( )1 ,V x U  equals 
4, through a setting of 1sδ = 2tδ =  is 
obtained. Vectors { } { }, sVx xδ δ  and { }tx δ are 
designated as: { } { }

1 2
sV Tx x x xδ δ   = = and 

{ } 2 2
1 2 1 1 2 2, , , ,t

T
x x x x x x xδ   =  implying:

( )
1

12 1 1 2

1 2 1 2

1,2,3 1,2,3 1 12 3

1 2 12 3

2 3

4 0
0

, 0 0 1.1
1.1 0

0 0 0

f

p

D p
p

β α α
β β α α

α β α α
α α β
α α

 
 − − 
 = −
 

− 
 
 

( )
( ) ( )

1 22 11 12

2 12 22 3 22 3

2 1.2 0.65 ,

2.4 1.3 , 2 1.1

p p p

p p p

β

β β α

= − −

= − − = −

( )1

1 2

2 3

1,2,3

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

g

a a
a a

D a

 
 
 
 
 
 
 
 

=

( )1 12 11 2 22 11 12 12 3 22 122 , , 2 .a p U a p U p U a p U= = + =

( )

11 12

12 22

1 21 , 1,2 1,..,5

2 3 4

54

0 0 0
0 0 0

0 0 0, ,
0 0
0 0 0

j

s s
s s

k kW S k
k k k

k k

σ =

 
 
 
 
 
 
 
 

=

( )
( )
( )

1 11 11 2 12 11 11 12

3 22 1 12 12 11 22

54 12 22 22 12 22 22

, ;

4 ;

, .
I

k q s k q s q s
k q s q s q s
k q s q s k q s

µ µ

µ

µ µ

= = +

= + +

= + =

( ) 1 22 1, 5

2 3 4

54

0 0 0 0 0
0 0 0 0 0
0 0 0
0 0
0 0 0

r rW r
r r r

r r

 
 
 
 
 
 
 
 

=


( )
( )
( )

1 11 11 2 12 11 11 12

3 22 11 12 12 11 22

54 12 22 22 12 22 22

, ;

4 ;

, .

r p s r p s p s
r p s p s p s
r p s p s r p s

= = +

= + +

= + =

11 12
11,12,22

12 22

s s
S

s s
 
 
 

=

•	 The second subsystem
The Lyapunov function is described as follows:

( ) 2 2
2 11 1 12 1 2 22 22V x q x q x x q x= + +

Given that the degree Lδ of ( )2 ,V x U  is equal 
to 4, by establishing 1sδ = , and then 2tδ =  
is obtained. Vectors { } { }, sVx xδ δ

 and { }tx δ

are designated as: { } { }
1 2

sV Tx x x xδ δ   = = ,  
{ } 2 2

1 2 1 1 2 2, , , ,t
T

x x x x x x xδ   =  implying:

( )
2

12 1 1 2

1 2 1 2

1,2,3 1,2,3 1 12 3

1 2 12 3

2 3

3.72 0
0

, 0 0 2.1
2.1 0

0 0 0

f

q e
e e

D e q
q e

α α
α α

α α α
α α
α α

 
 − − 
 = −
 

− 
 
 

( )
( ) ( )

1 22 11 12

2 12 22 3 22 3

1.86 1.2 1.01 ,

2.4 2.02 , 2 2.1 .

e q q q

e q q e q α

= − −

= − − = −

( )
2

1 2

2 3

1,2,3

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

g

d d
d d

D d

 
 
 
 =
 
 
 
 

( )1 12 21 2 22 21 12 22 3 22 222 , , 2 .d q U d q U q U d q U= = + =

( )

11 12

12 22

1 , 1,2 1, 5 1 2

2 3 4

4 5

0 0 0
0 0 0

, 0 0 0
0 0
0 0 0

j

m m
m m

W m q h h
h h h

h h

σ =

 
 
 
 =
 
 
 
 



( )2 1, 5 1 2

2 3 4

4 5

0 0 0 0 0
0 0 0 0 0

1 . 0 0 0
0 0
0 0 0

W h h h
h h h

h h

µ

 
 
 
 =
 
 
 
 



( )
( )
( )

1 11 11 2 12 11 11 12

3 22 11 12 12 11 22

4 12 22 22 12 5 22 22

, ;

4 ;

, .

h q m h q m q m

h q m q m q m

h q m q m h q m

µ µ

µ

µ µ

= = +

= + +

= + =

11 12

12 22

m m
M

m m
 

=  
 
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The assessment of the DA maximization is continued 
by approximating the parameter sets, ( )11 12 22, ,p p p  
and ( )11 12 22, ,q q q  of the corresponding Lyapunov 
functions ( )1V x  and ( )2V x , as well as ( )11 12,U U
, ( )21 22,U U  of the controller inputs ( )1u x and 

( )2u x . The parametric set, , ; , 1, 2j jp q jσ σ σ = and
; , 1, 2ju jσ σ =  should be encoded into the following 

7-bit form:

( )
( )
( )

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

, , , , , , ;

, , , , , , ;

, , , , , , .

j j j j j j j

j j j j j j j

j j j j j j j

j

j

j

p p p p p p p p

q q q q q q q q

u u u u u u u u

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ

σ

σ

=

=

=

In order to be placed into the chromosomes 
characterised by the following parameter sets:

_ 100; _ 0.65;
0.1; _ 100.

Pop size Crossover rate
Mutation Max generations

= =
 = =

Whereupon, the recommended technique has  
been implemented,

2 2
1 1 1 2 2

2 2
2 1 1 2 2

1.597 0.598 0.369 6.1423

1.6 1.82 1.5 2.4916

V x x x x
V x x x x

= − + =

= − + =

such that the inputs are provided by:

1 1 2

2 1 2

1.4703 1.9996
1.5738 1.9992

u x x
u x x
= −
= − −

The resulting values are presented in Figure 
5 using 1 10µ = . It can be noted that the 
asymptotically stable regions and both DA of the 
Van der Pol hybrid models have been acquired 
through the Lyapunov functions ( )1V x and ( )2V x , 
validating the asymptotic stability localised at the 
equilibrium point ( )0,0 . Furthermore, it should be 
noted that both the acquired RSA subsystems are 
strongly associated and include each other. 

Figure 4. Ellipsoid shapes representing the Domains 
of Attraction for subsystems 1 and 2. Solid lines 

depict ( )1 ,V x U and ( )2 ,V x U

4.2 Results and Discussion 

The switching signals have been defined 
in Figure 1, with constructed trajectories 
switching between dual regions in square forms. 
Simulation outcomes expressing the dynamics 
of the switched non-linear schemes are provided 
in Figures 5-6. Figure 5 illustrates the state 
responses of switched non-linear systems for 
random initial states. Thus, it appears that the 
state trajectories asymptotically converge to their 
origin. Figure 6 depicts the sufficient behaviours 
of the state variables ( )1x t and ( )2x t  of the 
switched non-linear system, even though at the 
beginning, the conditions have been established 
rather far from the origin. Apparently, the state 
variables converge at the origin with randomised 
switching signals, determining the asymptotic 
stabilities of the hybrid non-linear system. 

A profile of the Lyapunov functions relevant to 
subsystems 1 and 2, for switching approaches 
designed in accordance with the stable condition 
of the switched systems is illustrated in Figure 
7. It is fully demonstrated that this Lyapunov 
function validates the condition. Describing the 
system as it enters subsystem i , the value of the 
Lyapunov function linked with the subsystem 
has to be lower than the value obtained when 
the system previously left subsystem i . The 
controller signals depicted in Figure 8 describe 
a sufficiently dynamic development as it results 
in the immediately stabilisation of the switched 
non-linear system. 

Figure 5. State trajectory of switched  
non-linear systems
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Figure 6. Development of the state trajectories of 
switched non-linear systems

Figure 7. Development of the Lyapunov Function 

Figure 8. Development of the control law

5. Conclusion

The synthesis of a feedback control methodology 
which ensures an improved enlargement of the 
domain of attraction is the key concern analysed in 
this paper. The analysis has been primarily aimed 
at the class of the switched nonlinear polynomial 
systems wherein the dynamics is continuous on the 
boundary of the various regimes of the state space. 
The key contribution consists in establishing an 
unequivocal asymptotically stable region by 
exploiting the parameterised specific Lyapunov 
functions of the elementary sub-scheme. The 

gains of the nonlinear control variable as well 
as the parameters of Lyapunov function are 
calculated by merging the GA heuristic routine 
with a LMI-based method. A detailed flowchart 
has been prepared for offering a general approach 
in order to provide the stability for the class of 
system under consideration. The efficiency of 
the developed approach was verified by means 
of a simulation study of a hybrid Van der Pol 
system. Future research will focus on generalising 
this approach for the class of analytical non 
polynomial switched mechanisms. 
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