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1. Introduction

Underwater Robots (UWRs) have become 
indispensable tools in fields such as marine 
science, resource development, environmental 
monitoring, and military applications. However, 
efficient control of UWR in complex and ever-
changing underwater environments has always 
been a concern (Christensen et al., 2022). 
Traditional control methods are constrained by 
the uncertainty of underwater environments, 
nonlinear dynamics, and navigation challenges, 
therefore requiring more intelligent and adaptive 
measures to address these complex problems 
(Subad, Cross & Park, 2021). In this context, 
research has explored UWR control based on 
Back Propagation Neural Network (BPNN). 
Unlike traditional methods, BPNN has excellent 
adaptability and nonlinear modeling ability, 
which enable it to learn and adapt in real-time 
dynamic underwater environments (Hasan & 
Abbas, 2023). The innovation proposed in this 
paper lies in the combination of BPNN and 
UWR control, achieving high adaptability and 
real-time performance to meet the needs required 
for different underwater tasks and environments. 
This study also explores how to use BPNN to 
optimize the motion trajectory planning for 
UWRs, to improve their motion performance and 
efficiency, and better adapt to different tasks. This 
study aims to open up new research directions 
in the field of UWR, bring about broader 
possibilities for its application, and promote 

further development in areas such as deep-sea 
exploration and resource development.

BPNN is widely used and has been studied by 
many scholars. Researchers studied and solved 
the security issues of the Internet of Things, and 
designed an intrusion detection system based on 
LM-BPNN to detect malicious attacks. They used 
LM to optimize the weight threshold of traditional 
BPNN to improve network performance (Yang 
et al., 2019). Researchers extracted time-domain 
and frequency-domain features of rotating 
machinery under various operating conditions, 
and constructed feature vectors to describe its 
mechanical state. Through improved distance 
assessment, they selected different parameters 
to reconstruct low-dimensional sensitive feature 
samples, thereby improving fault diagnosis 
ability (Lu et al., 2019). Certain studies used 
improved algorithms to optimize the Multilayer 
Perceptron (MLP) so as to improve prediction 
performance and determine the optimal structural 
parameters of the MLP. They used different 
landslide and non-landslide data to train and test 
this model (Li et al., 2019). Certain studies used 
grey correlation analysis to establish a prediction 
index system to comprehensively consider 
multiple influencing factors. They combined 
BPNN with other networks to form a predictive 
model to overcome the low accuracy and inability 
to fully consider all factors of traditional models 
(Ding et al., 2019). Researchers investigated the 

Studies in Informatics and Control, 33(1) 15-26 March 2024

https://doi.org/10.24846/v33i1y202402

Control of Underwater Robots Based on a  
BP Neural Network

Miaoqing CHEN
College of Digital Technology and Engineering, Ningbo University of Finance and Economics,  
Ningbo, Zhejiang, China, 315175 
18258778987@163.com

Abstract: As an important engineering tool, underwater robots are widely used in marine science and resource exploration. 
This paper proposes a BP neural network for the control of underwater robots, which could perform the initialization and 
online adjustment of control parameters for underwater robots based on a large amount of data related to speed control and 
heading control. A layout pattern featuring eight thrusters was designed and analysed in order to achieve a six-degree-of-
freedom control system for underwater robots, including forward and backward translation, left and right translation and 
steering functions. In this context, the four vertically positioned thrusters used suction cups to offset the torque caused by the 
rotation of the internal spiral blades. The obtained experimental results confirmed that the S-surface controller of the BP neural 
network exhibited an excellent performance as regards the motion control of intelligent underwater robots. It had the capacity 
to autonomously initialize control parameters and adjust them online, while demonstrating a very high anti-interference 
ability. At a steady-state speed of 1000 rad·s-1, the obtained signal was mainly composed of sinusoidal components, with a 
frequency distribution around 5, 25, 50, and 100 Hz. When a fault occurred, a negative sequence component appeared in the 
analysed signal, with a frequency distribution around 10, 30, 50, and 75 Hz, and its amplitude increased significantly. 

Keywords: Underwater robots, BP neural network, Anti-disturbance performance, Sports mode, Intelligent control.



https://www.sic.ici.ro

16 Miaoqing Chen

effect of process parameters on Printable Bridge 
Length (PBL) to minimize the use of support 
materials by maximizing the distance between 
support points. In the experiment, sample 
data was used to train networks to predict the 
nonlinear relationship between PBL and process 
parameters. These studies confirmed that the 
established network could accurately predict the 
longest PBL (Jiang et al., 2019).

Certain studies reviewed the current research 
status of biomimetic UWRs, particularly in the 
development of body/tail fins (BCF) and others. 
They summarized the different motion control 
methods used in biomimetic UWRs, including 
open-loop swimming control and closed-loop 
control strategies, to achieve their special 
maneuverability (Wang et al., 2022). An et al. 
(2022) constructed an acoustic communication 
system with excellent communication 
performance to improve the performance and 
efficiency of spherical UWRs (SURs). He 
developed task planning and collaborative control 
strategies by adjusting the motion of SURs to 
ensure that they maintain the desired formation 
position and shape during formation movement. 
They proposed a thrust distribution method 
to develop a remote-controlled submersible 
that supported underwater exploration and 
autonomous underwater operations. It could be 
used to effectively manage eight thrusters for 
precise position and attitude control. (Lee et al., 
2020) designed a feedback controller that utilized 
sensor data to adjust and control the motion of 
the ROV in real-time. To achieve autonomous 
navigation of UWR vehicles in a confined 
workspace, they developed a robust nonlinear 
control scheme aimed at guiding UWR vehicles 
towards specific road points. Heshmati-Alamdari 
et al. (2019) considered various constraints such 
as input and state constraints, static obstacles, 
workspace boundaries, upper speed limits, and 
thruster saturation (Heshmati-Alamdari, Karras 
& Marantos, 2019). Certain studies developed a 
robot that simulated jellyfish, applying closed-
loop fuzzy and visual control to enable soft 
robots to move vertically and horizontally. They 
imitated the movement of jellyfish and used 
computer-aided design and computational fluid 
dynamics simulations to verify the performance 
and behavior of the robot. These studies confirmed 
that robots could generate temperature gradients 
for monitoring in underwater environments (Cruz 
Ulloa et al., 2020).

In summary, although many scholars have 
studied BPNN and UWR control, there are still 
some shortcomings. Some studies tend to adopt 
traditional BPNN, which has certain limitations 
in handling complex nonlinear problems and 
anti-interference ability. Therefore, this research 
comprehensively considers the cross fusion of 
BPNN and UWR control in multiple fields, aiming 
to solve the intelligent control problem of UWR, 
and has a broader application prospect.

The remainder of this paper is as follows. Section 
2 describes the UWR control method based on 
BPNN. Section 3 presents the validation of UWR 
control method based on BPNN and Section 4 
includes the conclusion of this paper.

2. Research Method

This section focuses on BPNN-based UWR control 
methods. Firstly, a detailed introduction is given 
for S-plane control method using BPNN, which is 
used to achieve motion control of UWR (Afriliana 
& Ramadhan, 2022). Next, the motion mode 
and structural scheme of the UWR is presented, 
including a 6-degree-of-freedom control scheme 
designed to meet high mobility requirements, 
including the layout mode of four thrusters.

2.1 S-plane Control Method for UWR 
Based on BPNN

S-plane controllers are typically used to manage 
the movement of machines or systems. This study 
uses BPNN to enhance traditional S-surface 
controllers to ensure that they accurately reach 
the expected target state or trajectory. BPNN 
is introduced to achieve dynamic adjustment 
of S-plane controller parameters to adapt to 
different control requirements and environmental 
conditions. S-plane control adopts a unique 
control strategy, where the control edges are 
loose and the central part is dense, to imitate the 
characteristics of fuzzy control. Its main goal is 
to achieve precise control of small deviations 
(Zhao, 2023). In order to achieve this goal, the 
sigmoid function is used in the experiment to 
perform nonlinear fitting of fuzzy control rules, 
thereby constructing an S-surface controller as it 
is expressed in equation (1):

1 22.0 / (1.0 ) 1.0k e k eu= e− −+ −

                            (1)

In equation (1), 1 2,k k  represent the control 
parameters of S-plane controller. 1k  represents the 
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proportional gain, which affects the performance 
of the control system, especially in adjusting the 
rise time and overshoot amplitude of the control 
system. 2k  represents differential gain. The 
coefficient of the differential term will have an 
impact on the performance of the control system, 
especially in adjusting the overshoot and stability 
of the control system. ,e e  represent deviation 
and its changing rate, respectively (Filaretov et 
al., 2021). u represents the output signal generated 
by the control system. When the control input is 
adjusted to the minimum value, the control output 
will also be set to its maximum negative value, 
within [ 1, 1]− +  (Yang & Shi, 2020). For fixed 
interference forces such as ocean currents, the 
fixed deviation can be eliminated by adjusting 
the offset of the S-plane, and the control model 
function in equation (2) can be used:

1 22.0 / (1.0 ) 1.0k e k eu= e u− −+ − + ∆

                     (2)

In equation (2), u∆  can fix the interference force 
through adaptive means. Figure 1 shows S-plane 
control structure of BPNN.

Figure 1. BP neural network S-plane control 
structure block diagram

As it can be seen in Figure 1, S-plane controller 
is usually connected to the BPNN, receives 
its output signal, and converts it into control 
actions to impact the operation of the system, 
and adjusts the actual physical system or process 
through S-plane control. S-plane control affects 
and controls this system through the generated 
signals. S-plane controller directly performs 
closed-loop control on the intelligent UWR 
and outputs control parameters 1 2,k k  through 
BPNN (Kabanov, Kramar & Ermakov, 2021). In 
forward propagation, based on the current control 
deviation and deviation change rate ,e e , the 
control parameters 1 2,k k  are calculated through 
inverse normalization. In back propagation, the 
weights are adjusted based on the response outy  of 
intelligent UWR and the control input inr , thereby 
optimizing the network output and achieving 
online tuning of control parameters.

In Figure 2, a three-layer BPNN with a 2-5-2 
structure is adopted.

Figure 2. A three-layer BPNN

The input set at the input layer of the forward 
propagation network is (1) ( )iO t , and equation (3) 
can be obtained:

(1)
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O t e t
O t e t
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=                                         
(3)

In equation (3), ,e e  represent the deviation and 
its derivative at time t, respectively. Equation (4) 
represents the inputting and outputting of hidden 
layer:
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In equation (4), ( )(2)
ij

tw  represents the weight 
of the connection between the i-th neuron in 
the input layer and the j-th neuron in the hidden 
layer at a certain time. (2) (2)( ), ( )j jn t O t  represent 
the activating functions of the j-th hidden layer’s 
neuron. The input is the weighted sum received 
by the neuron. The output is the result processed 
through the activating function. Equation (5) is the 
activating function of the hidden layer (Baysal & 
Altas, 2022):

1( )
1 xf x

e−=
+                                               

(5)

Equation (5) is the sigmoid function. Equation 
(6) represents the inputting and outputting of 
outputting layer.

5
(3) (3) (2)
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In equation (6), (3) ( )jk tw  is the connection weight 
between the j-th hidden layer neuron and the k-th 
output layer neuron at time t. (3) (3)( ), ( )k kn t O t  are 
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the inputting and outputting of the activating 
functions for the k-th output layer (Cheng, Chen 
& Wang, 2020). Equation (7) is the activating 
function of outputting layer:

1( )
1 xg x

e−=
+                                               

(7)

Equation (7) represents the sigmoid function. After 
de-normalization, S-plane control parameters are 
obtained in equation (8):

(3)
1 1

(3)
2 2

10 ( )
10 ( )

k O t
k O t

 = ×


= ×                                           
(8)

Equation (8) maps the processed and normalized 
output values back to the original S-plane control 
parameters for practical control tasks. Then, 
the sampling control object responds to ( )outy t ,  
updates ( ) ( ) ( )in oute t r t y t= − , and selects the 
performance indicator function as it is expressed 
in equation (9):

21( ) ( ( ) ( ))
2 in outE t r t y t= −

                                
(9)

Afterwards, the gradient descent method is 
used to modify the weights, which searches and 
adjusts based on the negative gradient direction 
of weights to determine the weight adjustment in 
equation (10):

( )( )
( )

E tt
t

w h
w

¶
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(10)

In equation (10), η represents the learning rate. For 
the outputting layer, equation (11) is then used for 
back propagation:
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In equation (11), (3)
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Equation (13) represents the update of outputting 
layer weights:

(3) (3) (3) (2)( 1) ( ) ( ) ( )jk jk k jt t t O tw w hj+ = -                (13)

In equation (13), the weight of the outputting layer 
is adjusted to obtain equation (14):
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Similarly to equation (14), the hidden layer weight 
update in equation (15) is derived:

(2) (2) (2) (2)( 1) ( ) ( ) ( )ij ij j it t t O tw w hj+ = -                (15)

In equation (15), 
2

(2) (2) (2) (3) (3)
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2.2 UWR Motion Mode and Structural 
Scheme Design

UWR (Underwater Robot) is a type of autonomous 
or remotely controlled device designed to perform 
a variety of tasks in underwater environments. 
Its applications span across marine scientific 
research, seabed exploration, resource collection, 
and rescue missions, among others. The design of 
UWR’s motion modes and structural schemes is 
of paramount importance as it directly impacts the 
robot’s performance, stability, and task execution 
capabilities. To cater to the diverse requirements 
of different tasks, the design process must take 
into account multiple factors, including the type of 
robot, motion modes, mechanical structure, sensor 
systems, control systems, and power systems 
(Fang et al., 2022). Figure 3 illustrates the motion 
modes and structural scheme of UWR.

Figure 3. Underwater robot motion modes and 
structural design process

As it is shown in Figure 3, a systematic approach 
was followed to design and configure UWRs 
for specific tasks and application areas. The 
methodology began with a clear determination 
of the specific tasks and application domains of 
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UWRs, accompanied by the definition of key 
performance indicators tailored to each task. 
Subsequently, the selection of an appropriate 
UWR type was based on the specific requirements 
of each task, thereby defining the UWR’s 
motion mode. The fundamental operations and 
behaviors associated with each motion mode were 
rigorously defined. To ensure the robot`s seamless 
integration with the underwater environment and 
task requirements, a meticulous redesign of the 
mechanical structure of the robot was undertaken. 
This redesign encompassed considerations of 
size and shape, allowing the UWR to adapt 
effectively to its operational environment 
(Javernik, Buchmeister & Ojstersek, 2022). The 
selection and arrangement of sensors were then 
meticulously carried out to gather essential data 
about the underwater environment. Attention 
was given to ensuring compatibility between 
the sensor system and the robot’s mechanical 
structure. A robust control system was designed 
with a focus on intelligent control, enabling 
autonomous navigation and task execution. The 
power system, comprising batteries, motors, 
and electronic components, was engineered to 
support the robot’s operation while meeting 
specific range requirements (He, Yang & Jiao, 
2023). To guarantee the safety of the robots and 
establish effective emergency response measures, 
comprehensive simulations and testing were 
conducted during the design phase to verify 
the robot`s performance and the related safety 
parameters. This included thorough debugging and 
calibration in preparation for on-site testing within 
the relevant underwater environments. During 
task execution, sensor data was systematically 
recorded and analyzed to evaluate the success of 
each mission. Furthermore, proactive maintenance 
and periodic updates to the robot’s motion mode 
and structural configuration were implemented to 
ensure its long-term performance and reliability. 
Figure 4 showcases the ROV model, which 
exemplifies the culmination of this comprehensive 
design and configuration process.

Figure 4. ROV model

To create Figure 4, the fluid simulation software 
Fluent was employed, which is widely used 
in scientific research and engineering fields. 
It incorporates validated physical modeling 
methods, including Reynolds-averaged Navier-
Stokes equations, turbulence models, and 
multiphase flow models, to accurately simulate 
complex fluid behavior. In addition, Fluent 
also has powerful computing power to handle 
large-scale computing tasks, which enables 
the efficient simulation of fluid interactions in 
UWRs under different conditions (Banjanović-
Mehmedović et al., 2021). In simulation, the 
first step is to establish an accurate fluid domain 
to ensure that all fluid conditions around the 
UWR are included (Shi et al., 2020). Then, 
grid partitioning is performed, and its precision 
is crucial for the accuracy of the simulation 
results. Subsequently, appropriate boundary 
conditions are established to simulate the 
interaction between UWR and surrounding 
fluids. After defining all the parameters required 
for simulation, Fluent software performed 
simulation calculations to obtain key information 
such as UWR motion in water and fluid damping 
coefficient (Chai & Xia, 2023).

Figure 5. Propeller layout and function in  
swimming mode

As it can be seen in Figure 5, to meet the 
high maneuverability required for UWR in 
complex tasks, this design emphasizes the 
implementation of 6 degrees of freedom for 
control purposes. These six freedom degrees 
include the translational degrees of freedom 
of the robot in three directions (forward and 
backward, left and right, up and down), as well 
as the degrees of freedom related to the rotation 
around three axes (rolling, pitch, and yaw). To 
achieve this goal, a layout pattern of 8 thrusters 
was adopted. ( )1,2, ,8Tn n =   represents the 
force and direction of each thruster. The specific 
thruster configuration scheme in Figure 5(b) 
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involves four thrusters arranged horizontally, 
which are positioned with 45° inclination along 
the horizontal axis. This layout allows the robot 
to achieve forward and backward translation, 
left and right translation, and steering functions. 
This is a key element necessary for robots to 
perform posture transformation and planar 
motion. To that, to counteract the torque caused 
by the rotation of the internal spiral blades, the 
four thrusters in the vertical position use suction 
cups instead. These suction cups are arranged 
alternately with reverse and forward propellers 
to maintain the balance of the robot (Li & Zhao, 
2022). This configuration not only ensures the 
mobility of the robot in all directions, but it also 
helps to reduce unnecessary torque caused by 
rotational motion.

3. Result Analysis

This section focused on verifying the BPNN-based 
UWR control. Firstly, the application effect of 
BPNN in S-plane control of UWR was discussed. 
Next, the result analysis for the motion mode and 
structural scheme design of UWR was presented.

3.1 The Application Effect of BPNN in 
S-plane Control of UWR

The initial weights of BPNN were randomly 
selected from within [ 0.5, 0.5]− + . Learning rate 
was 0.01n =  and a classic S-plane controller was 
used, with control parameters 3, ` 4k k= = . Table 
1 includes the parameters of the motion model and 
the motion control objectives for UWR. 

The target for speed control was 1.5 meters 
per second. The goal of directional control 
was to maintain the robot at 60 degrees. These 
two control objectives were key to performing 
successful UWR tasks and operations. Figure 6 
shows the motion control effect.

Figure 6. Motion control effect

As it is shown in Figure 6, this paper analyses the 
performance of the NeuroPID model, traditional 
model, and RBF-Neural Network model. The 
results showed that the proposed BP-PID model 
performed slightly better in many aspects. First 
of all, as it is illustrated in Figure 6(a), in terms 
of speed control, the proposed model featured a 
very fast speed response, hence it can quickly reach 
the expected speed, and no excessive oscillating 
or steady state error occured after the target speed 
was reached. This shows its excellent speed control 
performance. This is very important for the task that 
requires fast transmission. Then, as it is shown in 
Figure 6(b), in terms of direction control, although 
the model proposed by this study may have a slight 
super-adjustment at the initial stage, that is, the 
direction may be slightly deviated from the target, 

Table 1. Motion model parameters

Parameter Value Parameter Value
L 2.55m Nr -253.08kg·m2/(s·rad)
m 183.0kg Xu 0
IZ 94.55kg·m2 Yv -149.83kg/s
Nṙ -88.48kg·m2 Nr|r| -79.75kg·m2/rad
Xu̇ -13.41kg Xu|u| -16.66kg/m
Yv. -261.34kg Yv|v| -556.10kg/m



	 21

ICI Bucharest © Copyright 2012-2024. All rights reserved

Control of Underwater Robots Based on a BP Neural Network

still the gap is controlled within 5%. The proposed 
model can still respond quickly and stabilize the 
gap to reach the expected direction, and there is 
no steady state error. By contrast, the NeuroPID 
model, traditional model, and RBF-Neural Network 
model are slightly inferior in these regards. The 
S-plane control effect is shown in Figure 7.

Figure 7. S-surface control effect

S-plane controller of BPNN exhibited an excellent 
performance in intelligent UWR motion control, 
thanks to its data-driven characteristics. Firstly, it 
could autonomously initialize and adjust control 
parameters online, which was the foundation of 
its excellent performance. By collecting a large 
amount of data related to speed control and 
heading control, the S-surface controller could 
dynamically optimize control parameters in real-
time operation to adapt to different underwater 
environments and task requirements. Secondly, 
S-plane controller exhibited excellent anti-
interference ability when facing disturbances. 
This feature was particularly evident in heading 
control. Through real-time data analysis and 
feedback, the controller could effectively suppress 
the fluctuation amplitude and ensure that the UWR 
could maintain the required direction stably. The 
S-plane control results are shown in Figure 8.

Figure 8. S-surface control result

The performance of BPNN’s S-plane controller 
benefitted from a large amount of data. By collecting 
speed control data from UWR, after initializing the 
control parameters, the controller could increase the 
robot’s speed to 1.5 meters per second in less than 2 
seconds without obvious overshoot. This reflected 
its fast response and excellent speed control ability. 
In terms of heading control, when facing the 
interference term [ , , 500,0,100]du dr di =  , S-plane 
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controller could quickly adjust the direction of the 
UWR, and the fluctuation amplitude was relatively 
small, not exceeding 5 degrees. This showed the 
anti-interference characteristics of the controller 
against disturbances.

3.2 Results Analysis for UWR Motion 
Mode and Structural Scheme

In the design and motion control of UWRs, the 
motion modes and structural schemes were crucial. 
Through a reasonable design and selection, the 
efficient movement and operation of UWR could 
be achieved for different tasks and environments. 
This article aimed to conduct in-depth research on 
the motion mode and structural scheme of UWR, 
to analyse its performance. Time-frequency plots, 
as a key analytical tool, would be used to analyze 
the motion characteristics of UWRs, including 
the working status of thrusters and the impact of 
underwater environments. A complex propulsion 
motion simulation model was developed using 
Matlab/Simulink software, which adopted a speed 
closed-loop control strategy. In the speed closed-
loop control system, a Proportional Integral (PI) 
controller was used for research, whose main 
task was to manage the intensity of bus current, 

thereby adjusting the output voltage of the inverter 
to achieve precise speed control of UWR. The 
simulation covered two key scenarios: the normal 
operation of the thruster and the short-circuit of the 
B and C phases for the motor. Figure 9 illustrates 
the obtained stator time-frequency diagram. It 
presents the deep analysis of the current signal 
of the UWR thruster. Firstly, at a steady-state 
speed of 1000 rad·s-1, Figure 9(a) shows the time 
domain current signal, a notable feature being that 
it was mainly composed of sinusoidal components. 
Furthermore, in the frequency domain current 
signal in Figure 9(b), the frequency was mainly 
distributed around 5, 25, 50, and 100 Hz, with 
amplitudes around 4.5, 1.0, 0.5, and 0.2 dB·Hz-1, 
respectively. In addition, the performance of current 
signals under fault conditions was also studied. 
With regard to the A-phase short circuit which was 
introduced at 0.1 seconds at a steady-state speed 
of 1000 rad·s-1, Figure 9(c) shows the evolution 
of time domain current signal, where a significant 
negative sequence component appeared. For the 
frequency domain current signal in Figure 9(d), 
the frequency components were mainly distributed 
around 10, 30, 50, and 75 Hz, with amplitudes of 
around 60, 4, 18, and 8 dB·Hz-1, respectively. 

Figure 9. Stator current time-frequency diagram
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It is worth noting that in comparison with normal 
signals, the spectrum of the fault signal showed 
significant enhancement of low-frequency 
and high-frequency components, as well as a 
significant increase in amplitude. Vertical thruster 
output is shown in Figure 10.

After 10 seconds of Z-direction control, the 
output control values for thrusters 5 to 8 exhibited 
excellent stability. Specifically, the output control 

of thruster 5 in the Z direction remained stable at 
about -2 Newton, for thruster 6 it remained stable 
at 5 Newton, for thruster 7 at -12 Newton, and 
thruster 8 maintained an output control of about 
13 Newton. These data results indicated that each 
thruster could reliably meet the control requirements 
of UWR in all directions according to the design 
requirements. Figure 11 shows the classification 
results. Classification results are shown in Figure 11.

Figure 10. Vertical thruster output

Figure 11. Classification results
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The training results show that out of a total of 120 
samples, only 8 samples were misclassified. These 
misclassified samples were labeled with circles, 
while the remaining samples were represented 
by black dots, indicating that they were correctly 
classified. In addition, as it was illustrated by 
the error plots after training, there were certain 
differences in numerical errors among these 
misclassified samples, but overall they exhibited 
high accuracy.

The application of research results in real-
life scenarios has improved. First of all, the 
movement control for underwater robots has 
been significantly improved, and now they are 
capable of completing underwater survey and 
resource exploration tasks with a high efficiency. 
This not only means that underwater data and 
resource samples can be obtained faster, but it can 
also lead to a deep understanding of the marine 
environment and resources. Scientific research 
has also benefitted a lot. The research robots show 
higher accuracy and stability in the underwater 
environment, which can help better explore many 
fields such as marine ecosystems, climate change, 
and underwater geology. In addition, the stability 
and fault detection ability of robots improve the 
safety of underwater operations, reduce potential 
risks, and ensure the safety of operators. The 
multifunctional characteristics of robots have 
also been improved, which enables them to 
adapt to different types of underwater tasks and 
turns them into multi-purpose tools, which can 
be used in many contexts, including underwater 
maintenance, deep-sea exploration, underwater 
archeology and marine biological research. This 
series of improvements reduces operating costs, 
extends the service life of the robot, and also 
enhances task autonomy and reduces the demand 
for human intervention.

4. Conclusion

As technology advances, the UWR is becoming 
increasingly important in areas such as ocean 
exploration, seabed resource development, 
and marine environmental monitoring. This 
paper provides a detailed introduction to the 
application of BPNN in UWR control and 
verifies its effectiveness through experiments. 
The experiments confirmed that the speed 
control response of UWR was fast, and it reached 

the required speed quickly, without overshoot 
or steady-state error. The direction control 
performance was good, with a slight overshoot 
which did not exceed 5%. It responded quickly 
and stabilized to the desired direction without 
steady-state error. S-plane controller of BPNN 
exhibited excellent performance in intelligent 
UWR motion control, as it independently 
completed control parameter initialization and 
online adjustment, and featured an excellent anti-
interference ability. The signal analysis which 
was carried out showed the thruster performance 
under normal and fault conditions. At a steady-
state speed of 1000 rad·s-1, the generated signal 
was mainly composed of sinusoidal components, 
with a frequency distribution around 5, 25, 
50, and 100 Hz. When a fault occured, the 
generated signal exhibited a negative sequence 
component, with a frequency distribution of 
around 10, 30, 50, and 75 Hz, and a significant 
increase in amplitude. The output control values 
for thrusters 5 to 8 exhibited excellent stability 
after Z-direction control, and the output control 
values for each thruster reliably met the control 
requirements of the analysed UWR. After real-
life tests, it was noticed that the optimized robot 
can more effectively avoid obstacles, adapt to 
varying underwater terrains, and achieve a more 
precise positioning. Additionally, the underwater 
robot’s operational accuracy has been enhanced, 
thereby reducing errors and repetitive work. By 
better predicting and responding to environmental 
changes, the safety and reliability of underwater 
operations have been improved. The proposed 
automated and intelligent control system reduces 
the need for manual intervention, thereby saving 
time and costs.

The paper mainly focused on the short-term 
performance of the UWR, but the long-term 
stability and maintenance requirements for UWRs 
are also important topics that would require further 
research and experimental verification.
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