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1. Introduction

Several articles, books and PhD theses in 
the literature address model order reduction. 
References (Mohammadpour & Grigoriadis, 
2010), (Schilders, Van der Vorst & Rommes, 
2008),  (Nouri, 2014) present a state-of-the-art of 
the existing techniques.   

Modal approximation is one of the first model 
order reduction methods (Davison, 1966), 
(Vandendorpe, 2004). If the transfer function of the 
system is given, the reduction is made by removing 
the poles that are close to the imaginary axis. The 
advantage of this method lies in its simplicity. The 
disadvantage is that the approximation error does 
not have a guaranteed bound.

Balancing (Antoulas, 2005), (Wittmuess et al., 
2016) consists in the simultaneous diagonalization 
of two positive (semi-) definite matrices. A survey 
on model reduction by balanced truncation can be 
found in (Gugercin & Antoulas, 2004). Examples 
of balancing methods are Lyapunov balancing, 
Positive real balancing, Bounded real balancing, 
Stochastic balancing and Frequency  weighted 
balancing. The advantage of these methods, except 
for Frequency weighted balancing, consists in a 
computable error bound between the high-order 
and approximated low-order transfer functions. 
Their disadvantages are computational complexity 
O(n3) and memory requirements O(n2) that are due 
to solving Lyapunov and Riccati equations.

The Hankel approximation method, (Glover, 
1984), utilizes the Hankel norm, an indicator 
for the quantity of energy that can be transferred 
through a system from previous inputs to future 
outputs. The problem is to compute, for a given 
high-order system, a system of lower order which 
satisfies the following condition: the difference 

between the high-order and reduced systems is 
minimum in Hankel norm. A lower bound for 
the error in Hankel norm is contained in the 
Schmidt-Eckart-Young-Mirsky theorem (Schmidt, 
1907), (Eckart & Young, 1936), (Mirsky, 1963). 
According to the Adamjan-Aron-Krein theorem 
(Adamjan, Arov & Krein, 1971), (Adamjan, 
Arov & Krein, 1978), this lower bound can be 
attained. The method involves computing the 
reachability and observability gramians. Each 
gramian is computed as a solution of a Lyapunov 
equation. The advantage of the method is the 
availability of an error bound. The disadvantages 
are computational complexity O(n3) and memory 
requirements O(n2).

Moment matching is described in (Ionescu & 
Astolfi, 2011), (Ionescu & Astolfi, 2016). One 
of the first methods which achieves moment 
matching is Asymptotic Waveform Evaluation 
(AWE), first proposed in (Pillage & Rohrer, 1990). 
Numerical problems of this method are due to 
explicit computation of moments and an increased 
number of moments. Krylov methods (such as: 
Padé-via-Lanczos, Arnoldi, PRIMA, IRKA, dual 
rational Arnoldi and rational Lanczos) can achieve 
moment matching without the explicit computation 
of moments at any point. The advantage of 
Krylov methods is computational efficiency. The 
disadvantages consist in the absence of global 
error bounds and non-preservation of stability 
and passivity. Krylov methods are described 
in (Grimme, 1997), (Freund, 2003), (Benner, 
Mehrmann & Sorensen, 2005).

This article proposes an algorithm to compute 
H∞ controllers similar to the Matlab procedure 
hinfsyn.m (Gahinet & Apkarian, 1994), but of 
low-order.  In order to formulate the optimisation 
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problem for the control law, linear matrix 
inequalities (Jedda & Douik, 2018) are used. The 
proposed algorithm  has 7 steps. Steps 1-4 consist 
in computing a controller, whose order is equal 
to the order of the process, that has dependencies 
between its differential equations. At step 4, the 
dependencies are introduced by considering a 
rank minimization problem whose solution is 
represented by the controller matrices. The matrix 
whose rank is to be minimized is a block matrix 
whose components are the controller’s state 
and input matrices. The problem is NP-hard. A 
solution can be obtained heuristically by solving 
a convex optimization problem instead. Then, the 
controller is reduced to a lower order by removing 
the dependencies. At steps 5-6, the block matrix 
computed to be of minimum rank has linearly 
dependent rows. The idea is to express all rows 
of the block matrix in function of the linearly 
independent ones. The coefficients used to express 
the linear combinations are computed as the 
solution of a system of linear equations. If all rows 
can be expressed as a linear combination of the 
linearly independent ones, then some differential 
equations can be expressed as a combination 
of other differential equations. Dependencies 
between the differential equations will also imply 
dependencies between the states. Step 7 consists 
in reducing the number of rows and columns of 
the controller matrices. Row reduction is made by 
removing rows from the block matrix such that 
only linearly independent rows remain.  The row 
reduction is made for the state and input matrices. 
The column reduction is made by removing 
columns from the state and output matrices that 
correspond to redundant states. The feedthrough 
matrix remains unmodified.

Section 2 presents the system for which the 
controller is computed. Section 3 sets forth the 
proposed control algorithm. Section 4 indicates 
the simulation results for the proposed method in 
section 3. In section 5 are the conclusions.

2. System Description

Consider the system: 

1 2

1 11 12

2 21 22

= + +
= + +
= + +

x Ax B w B u
q C x D w D u
y C x D w D u                                   

(2.1)

where: 

-- x : state of the system, w : exogenous inputs, 
u : control inputs, q : controlled outputs, y : 
measured outputs;

-- The dimensions of all the vectors and 
matrices are characterized by:

1 1 2 2
11 22, ,× ××∈ ∈ ∈  

p m p mn nA D D .
It is assumed that:   

A1: ( )2 2, ,A B C  is stabilizable and detectable 

A2: 22 0=D .

3. Proposed Control Algorithm

3.1 γ -suboptimal H∞ Control Problem

The suboptimal H∞  control problem of 
parameter γ  consists in finding a controller 

( ) 1( ) K K K KK s D C sI A B−= + −  with k k
KA ×∈ ,  

2k p
KB ×∈ , 2m k

KC ×∈  and 2 2m p
KD ×∈   

such that:

-- The closed loop system is internally stable;

-- The H∞  norm of the closed-loop transfer 
function ( , )P K  from w  to q  is strictly 
less than γ .

( ) 1( , ) −= + −cl cl cl clP K D C sI A B                (3.1)

2 2 2
0

2

K K
cl

K K

A B D C B C
A A

B C A
+ 

= = + Θ 
 

 

1 2 21
0 21

21

+ 
= = + Θ 
 

K
cl

K

B B D D
B B

B D
 

( )1 12 2 12 0 12= + = + Θcl K KC C D D C D C C  

11 12 21 11 12 21= + = + Θcl KD D D D D D            (3.2)
where: 

0

0
0 0

n k

k n k k

A
A ×

× ×

 
=  
  ,

 1

1
0 0k m

B
B

×

 
=  
 

,

( )10 1 0 p kC C ×= ,
 

K K

K K

A B
C D
 

Θ =  
 

,

2

20
0

n k

k k k m

B
I

×

× ×

 
=  
 

 ,
 22

0
0

k n k k

p k

I
C
× ×

×

 
= 
 

 � ,

( )112 120 ×= p k D ,
 

1
21

21

0 × 
=  
 

k m

D


                
(3.3)
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Figure 1. The ∞H  problem

Theorem (Gahinet & Apkarian, 1994): 

The continuous-time γ -suboptimal H∞  problem 
is solvable if and only if there exist symmetric 
matrices ,R S  satisfying the following LMI system:

( ) ( )1 1

1 11

1 11

0 0 00 0γ
γ

 +
 − <
 − 

T T
T

R R
T T

AR RA RC B
C R I DI IB D I

 

  
(3.4)

( ) ( )1 1

1 11

1 11

0 0 00 0γ
γ

 +
 − <
 − 

T T
T

T Ts s
A S SA SB C

B S I DI IC D I
 

    
(3.5)

0 
≥ 

 

R I
I S                                                       

(3.6)

where R  and S  denote bases of the null 
spaces of ( )2 12

T TB D  and ( )2 21C D , respectively. 

In addition, there exist γ -suboptimal controllers 
of order k n<  (reduced order) if and only if (3.4)-
(3.6) hold for some ,R S  which further satisfy 
rank( )I RS k− ≤ .

3.2 Proposed γ -suboptimal H∞ Control 
Problem

1. Compute solution ( ), ,R S γ  of the  
optimization problem: 

, ,
min ( ) ( )
R S

Trace R Trace S
γ
γ + +

subject to LMIs (3.4)-(3.6)
(3.7)

where , ,γ× ×∈ ∈ ∈  

n n n nR S .

2. Compute two full-column-rank matrices 
, n kM N ×∈ such that T

n nMN I RS×= − .

By computing [ ] ( ), , n nU V SVD I RS×Σ = − , 
M U=  and TN V= Σ  can be identified.

3. Compute the positive definite matrix 
( ) ( )n k n k

clX + × +∈  as the unique solution of the 
linear equation: 

0
n n n n

clT T
k n k n

S I I R
X

N O M
× ×

× ×

   
=   

                      
(3.8)

Note that (3.8) is always solvable when 0S >  and 
M  has full column rank.

4. Define the optimization problem: 

( )2,min rank k k m+Θ
Θ

subject to 
0

cl cl cl

T T T
X X XΨ + + Θ <Θ   �

(3.9)

where K K

K K

A B
C D
 

Θ =  
 

, ( ) ( )2 2k m k p+ × +Θ∈ .

The matrices ( )2 2, 0k k m k k k mI+ × ×= ,

1 1

1 1

0 0 0 0

0 11

0 11

cl

T T
cl cl cl

T T
X cl m m

p p

A X X A X B C
B X I D

C D I

γ

γ
×

×

 +
 

Ψ = − 
  −  ,

( )( )2 121 0 k p p+ ×=  
,

( )( )2 1 120
cl

T T
X cl k m mX + ×=  

 
are known. 

Note the fact that the objective function is 
( )( )rank K KA B .

( ) ( )
2 2, 0 K K

k k m k k k m K K
K K

A B
I A B

C D+ × ×

 
Θ = = 

 


This is a NP-hard problem, known to be 
computationally intractable.

Solve the problem defined at 4. using a heuristic 
method (Fazel, Hindi & Boyd, 2001):

( )
, ,

1min ( ) ( )
2Y Z

Trace Y Trace Z
Θ

+

subject to
0

cl cl cl

T T T
X X XΨ + + Θ <Θ   � ,

( )
2

2

,

,

0
k k m

T

k k m

Y

Z

+

+

Θ 
  ≥
 Θ 





(3.10)

where ( ) ( )2 2, ,k p k pT k k TY Y Z Z + × +×= ∈ = ∈ 

( ) ( )2 2k m k p+ × +Θ∈ .
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The variable of interest is Θ  which contains the 
controller’s (3.11) matrices:

2 2 2 2, , ,k p m k m pk k
K K K KA B C D× × ××∈ ∈ ∈ ∈   

K K K K K

K K K K K

x A x B u
y C x D u

= +
= +



                                     
(3.11)

The matrix ( )K KA B  will have low rank, so 
a low-order version of the controller can be 
obtained, namely ( )_ _ _ _, , ,K red K red K red K redA B C D  
with _ 1

_
k red

K redx ×∈  and _k red k< . 
The low-order version is computed at steps 5.-7. 

5. Compute [ ] ( )( ), ,K K K K KU V SVD A BΣ = . If 
there is large distance between the singular values 

KΣ , consider the smaller ones as equal to zero and 
identify the rank of ( )K KA B  which is the order 
of the proposed controller. 

6. Express all rows of ( )K KA B  as a linear 
combination of the linearly independent ones. 
When expressing linear combinations, the 
columns of ( )T

K KA B  are considered instead of 
the rows of ( )K KA B . 

6.1 Compute the reduced row echelon form of 
( )T

K KA B  and identify linearly independent 
columns of ( )T

K KA B .

Each column of ( )T
K KA B  can then be 

represented as a linear combination of the linearly 
independent ones:

( ). . * T
L I coeff K KA C A B= .

6.2 Solve the overdetermined system:

( ). . * T
L I coeff K KA C A B=

where:

-- . .L IA  is composed of the linearly independent 
columns of  ( )T

K KA B ;

-- Each column ' 'i   of  coeffC  contains the 
coefficients that can be used to express 
column ' 'i  of ( )T

K KA B  as a linear 
combination of . .L IA  columns.

Note that instead of solving the system, coeffC  
could be obtained directly from the reduced row 
echelon form.

7. Compute the matrices of the reduced controller 
of order _k red :

_ _ _ _

_ _ _

K red K red K red K red K

K K red K red K red K

x A x B u
y C x D u

= +

= +



7.1 Remove from ( )K KA B  the rows that can be 
expressed as a linear combination of the linearly 
independent rows (the same linearly independent 
rows as in . .

T
L IA ) ( )_ _ _ _,K row red K row redA B⇒ .

7.2 Compute

_ _ _

_ _ _

_

_

*

*

T
K red K row red coeff

K red K row red

T
K red K coeff

K red K

A A C
B B

C C C
D D

=

=

=

=

In the following, steps 5.-7. of the algorithm are 
illustrated in a numerical example:

K K K K K

K K K K K

x A x B u
y C x D u

= +
= +



with: 

1 1 2 1 1
2 1 2 2 1
4 3 6 4 3
5 3 6 5 3
5 4 8 5 4

KA

 
 
 
 =
 
 
 
 

( )2 3 7 8 9 T
KB =

( )1 0 1 0 0KC =

0.1KD =  and

( )1 2 3 4 5
T

K K K K K Kx x x x x x=

-- Step 5

[ ] ( )( ), ,K K K K KU V SVD A BΣ =

The obtained singular values are:

23.727 0 0 0
0 1.410 0 0
0 0 1.609 15 0
0 0 0 1.497 16
0 0 0 0

K e
e



Σ = −
 −


0 0
0 0
0 0
0 0

2.603 17 0e





− 
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The order of the reduced controller that will be 
computed is _ 2k red = . 

-- Step 6

The reduced row echelon form of ( )T
K KA B  is 

ref

1 0 2 1 3
0 1 1 2 1
0 0 0 0 0R 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 
 
 =  
 
 
 

So, in ( )T
K KA B  columns C3, 4C  and 5C  can be 

expressed as a linear combination of 1C  and 2C .

In order to express C3, 4C  and 5C  as a linear 
combination of 1C  and 2C , solve the system 

( ). . * T
L I coeff K KA C A B= .

1 2 1 2 4 5 5
1 1 1 1 3 3 4
2 2 2 2 6 6 8
1 2 1 2 4 5 5
1 1 1 1 3 3 4
2 3 2 3 7 8 9

coeffC

   
   
   
   

=   
   
   
      
   

The solution of the system, coeffC  is: 

1 0 2 1 3
0 1 1 2 1coeffC  

=  
 

Thus, the relationship between rows 1, 2, 3, 4R R R R  
and 5R  of  ( )K KA B  (corresponding to columns 

1, 2,C3, 4C C C  and 5C  of ( )T
K KA B ) is:

3 2 1 2R R R= +

4 1 2 2R R R= +

5 3 1 2R R R= +

-- Step 7

1
1

2
2

3
3

4
4

5
5

1 1 2 1 1 2
2 1 2 2 1 3
4 3 6 4 3 7
5 3 6 5 3 8
5 4 8 5 4 9

K
K

K
K

K
K

K
K

K
K

K

xx xx xx xx xx u

            =              











3 1 2 3 1 2

3 2 1 2
2 2K K K K K K

R R R
x x x x x x

= + ⇒
= + ⇒ = +  

4 1 2 4 1 2

4 1 2 2
2 2K K K K K K

R R R
x x x x x x

= + ⇒
= + ⇒ = +  

5 1 2 5 1 2

5 3 1 2
3 3K K K K K K

R R R
x x x x x x

= + ⇒
= + ⇒ = +  

The redundancy expressed by 3Kx , 4Kx  and 5Kx  
can be removed and 3Kx , 4Kx  and 5Kx  (that are 
expressed in function of 1Kx , 2Kx ) can be replaced.

( ) ( )
1 2

1 2

1 1 2

2 1 2

1 2

0*
0*
21 1 2 1 1 2

2 1 2 2 1 3 2
3

K K

K K

K K K

K K K

K K

K

x x
x x

x x x
x x x

x x
u

+ 
 +
 += ⇔ +
 +
 
 





( ) ( )

( )

1
1 2

2

1 0
0 11 1 2 1 1 2 12 1 2 2 1 1 2
3 1

2
3

K
K K

K

K

x x xx

u

    
    
    = + +
    
        

+ ⇔





( ) ( ) ( ) ( )1
1 2

2

9 6 2
11 8 3

K
K K K

K

x x x ux
 = + + ⇔  





( ) ( )( ) ( )1 1

2 2

9 6 2
11 8 3

K K
K

K K

x x ux x= +



The output equation becomes:

( )
1 2

1 2

1 2

1 2

1 2

0*
0*

1 0 1 0 0 2
2

3

K K

K K

K K KK K

K K

K K

x x
x x

y D ux x
x x
x x

+ 
 +
 = + ⇔+
 +
 + 

( ) 1

1
0

1 0 1 0 0 2
1
3

K Ky x

  
  
  = +
  

   

( ) 2

0
1

1 0 1 0 0 1
2
1

K K Kx D u

 
 
 + + ⇔
 

    

( )( )1

2
3 1 K

K K K
K

xy D ux= +

The reduced controller of order 2 is: 

_ _ _ _

_ _ _

K red K red K red K red K

K K red K red K red K

x A x B u
y C x D u

= +

= +



with:

( ) ( ) ( )_ _ _
9 6 2, , 3 1 ,11 8 3K red K red K redA B C= = =

_ 0.1K redD = ,
 

( )1
_

2

K
K red

K

xx x= .
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The above computations for step 7 can be summed 
up as:

1. Remove from ( )K KA B  the rows that can be 
expressed as a linear combination of the linearly 
independent rows ( )_ _ _ _,K row red K row redA B⇒

_ _

1 1 2 1 1
2 1 2 2 1K row redA  

=  
 

( )_ _
2
3K row redB =

2. Compute:

_ _ _ * T
K red K row red coeffA A C= =

( ) ( )
1 0
0 11 1 2 1 1 9 62 12 1 2 2 1 11 81 2
3 1

 
 
 = =
 
 
 

_ _ _K red K row redB B=

( ) ( )

_ *

1 0
0 1

1 0 1 0 0 3 12 1
1 2
3 1

T
K red K coeffC C C= =

 
 
 
 = =
 
 
 
 

_K red KD D= .

4. Simulation Results

A random system of order 10 is generated using 
rss function in MATLAB:

1 2

1 11 12

2 21 22

= + +
= + +
= + +

x Ax B w B u
q C x D w D u
y C x D w D u

The first controller is computed using Matlab 
function hinfsyn.m:

10 10
_ infk h synA ×∈ , 

10 1
_ infk h synB ×∈ ,

1 10
_ infk h synC ×∈ , _ infk h synD ∈ .

The second controller is computed using the 
proposed algorithm:

2 2 2 1
_ _, ,k red k redA B× ×∈ ∈ 

1 2
_ _,k red k redC D×∈ ∈  .

Figure 2 illustrates the outputs of the closed 
loop system for the hinfsyn.m controller and 
the proposed controller. For the same input w , 
the stabilized outputs for the two controllers are 
similar. Figure 3 indicates a small error between 
the two outputs and a small standard deviation of 
the error.

Figure 2. The outputs of the closed loop system

Figure 3. The error between outputs and the standard 
deviation of error

The results show that the proposed low-order 
 controller can be a substitute for the 

controller of higher order that was generated using 
hinfsyn.m.

5. Conclusion

This article has proposed an algorithm for 
computing H∞ controllers in a similar manner 
as the Matlab procedure hinfsyn.m (Gahinet & 
Apkarian, 1994), but of low-order. In the proposed 
algorithm, the controller order reduction was 
made possible by considering a rank minimization 
problem which introduces dependencies between 
the differential equations of the controller. Two 
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controllers were computed and compared in a 
simulation: the controller computed using Matlab 
function hinfsyn.m (Riccati) and the low-order 
controller computed using the proposed algorithm. 
The controllers were compared by inspecting, for 
the same input, the outputs of the closed loop 
system. The results were similar in both cases.

Acknowledgements

The current research work has been carried 
out as part of the European Spatial Agency’s 
project: Advanced Control Techniques for  
Future Launchers.

REFERENCES

1.	 Adamjan, V. M., Arov, D. Z. & Krein, M. G. 
(1971). Analytic properties of Schmidt pairs 
for a  Hankel operator and the generalized 
Schur–Takagi problem, Mathematics of the 
USSR-Sbornik, 15(1), 34-75.

2.	 Adamjan V. M., Arov, D. Z. & Krein, M. G. 
(1978). Infinite block Hankel matrices and 
related extension problems, Transactions of 
the American Mathematical Society, 111(2), 
133-156.

3.	 Antoulas, A. C. (2005). Approximation 
of Large-Scale Dynamical Systems, 207-
246. Series: Advances in Design and  
Control, SIAM.

4.	 Benner, P.,  Mehrmann, V. &  Sorensen, 
D. C. (2005). Dimension Reduction of 
Large-Scale Systems. Series: Lecture 
Notes in Computational Science and  
Engineering. Springer.

5.	 Davison, E. (1966). A method for simplifying 
linear dynamic systems, IEEE Transactions 
on Automatic Control, 11(1) , 93-101.

6.	 Eckart, C. & Young, G. (1936). The 
approximation of one matrix by another of 
lower rank, Psychometrika, 1(3), 211-218.

7.	 Fazel, M., Hindi, H. & Boyd, S. P. 
(2001).  A Rank Minimization Heuristic 
with Application to Minimum Order 
System Approximation. In Proceedings 
of the 2001 American Control Conference  
(pp. 4734-4739).

8.	 Freund, R.W. (2003). Model reduction 
methods based on Krylov subspaces, Acta 
Numerica, 12, 267-319.

9.	 Gahinet, P. & Apkarian, P. (1994). A Linear 
Matrix Inequality Approach to H∞ Control, 

International Journal of Robust and 
Nonlinear Control, 4(4) 421-448.

10.	 Glover, K. (1984). All optimal Hankel-
norm approximations of linear multivariable 
systems and their  L∞  -error bounds, 
International Journal of Control, 39(6), 
1115-1193.

11.	 Grimme, E. J. (1997). Krylov projection 
methods for model reduction. PhD thesis. 
University Illinois, Urbana-Champaign, 
Department of Electrical Engineering.

12.	 Gugercin, S. & Antoulas, A. C. (2004). A Survey 
of Model Reduction by Balanced Truncation 
and Some New Results, International Journal 
of Control, 77(8), 748-766.

13.	 Ionescu, T. C. & Astolfi, A. (2011). Moment 
matching for linear systems – overview and 
new results, IFAC Proceedings Volumes, 
44(1), 12739-12744.

14.	 Ionescu, T. C.  & Astolfi, A. (2016)  Nonlinear 
Moment Matching-Based Model Order 
Reduction, IEEE Transactions on Automatic 
Control, 61(10), 2837-2847.

15.	 Jedda, O. & Douik, A. (2018). Discrete-
time Integral Sliding Mode Control with 
Anti-windup, Studies in Informatics and 
Control, 27(4), 413-422. DOI: 10.24846/
v27i4y201805

16.	 Mirsky, L. (1963). Results and problems in 
the theory of doubly-stochastic matrices,  
Zeitschrift für Wahrscheinlichkeitstheorie 
und Verwandte Gebiete, 1(4), 319-334.

17.	 Mohammadpour, J. & Grigoriadis, K. M. (2010). 
Efficient Modeling and Control of Large-Scale 
Systems. Control Engineering, Springer.

http://www.mathnet.ru/php/person.phtml?option_lang=eng&personid=11891
http://www.mathnet.ru/php/person.phtml?option_lang=eng&personid=22217
http://iopscience.iop.org/journal/0025-5734
http://iopscience.iop.org/journal/0025-5734
http://iopscience.iop.org/volume/0025-5734/15
http://iopscience.iop.org/issue/0025-5734/15/1
http://www.mathnet.ru/php/person.phtml?option_lang=eng&personid=11891
http://www.mathnet.ru/php/person.phtml?option_lang=eng&personid=22217
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.E.%20Davison.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=Roland%20W.%20Freund&eventCode=SE-AU
https://www.cambridge.org/core/journals/acta-numerica/volume/C54B0AC59BC322171BB1FD804C5BE6E0
https://www.tandfonline.com/author/GLOVER%2C+KEITH
https://www.tandfonline.com/toc/tcon20/39/6
https://www.tandfonline.com/author/Gugercin%2C+Serkan
https://www.tandfonline.com/author/Antoulas%2C+Athanasios+C
https://www.tandfonline.com/toc/tcon20/current
https://www.tandfonline.com/toc/tcon20/current
https://link.springer.com/journal/440
https://link.springer.com/journal/440
http://www.springer.com/engineering/control?SGWID=0-192-0-0-0


https://www.sic.ici.ro

420 Iulia Rădulescu, Dan Ștefănoiu

18.	 Nouri, S. B. (2014). Advanced Model-Order 
Reduction Techniques for Large-Scale 
Dynamical Systems. PhD thesis. Ottawa-
Carleton Institute for Electrical and Computer 
Engineering, Department of Electronics, 
Carleton University, Ottawa, Canada.  

19.	 Pillage, L. T. & Rohrer, R. A. (1990). 
Asymptotic Waveform Evaluation for Timing 
Analysis, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and 
Systems, 9(4) , 352-366. 

20.	 Schilders, W. H.,  Van der Vorst, H. A. 
&  Rommes, J. (2008). Model Order 
Reduction: Theory, Research Aspects and 
Applications. The European Consortium for 
Mathematics in Industry, Springer.

21.	 Schmidt, E. (1907). Zur Theorie der linearen 
und nichtlinearen Integralgleichungen. I Tiel. 
Entwicklung Willkurlichen Funktionen nach 
System Vorgeschriebener, Mathematische 
Annalen, 63(4), 433-476.

22.	 Vandendorpe, A. (2004). Model Reduction 
of Linear Systems, an Interpolation point of 
View. PhD thesis. Université Catholique De 
Louvain, Faculté des Sciences Appliquées, 
Departement d’Ingénierie Mathématique.

23.	 Wittmuess, P., Tarin, C.,  Keck, A., Arnold, 
E. & Sawodny, O. (2016). Parametric Model 
Order Reduction via Balanced Truncation 
with Taylor Series Representation, IEEE 
Transactions on Automatic Control, 61(11), 
3438-3451.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://www.springer.com/series/4651
https://www.springer.com/series/4651

	OLE_LINK9
	OLE_LINK10
	_GoBack
	_Hlk21340612
	_GoBack
	_GoBack
	_Ref20544371
	_Ref20544387
	_Ref20544421
	_Ref20544454
	_Ref20753143
	_Ref20753145
	_Ref20753148
	_Ref20760659
	_Ref20754130
	_Ref20754132
	_GoBack
	_GoBack
	_Hlk21516250
	_Hlk21516938
	OLE_LINK9
	OLE_LINK8
	OLE_LINK5
	OLE_LINK4
	OLE_LINK41
	OLE_LINK40
	OLE_LINK26
	OLE_LINK25
	OLE_LINK56
	OLE_LINK55
	OLE_LINK21
	OLE_LINK20
	OLE_LINK52
	OLE_LINK51
	OLE_LINK24
	OLE_LINK23
	OLE_LINK54
	OLE_LINK53
	OLE_LINK7
	_GoBack
	_Hlk23878482
	bau000005
	bau000010
	bau000015
	bau000020
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK1
	OLE_LINK2
	_GoBack
	_GoBack
	_Hlk24652148
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OBJ_PREFIX_DWT325_ZmEmailObjectHandler1
	_Hlk25655392
	_Hlk24633070
	_Hlk23155444
	_Hlk25657182

