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1. Introduction

The Quadcopter unmanned aerial vehicles (UAVs) 
becomes a promising option for applications in 
various areas. It can be utilized for military and 
civil purposes due to their many advantages such 
as aerial surveillance, search and rescue missions, 
fire detection. They can be also boarded without 
human during complex or risky missions.

The control techniques for UAV platforms have 
witnessed a rapidly expanding research in order 
to achieve not only autonomous hovering and 
orientation but also trajectory tracking (Salehfard 
et. al, 2018, Rendón & Martins, 2017). In this 
context, there is a need to develop a simplified 
method that can be used to design a controller. 
Several applied methods have been employed 
to solve the attitude stabilization and trajectory 
tracking problems (Labbadi & Cherkaoui, 2019, 
Zheng et al. 2014, Basri, 2018).

The proportional, integral and Derivative (PID/
PD) controllers have been successfully used 
in the industry owing to their simplicity and 
suitable performance for both linear and nonlinear 
systems. The PID controllers are used for both 
quadcopter attitude and trajectory controls, the 
values of controlling parameters were tuned by 
particle swarm optimization (PSO) (Estevez, et 
al. 2016). Alongside a quadcopter is a Multiple-
Input Multiple-Output (MIMO) system affected by 
various uncertainties such as nonlinear dynamics 
and external disturbances. Therefore, the linear 
controllers are effective only for the small ranges 

of angles.  To solve the stabilization problem of 
quadrotor, different nonlinear control learning 
algorithms have been developed. The fuzzy logic 
control (Harik et al., 2017, Mardan et al., 2017, Gül 
& Arıso, 2013) and the neural network controller 
(Çakir & Yüksel, 2017, Muliadi & Kusumoputro, 
2018, Lei et al.,2014) are used to build and design 
an intelligent flight control module for a quadrotor 
UAV, and they are widely used for nonlinear 
plants due to their characteristic of self-learning, 
self-organizing and self-adapting (Belhadri et al., 
2016). So, combining the characteristics of PID/PD 
controllers with intelligent algorithms represents 
a very promising technique for a nonlinear 
system. The designed neural network and Fuzzy 
PID control algorithms are tested using the full 
nonlinear mathematical model of the considered 
Quadcopter with disturbed and variable inputs 
(Bojja et al., 2019, Kuantama et al., 2017, Chen et 
al., 2015). As mentioned in previous researches, 
the neural networks and the fuzzy logic PID 
controllers can achieve good results in controlling 
an intelligent vehicle, and provide safe driving. 
These control techniques have proven to be robust 
against system parameter variations.

In the present work, two different nonlinear 
control approaches have been studied with the 
aim of allowing the Quadcopter to track complex 
trajectories and reject disturbances. The first 
control method proposed is an adaptive control 
algorithm based on neural network. An auto-
tune PID/PD-like controller based on an online 
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Neural Networks (NN) is developed in this 
research for trajectory tracking. The improved 
back-propagation algorithm is used to optimize 
the weights of the neural network. 

The second control law to be designed and 
implemented in the Simulink simulation 
environment is the Fuzzy logic-PID (FPID/
PD) control law. The tuning of PID/PD gains is 
performed by a fuzzy logic method. However, 
such a gains scheduling method of a PID and fuzzy 
controllers has some drawbacks and limitations. 
The design of FLC (Fuzzy Logic Control) is based 
on the perfect choice of the limits and a perfect 
shaping of the membership functions and scaling 
factors (SFs). The Particle Swarm Optimization 
(PSO) algorithm-based approach is proposed to 
improve the effectiveness of the FPID/PD. Scaling 
factors are scheduled based on the improved 
variants of the conventional PSO algorithm. 

This paper is structured as follows: the 
mathematical non-linear model of the studied 
Quadcopter UAV based on the Newton-Euler 
formalism is described in section 2. In section 
3, the design of the flight adaptive intelligent 
controller for path tracking is established. In 
Section 4, to verify the performance of the 
proposed method, simulation results are presented. 
Finally, the main conclusions of this paper are 
given in section 5.

2. Quadcopter Model

The generic dynamics of the quadcopter are 
derived through Newton-Euler formulation 
(Basri, 2018, El Hamidi et al.,2019) and written 
as expressed in (1- 6).

                   

(1)

                 

(2)

                

(3)

                     (4) 

                    (5)

                                    (6)
2 2 2 2

1 1 2 3 4
2 2

2 4 2
2 2

3 3 1
2 2 2 2

4 1 2 3 4

( )

( )

( )

( )

u b

u b

u b

u d

ω ω ω ω

ω ω

ω ω

ω ω ω ω

 = + + +

 = −


= −


= − + −                                    

(7)

where Ix, Iy and Iz represent the moment inertia 
of the quadcopter around x, y and z axis; Jr is 
the rotor inertia; kftx, kfty, kftz are the translation 
drags coefficients; kfax, kfayand kfaz are the frictions 
aerodynamics coefficients; ϕ, θ and ψ are the 
rotation around the roll, pitch and yaw axis, 
respectively. g is the gravitational acceleration, and 
l represents the Quadcopter half span. Equation 
(7) provides the mathematical expression of the 
input forces of the quadcopter. 

3. Flight Control Synthesis

In this work, intelligent PID/PD controllers are 
used instead of the linear PID/PD controllers. 
So, the control strategy is designed by combining 
conventional and intelligent control techniques. 
The main approaches proposed in this research 
are neural networks, fuzzy logic control and PID/
PD control. 

Figure 1 shows the block diagram of the proposed 
control architecture scheme. Two control loops are 
used in this research: the outer-loop position which 
contains the translation position coordinates (x, y 
and z) and the inner-loop attitude which contains 
the three angles (φ, θ and ψ). 

Figure 1. Control scheme

Note that from the dynamical model presented 
in (1 to 6), the quadcopter is constituted of 
six outputs which are controlled only by four 
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inputs. Unlike the altitude and orientation of the 
quadcopter, its x and y positions are not decoupled 
and cannot be directly controlled using any of the 
four control laws u1 to u4. On the other hand, the 
x and y positions can be controlled indirectly by 
the roll and pitch angles. The desired roll (𝜙d) 

and 
pitch (θd) angles can be computed from the motion 
translation equations (4-5). 
The following notations are introduced:
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The desired angles (Roll, Pitch) can be extracted 
from the following expressions:
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where ϕd, θd and ψd are the desired trajectories in 
roll, pitch and yaw respectively.

3.1 Neural Network PID/PD control 
Structure

Self-tuning (El Hamidi et al.,2018; El Hamidi et 
al., 2019) has received great attention for control 
problems since it provides a systematic and 
flexible approach for dealing with uncertainties, 
non-linearities and time-varying parameters. In 
order to achieve an optimal system performance, 
a novel intelligent PID/PD control strategy based 
on backpropagation neural network (BPNN) is 
designed for quadcopter control. Figure 2 presents 
the structure of the proposed gain scheduling 
neural network GS-NNPID/PD controller that 
includes two main parts: a conventional PID/PD 
controller employed for the quadcopter control and 
a BPNN neural network used for adjusting PID/PD 
parameters: kp, ki and kd. The attitude vector X1 and 
position vector X2 are defined in (10).

Figure 2. Block Diagram of an Auto-Tuned PID/PD 
with Artificial NN Control

1 2X X X x y zϕ θ ψ= =                                       (10)

The controller is designed using the incremental 
PID/PD control algorithm and multilayer neural 
network. The PID and PD control equations can 
be expressed in (11) and (12) respectively.
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where uPID(k) and uPD(k) are the PID and PD 
control signal respectively, e(k)=Xd -X represents 
the tracking error, Xd= [X1d X2d]=[xd yd zd ϕd θd ψd] 
denotes the desired reference, kp, ki and kd are 
the proportional, integral and derivative gains 
respectively, and k is the sample time. 

The gains of the PID/PD controller are adjusted 
according to the learning of the BPNN. The BPNN 
consists of an input layer composed of four inputs, 
a hidden layer made up of the hidden neurons, and 
an output layer comprised of six outputs, which 
represent the gains of the PID/PD parameters.

As shown in Figure 1, six independent PID/PD 
were implemented, one for each flight parameter. 

The whole system is formed of two neural 
networks as presented in Figure 2. The position 
neural network (P_ANN1) is implemented to 
adjust the PID/PD gains of position outer loop. 
The second one is the attitude neural network (A_
ANN2), which is exploited to regulate the gains 
of the three PID/PD in the attitude inner loop. 
In each controller, the GS-NNPID/PD is built 
by combining PID/PD and feedforward neural 
network as presented in Figure 3. 

Figure 3.  Block diagram of the implemented GS 
NNPID/PD
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The input layer has 4 neurons; the specific form 
is given by (13).
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where μ is the input vector, e is the error vector and 
ec is the changing rate of system error expressed 
in (14).
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Hidden layer has n=10 neurons. The Input 
and output of each hidden layer neuron can be 
calculated respectively as follows:

4
(2) (1)
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(2) (2)( ( ))j jOut f in k=                                              (18)
Output layer has m=6 neurons. The neurons 
placed on this layer correspond to the PID/PD 
gains. The input and output of each neuron in this 
layer are expressed respectively as follows:
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where superscript (1), (2), (3) stands for the input 
layer, hidden layer and output layer respectively, 
vij is the weight connecting the input layer neurons 
to the hidden layer neurons, wjl is the weight 
connecting the hidden layer neurons to the output 
layer neurons, f and g are the activation functions 
of the hidden and output layer, respectively. They 
are defined by (21) and (22).
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The backpropagation algorithm is based on the 
minimization of a sum-squared error (MSE) 

utilizing the optimization gradient descent 
method. MSE is used as the cost function which 
is a function of error defined as follows:

21( ) ( )
2

E k e k=
                                                 

(23)

Generally, the adjustment of each weight of 
hidden-layer and output-layer can be expressed 
as follows:
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∂∆                                              
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However, in order to avoid the local minima 
which represent the best-known problem 
associated with back-propagation algorithm, a 
momentum term is added to the weight change 
in the proposed algorithm. This means that the 
weight changes this iteration by depending not 
only on the current error, but also on the previous 
changes. So, the connection weights at the output 
layer and the hidden layer are updated by the 
following equations:
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where µ is the learning rate; α is the is 
momentum factor.
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The term ( ) ( )y k u k∂ ∂∆ is unknown, it is replaced 
by sgn( ( ) ( )y k u k∂ ∂∆ ). The above analysis can lead 
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to the adjustment of the weights of the output layer 
by using the following formulas: 

(3) (2)

(3) (3)
(3)

( ) ( 1) ( )
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The learning algorithm of the weighted hidden 
layer can also be led to:
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The derivative functions of f(x) and g(x) are:
2(.) (1 ( ))

(.) 2 ( )(1 ( ))
f f x
g g x g x

 ′ = −


′ = −  			        
(35)

3.2 Design of Optimized Fuzzy FPID/
PD-PSO 

A combination between proportional integral 
derivative controller and a fuzzy system is applied 
in order to control the defined reference trajectory 
tracking of the quadcopter. The fuzzy logic 
system is developed to calculate the proportional 
integral derivative gains. An improved fuzzy PID/
PD controller with scaling factors based on the 
heuristic Particle Swarm Optimization (FPID/PD 
PSO) is considered to steer the system trajectories 
toward the desired dynamics.

The scaling factors of the proposed scheme are 
further tuned using the heuristic method PSO. 
This design is composed of the conventional 
PID/PD control system in conjunction with a 
set of fuzzy rules (knowledge base) and a fuzzy 
reasoning mechanism. Using the knowledge 
and fuzzy inference to regulate PID/PD gains, 
as a result, the PID/PD controller generates the 
control signal. The proposed structure of the 
optimized fuzzy FPID/PD-PSO controller is 
shown in Figure 4. The input variables of such a 
fuzzy supervisor are the error e and its derivative 
de as given in (36) and (37).

( ) ( ) ( )e t rin t yout t= −  			        (36)
( )( ) de tde t

dt
=

				         
(37)

where T
d d d d d drin x y zφ θ ψ=    denotes the desired 

reference and Tyout x y zφθ ψ=    represents the 
output of the controlled quadcopter. The PID 

and PD controller are described in equations 
(38) and (39) as:

( )( ) ( )PID p i d
de tu k e t k e t k

dt
= + +∫    		       

(38)

( )( )PD p d
de tu k e t k

dt
= +

            		       (39)

The output variables of the optimized fuzzy tuning 
gains are obtained by using the fuzzy reasoning 
inference and optimization algorithm. These 
variables denote the optimal proportional integral 
and derivative gains kpo, kio and kdo which are given 
respectively as follows:

po p p

po i i

po d d

k G k

k G k

k G k

 =
 =
 =   				         

(40)

where kp= [kpϕ kpθ kψp kpx kpy kpz]
T, ki= [kiϕ kiθ kiψ kix kiy 

kiz]
T and kd=[kdϕ kdθ kdψ kdx kdy kdz]

T denote the fuzzy 
inference reasoning outputs for proportional, 
integral and derivative actions of PID/PD 
controllers, respectively.

The parameters, Gp= [Gpϕ Gpθ Gpψ Gpx Gpy Gpz]
T, 

Gi= [Giϕ Giθ Giψ Gix Giy Giz]
T, Gd= [Gdϕ Gdθ Gdψ Gdx 

Gdy Gdz]
T, ke= [keϕ keθ keψ kex key kez]

T and kec= 
[kecϕ kecθ kecψ kecx kecy kecz]

T are the positive 
input and output scaling factors, introduced to 
eliminate the classical predefined ranges on kp, ki 
and kd parameters of the FPID/PD controllers.

Figure 4. Structure of the proposed of adaptive 
optimized Fuzzy FPID_PSO Controller

A set of linguistic rules is used in the fuzzy 
reasoning inference block to determine the 
parameters kp, ki and kd. Seven fuzzy labels 
(Negative Big (NB), Negative Medium(NM), 
Negative Small (NS), Zero (ZO), Positive Small 
(PS), Positive Medium (PM)and Positive Big 
(PB)) are used for the fuzzy input variables and 
three fuzzy labels (Small (S), Medium (M) and 
Big (B)) for the fuzzy output variable. These 
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linguistic variables are listed in Table 1 and Table 
2 which contain the 25 rules for the fuzzy-PID 
type controller. The membership functions for the 
input and output variables are defined with the 
triangular, uniformly and distributed shape. 

Table 1. Fuzzy rules for kp and ki

ERROR

ER
R

O
R

 R
ATE

NB NM NS ZO PS PM PB
NB M S S S S S M
NM B M S S S M B
NS B B M S M B B
ZO B B B M B B B
PS B B M S M B B
PM B M S S S M B
PB M S S S S S M

Table 2. Fuzzy rules for kd

ERROR

ER
R

O
R

 R
ATE

NB NM NS ZO PS PM PB
NB M B B B B B M
NM S M B B B M S
NS S S M B M S S
ZO S S S M S S S
PS S S M B M S S
PM S M B B B M S
PB M B B B B B M

For the FLC related to attitude, the error is 
normalized to the interval [-1 1], the error rate 
is confined within the range [-10 10] and the 
output is also normalized to the ranges [0 100], 
[0 1] and [0 30] for kp, ki and kd respectively. For 
the quadcopter position control requirement, the 
domain of the displacement deviation e is set as 
[-5 5], and the domain of the de is [-10 10]. The 
domains of kp, ki and kd are [0 200], [0 25] and 
[0 100] respectively. Once the rule base has been 
defined, the membership functions (MFs) for e, 
de, kp, ki and kd need to be determined. Identical 
membership functions are used for all variables.  
By using the product-sum inference and the center 
of gravity defuzzification method, the overall 
outputs of each FLC can be obtained.

Generally, the fuzzy parameters are selected by 
trial and error. Sometimes, this is not adequate 
to provide the necessary control actions. In such 
cases, the static values of the scaling factors 
SFs and single MFs are not enough to achieve 

the desired control action. A straightforward 
solution to this problem is to propose a novel 
strategy to design and fine-tune the input/output 
scaling factor parameters of the fuzzy gain 
scheduling PID (GS-FPID) controllers for the 
tracking control problem of a quadcopter UAV. 
The optimization theory, summarized in the 
PSO technique, presents a promising solution 
to this kind of non-linear control problem. The 
scaling factors of the fuzzy GS-FPID control 
structure used for the studied quadcopter UAV 
are scheduled based on the PSO algorithm. Such 
a proposed systematic PSO-based approach 
can further improve the effectiveness of the 
fuzzy GS-FPID structure and eliminate the 
tedious and repetitive trial and error process for 
its designing and tuning. As described above 
the optimization parameters of the GS-FPID 
controllers are the inputs and outputs scaling 
factors ke, kec, Gp, Gi and Gd. These design 
parameters present the decision variables of the 
following multi-objective optimization problem. 
The cost functions of the optimization problem 
are chosen according to each controlled variable 
as the integral absolute error (IAE) criteria are 
defined by using the generic form, as follows:

21( ) ( ( ) ( ))
2i i ig x rin t yout t dt= −∫                          

(41)

Then the fuzzy controller outputs can be 
reformulted  as :

0

( )( ) ( ) ( )
t

PID p p i i d d
de tu t G k e t G k e t dt G k

dt
= × + × + ×∫

    
(42)

( )( ) ( )PD p p d d
de tu t G k e t G k

dt
= × + ×

 		       
(43)

3.3 Settings of Particle Swarm 
Optimization (PSO) 

Similar to most optimization techniques, PSO 
requires a fitness evaluation function relevant 
to the particle’s position. Let Pbest represent 
the personal best position and Gbest global best 
position of the ith particle respectively. Each 
particle is initialized with a random position and 
velocity, and it is moved toward the global best 
and its own personal best by updating its velocity 
based on the following equation :

1 1

2 2

( ) ( 1) ( ( ) ( ))
( ( ) ( ))

i i best i

best i

V t w V t c rand P t X t
c rand G t X t

= × − + × − +

× × −       
(43)
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The position of each particle is denoted by Xi 
and it is represented by a set of coordinates that 
represents a point in the research space. 

( 1) ( ) ( 1)i i iX t X t V t+ = + +  			        (44)

where Vi(t) is the velocity of particle i at iteration 
t, rand1 and rand2 are two random numbers 
uniformly distributed in the interval [0,1]; c1 and 
c2 are the acceleration constants, and w is the 
inertia weight factor.

Many values of the inertia weights are tested. It is 
noted that the value w = 0.8 allows a compromise 
between local and global exploration (El Gmili et 
al. ,2017). The parameters of PSO are set based 
on trial and error, so that the optimal value can be 
obtained: The size of population  N = 50; Number 
of iteration= 20 ; c1 = 1.2 ; c2 = 1.2.

Then the fitness is selected according to the 
design requirements. The following fitness 
criterion is applied. 

1 2 3p s ssf a O a t a e= + +    			        (45)

where a1, a2, a3 are the weighting factors and Op, 
ts and ess are the overshooot, settling time, and 
steady state error respectively. We have set a1 = 
0.8, a2 = 0.9, a3 = 0.8. 

4. Simulation Results and Analysis 

To investigate the validity and efficiency of 
the proposed control methods, numerical 
simulations have been carried out. In order to 
compare the auto-tuned PID vs. PD, a statistical 
indicator was implemented. It makes it possible 
to determine which one has the best behavior 
when following a trajectory. The main control 
objective is to lead [x y z ϕ θ ψ] to the desired 
reference [1 1 1 ϕd θd 1]. The desired angles ϕd 
and θd are determined according to (23). The 
initial position and angle values are set to zero. 
The research objects are slightly changed so as 
to emphasize the comparisons with the following 
simulation tests.

4.1 Network based PD/PID Control

In this part of the work, more details of the PID/
PD control and Neural Network tuning method 
for a quadcopter UAV have been introduced. The 
simulation results, which verify the effectiveness 

of the synthesis control scheme, are shown in 
Figures 5 and 6.

Figure 5. Quadcopter’s position (x, y,z) and yaw ( ψ) 
behaviors obtained by GS-NNPID and GS NNPD controllers

Figure 6. Quadcopter’s attitude angle (ϕ, θ) behaviors 
obtained by GS-NNPID and GS-NNPD controllers

4.2 Fuzzy and PSO Based PD/PID 
Control

In this subsection, the efficiency of the fuzzy 
PID/PD and the optimized fuzzy PID/PD 
controller are analysed. The gains of the PID/PD 
controller are determined using the fuzzy logic 
method, while the PSO algorithm is introduced in 
order to compensate by increasing or decreasing 
kp, ki and kd gains, as appropriate. As it can be 
observed from Figures 5-8, the best performance 
are obtained by employing the GS-NNPD and 
FPID-PSO controllers. Tables 3, 4 and 5 present 
the statistical results of the proposed algorithms 
(GS-PDNN and PSO-FPID) in comparison 
with other approaches in terms of settling time, 
overshoot and mean square error (MSE). The 
designed GS-NNPD controller shows superior 
performance over the GS-NNPID, as illustrated 
in Figures 5 and 6.
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As demonstrated in Tables 3 to 5, the GS-NNPD 
can enhance performance specifications if the 
proper integral function is not used. In stabilizing 
the angles and position, the GS-NNPD has shorter 
settling time, small MSE and without overshoot 
than the GS-NNPID. The responses obtained by 
using the FPD, FPID, optimized FPD-PSO and 
FPID-PSO controllers are provided in Figures 
7 and 8. It is noted that the proposed FPID-
PSO controller provides better system dynamic 
response, due to the optimized scaling factors by 
using the PSO algorithm. 

From equations (1-6), it can be noticed that the 
model of quadcopter has already been integrated; 
therefore, the cost of placing an integrator in the 
controller has been an increase in the loop gain. 
Despite this, for the PSO based on FLC tuned PID 
gains an integrator is desirable since it eliminates 

the steady-state errors as illustrated in Figures 7 
and 8.

Figure 7. Quadcopter’s position (x,y,z) and yaw ( ψ) 
behaviors obtained by FPID, FPD, FPID-PSO and 

FPD-PSO controllers.

Table 3. Statistical results of proposed algorithms (GS-NNPD and GS-NNPID)

Type of 
Controller/ 

characteristics

GS-NNPD GS-NNPID

ts(sec) O (%) MSE ts(sec) O (%) MSE

Position(x) 0.94 0 0.0333 1.36 0 0.0299
Position(y) 0.81 0 0.0334 1.5 0 0.0350
Position(z) 0.64 0 0.0155 4.7 0 0.0735

Yaw (ψ) 0.153 0 0.0028 0.16 0 0.0029
Roll (ϕ) -- 0 0.0008 -- 0 0.0009
Pitch(θ) -- 0 0.0327 -- 0 0.0359

Table 4. Statistical result of proposed algorithms (FPD and FPID)

Type of 
Controller/ 

characteristics

FPD FPID

ts(sec) O (%) MSE ts(sec) O (%) MSE

Position(x) 0.9865 3.4159 0.0460 1.2283 6.1182 0.0278
Position(y) 1.1795 4.4788 0.0652 1.4105 7.2642 0.0438
Position(z) 2.0459 9.3707 0.5624 1.9974 0 0.028

Yaw (ψ) 1.2130 0 0.0155 0.7525 0.0773 0.0155
Roll (ϕ) -- -- 0.0011 -- -- 0.0001
Pitch(θ) -- -- 0.0144 -- -- 0.0041

Table 5. Statistical result of proposed algorithms (FPD-PSO and FPID-PSO)

Type of 
Controller/ 

characteristics

FPD-PSO FPID-PSO

ts(sec) O (%) MSE ts(sec) O (%) MSE

Position(x) 0.7171 1.7184 0.0029 0.7714 0 0.0247
Position(y) 0.8035 0.3817 0.0101 0.5139 0 0.0328
Position(z) 1.2886 4.1832 0.0247 0.9142 0 0.0155

Yaw (ψ) 0.5867 0 0.0044 0.2225 0 0.0046
Roll (ϕ) -- -- 0.0065 -- -- 0.0010
Pitch(θ) -- -- 0.0055 -- -- 0.0058
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Figure 8. Quadcopter’s attitude (ϕ, θ) behaviors 
obtained by FPID, FPD, FPID-PSO and  

FPD-PSO controllers

4.3 Trajectory Tracking

To analyze the performance of the intelligent 
control methods, extensive simulation tests have 
been performed. It can be clearly seen that while 
all the state variables converge to their reference 
values as desired in a minimum settling time. It 
has been demonstrated that the synthesis control 
methods based on the GS-NNPD and optimized 
FPID-PSO are more reliable and effective 
approaches when performing the tracking control 
for the quadcopter UAV.

4.3.1 Circle Trajectory Tracking

First, consider that the quadcopter tracks a circle 
trajectory given by (46).

2 / 20
2cos( ) 1
2sin( )
cos( )
1

d

d

d

d

x t
y t
z t

rad

ω π
ω
ω
ω

ψ

 =
 = − =
 =
 =         			        

(46)

Table 6 shows the parameters of GS-NNPD 
controller and FPID-PSO scaling factors, with the 
initial conditions set to zero.

In this trajectory, the quadcopter makes a complete 
circle. In the same time, the orientation of the 
desired trajectory is 0 rad for roll and pitch angles 
and 1 rad for yaw angle.

Figure 9. Circle trajectory, position and attitude of 
quadcopter in the closed-loop using GS-NNPD

Figure 10. Circle trajectory, position and attitude of 
quadrotor in the closed-loop using FPID-PSO

Figures 9-10 show the tracking of the desired 
trajectory with precision at the end of the 
movement of all variables the altitude z, the 
translation motions x and y, and the yaw angle. 
A proper selection of the input and output SFs 
is necessary for the satisfactory operation of the 

Table 6: PD parameters and SFs for circle trajectory using GS-NNPD and FPID-PSO

GS-NNPD FPID-PSO
kp kd ke kde Gp Gi Gd

Position(x) 75.8745 19.3646 0.165 0.113 5.044 0.361 3.752
Position(y) 76.7839 17.4088 0.268 0.066 4.261 0.711 2.871
Position(z) 1.8437e+03 562.8856 0.375 1.460 2.771 1.583 1.560

Yaw (ψ) 102.5617 5.3561 0.270 0.127 0.612 0.143 0.175
Roll (ϕ) 96.4076 4.1119 0.324 0.055 2.576 0.111 0.205
Pitch(θ) 97.5106 4.2620 0.355 0.101 1.302 0.935 0.336
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FPID-PSO controllers. Accordingly, they are 
tuned by using PSO algorithm.

4.3.2 Spiral Trajectory Tracking

For a better investigation of the effectiveness of 
the proposed controllers, a spiral trajectory is  
considered as follows:

2 / 6
cos( )
sin( )

3
4

1

d

d

d

d

x t
y t

tz

rad

ω π
ω
ω

ψ


 =


=
 =

 = +

 =            			       (47)
Applying the same controllers, the 3D trajectory, 
position tracking and attitude stabilization are 
depicted in Figures 11 and 12 respectively. Table 7 
presents the control parameters found for the second 
trajectory. The obtained results show also how 
desired attitude angles alter while the quadrotor UAV 
tracks the desired trajectory. As it can be observed, 
the tracking of variables x, y, z illustrated that both 
controllers drive the system towards the prescribed 
trajectory. The proposed methods have a higher 
level of accuracy compared to those presented in 
(Salehfard, 2018) and (Xiong & Zheng, 2014).

Figure 11. Spiral trajectory, position and attitude of 
quadrotor in the closed-loop using GS-NNPD

Figure 12. Spiral trajectory, position and attitude of 
quadrotor in the closed-loop using FPID-PSO

4.4 Robustness against Disturbances

White Gaussian noise disturbance is introduced 
in the measured controller variables x, y and z.

Figure 13. Circle trajectory, position and yaw angle (ψ) 
of quadcopter under disturbances using GS-NNPD

Figures 13-18 illustrate the position, attitude, and 
3D flight trajectory of quadcopter UAV under 
noisy measurements.

The effectiveness and performance of the proposed 
scheme are validated on different trajectories 
against disturbance. The following simulation 
results demonstrate good trajectory  tracking for 

Table 7: PD parameters and SFs for spirale trajectory using GS-NNPD and FPID-PSO

GS-NNPD FPID-PSO
kp kd ke kde Gp Gi Gd

Position (x) 2.3749e+03 787.7987 0.392 0.172 4.400 0.595 1.584
Position(y) 41.2843 14.0504 0.074 0.094 2.337 0.846 1.484
Position(z) 90.9440 25.9208 0.163 0.604 4.255 0.367 4.454
Yaw (ψ) 119.3270 7.3105 0.135 0.114 0.714 0.126
Roll (ϕ) 74.7289 5.9024 0.288 0.127 1.895 0.015 0.460
Pitch(θ) 118.9664 3.2114 0.368 0.044 2.640 0.091 0.647
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x, y, and z displacements as well as for attitude 
(ϕ, θ,ψ) stabilization. Therefore, it is observed 
that, when the disturbance affects the quadcopter, 
the GS-NNPD and FPID-PSO controllers correct 
these undesirable effects.

So,it is noticeable that the performance shows 
not only the stability robustness against 
disturbance but also the fast response and 
excellent tracking capacity.

Figure 14. Circle trajectory, position and yaw angle (ψ) 
of quadcopter under disturbances using FPID-PSO

Figure 15. Quadcopter’s attitude angle (ϕ and θ) 
stabilization under disturbances using GS-NNPD and 

FPID-PSO (circle trajectory)

Figure 16. Spiral trajectory, position and attitude of 
quadcopter using GS-NNPD under disturbances

Figure 17. Spiral trajectory, position and attitude of 
quadcopter using FPID-PSO under disturbances

Figure 18. Quadcopter’s attitude angle (ϕ and θ) 
under disturbances using GS-NNPD and FPID-PSO 

(spiral trajectory)

 5. Conclusion

This work presents the design and development 
of a PID/PD controller based on intelligent 
techniques in order to adress the problem of  
attitude dynamics stabilization and position 
tracking control for a quadcopter. Firstly, an 
adaptive neural network gain scheduling PID/PD 
controller (GS-NNPID/PD) has been developed. 
An improved backpropagation algorithm has 
been used to update the weight of this network. 
Secondly, the proposed control system which 
combines fuzzy logic and PID/PD controller has 
been implemented. The fuzzy logic approach 
is derived to schedule the control parameters 
adaptively according to the fuzzy rules. The PSO 
algorithm has been employed to determine the 
scaling factors of the FPID/PD-PSO controller. 
The validity of the proposed control algorithm 
is proven using different computer simulations. 
A comparison study based on statistical analysis 
has been introduced to evaluate the performance 
of each controller. It is concluded that the GS-
NNPD and FPID PSO permit faster response, 
better performance, and better robustness. 
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