
453

ICI Bucharest © Copyright 2012-2019. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

Moving from a controller design to its real-time
implementation is time-consuming and requires
knowledge in various areas. To implement a real
time controller, it has to be programmed using
C language, compiled and executed in a micro-
controller (MCU). For a complex control strategy,
this task can be time-consuming and error-prone.
Fixing errors in the program takes additional time
and effort (How, 2019). These factors slow down
small companies in developing products that
involve controllers. In education environments
cause students and professors prefer to make
a computer simulation instead of a laboratory
experiment or a physical application for testing
control strategies (How, 2018).

For decades, many efforts have been made in
order to ease the process of translating a control
law into its real-time implementation (Hull, et al.,
2004). There are software systems like DSpace
(Chini, et al., 2017) MATLAB (Banerjee, et al.,
2004; Zarrad, et al., 2019) and LabVIEW (Beck,
et al., 2006; Chacon, et al., 2015), aimed to
assisting and simplifying the different stages of
a control application. These are very powerful
tools, convenient for a well-established business.
However, they have certain characteristics that
inhibit their wider use, particularly in education
environments and small technology-oriented
companies: a) They are closed systems that

can hide valuable information about how the
translation is made. b) They are expensive.

In an educational setting such characteristics
inhibit collaboration among professors and
students, and reduce the flexibility that is
necessary for experimentation. Furthermore, a
hidden process may not facilitate the students`
understanding of the process.

Controllers for dynamical systems are
dynamical themselves. The static cases can
be seen as particular instances of dynamical
systems with no states. Hence to implement
real-time controllers is tantamount to making a
digital system to emulate a dynamical system.
Hereafter real-time controller implementation
and emulation of dynamical systems by digital
systems are treated interchangeably.

The previously mentioned existing tools are
based on a domain-specific language in which
the dynamical equations are easily expressed
(e.g. Simulink in case of MATLAB) and on a
processor of such language whose purpose is to
generate code which can be executed by a piece
of hardware. The hardware can be manufactured
by the provider company (e.g. LabVIEW, DSpace)
or by a third party (e.g. MATLAB).

Studies in Informatics and Control, 28(4) 453-461, December 2019

https://doi.org/10.24846/v28i4y201909

A Domain-specific Language for Real-time Dynamical
Systems Emulation on a Microcontroller

Francisco-David HERNANDEZ1*, Domingo CORTES1,
Marco A. RAMIREZ-SALINAS2, Jorge RESA1
1 Instituto Politécnico Nacional, ESIME Culhuacán, Av. Santa Ana 1000 Ciudad de México, 04440, México
fcod.hdez@gmail.com (*Corresponding author), domingo.cortes@gmail.com, jrtipn@gmail.com
2 Instituto Politécnico Nacional, CIC, Av. Juan de Dios Bátiz S/N, Ciudad de México, 07738, México
mars@cic.ipn.mx

Abstract: Translating a control law to code so that it can be executed in real time by a microcontroller is time-consuming and
requires knowledge in diverse areas. There are powerful tools like Matlab and DSpace, that can ease the process, however,
these tools are expensive and hide the way the translation is actually made. These two factors greatly diminish the use of
these tools in education and small business. This paper presents SystDynam, a high-level language designed for describing
static and dynamical systems and hence, controllers. The language was purposely created to be easy to process in order
to obtain a C code by using free software tools. Therefore, a senior student or a control engineer with a short training in
language processors can understand how the translation is made. The necessary code for translation is described here and is
freely available. Having the controller described by C code, it can be compiled to be executed as the main task in a real-time
operating systems, thereby obtaining the real-time controller. The complete process can also be used for emulating dynamical
systems, thereby enabling the use of hardware in the loop simulations and low-cost rapid prototyping and providing an
auxiliary tool for teaching some engineering courses.

Keywords: Control applications, Controllers, Rapid prototyping, Embedded systems, Control languages.

https://www.sic.ici.ro

454 Francisco-David Hernandez, Domingo Cortes, Marco A. Ramirez-Salinas, Jorge Resa

To create a low-cost alternative, the following
are necessary:
a)	 A language for expressing dynamical systems.

b)	 Processor for such a language.

c)	 A piece of hardware to execute the
generated code.

There are several languages for expressing
dynamical systems (see for example (Elmqvist,
1977; Gumzej, 2007; Ermentrout, 2012).
However, it would be convenient to have a
language which is rich enough to express a wide
variety of dynamical systems and simple enough
to be easily processed so that a senior student or
control engineer can understand the process. A
language processor is a software that processes
a program in a certain language and generates a
code in another (low-level) language. Typically,
a language processor involves a lexical analyser
and a syntactic analyser also knows as parser
(Sujeeth et al., 2014). Free software tools meant to
facilitate the development of language processors
have been around for some time (Donnelly et al.,
2019; Paxson et al., 2015).

For controller implementation the code generated
by the language processor must be executed in real
time by a digital system with proper interruption
system, digital to analogue converter (DAC),
analogue to digital converter (ADC), etc. (Nilsson,
et al., 1998). Until recently, most digital boards
based on micro-controllers, lacked the resources
for running a real-time operating system (RTOS)
so that a code could be loaded and executed in real
time. However, now there exist boards which are
based on 32 bit micro-controllers (32-bit MCU)
that can run RTOS, make float point operations
by hardware and include analog-to-digital and
digital-to-analog converters. In addition, these
board include hardware that is useful for controller
implementation like pulse with modulation
(PWM) modules, communication protocols and
general-purpose input-output ports. Most of these
micro-controllers are directly programmed in C
(Gehani & Ramamritham, 1991).

As a consequence, a controller implementation
can now be made, at a low cost, using three
components: a) a language for expressing
dynamical systems; b) a language processor for
such a language generates the actual C code of the

controller; c) a set of procedures through which
the C code of the controller becomes the main
task to be executed by the RTOS running in the
32-bit MCU. In this way the effort to test, modify
and experiment with a control strategy can be
reduced considerably.

The development of these three components
is described in this paper. First, SystDynam a
high-level language meant to describe dynamical
systems (and hence controllers) is presented. Then
the language processor to automatically generate
the C code that describe the dynamical system
is explained. Finally, the hardware necessary to
execute the obtained C code is discussed.

The SystDynam language is flexible enough to
describe a wide variety of dynamical systems
but at the same time is easy to process. A senior
student or a control engineer with a short training
in language processors is able to understand how
the translation is made and modify that language,
if it is necessary.

With the language and its processor here-
presented is easy to emulate a great variety of
dynamical systems and controllers using a 32-bit
MCU board. Thereby enabling a broad range of
experiments, for example instead of using a high-
cost dynamical system for experimentation, it
could be emulated using a 32-bit MCU.

The paper is organized as follows. Section 2
presents the developed language for describing
dynamical systems, SystDynam. Section 3
describes the process for generating C code from
a SysDynam file. Section 4 discuss in detail the
hardware aspects for running the generated code
in a 32-bit MCU. The overall process is evaluated
using a couple of examples in Section 5 and
finally the conclusions are given at the end of
the paper.

2. The Language for Describing
Dynamical Systems

Although there are many languages for describing
dynamical systems, the “SystDynam” language
described here allows one to describe a variety of
systems and at the same time it is easy to process.
These two conditions should be met in order for
the above-mentioned language to be convenient

	 455

ICI Bucharest © Copyright 2012-2019. All rights reserved

A Domain-specific Language for Real-time Dynamical Systems Emulation on a Microcontroller

and simple enough to be understood by a senior
student or control engineer. To introduce the
SystDynam language one should consider the
description of a simple pendulum shown in
Listing 1. In SystDynam language a system is
described by means of three blocks. Each of
them begins with a reserved word and end with a
semicolon. The reserved words in the beginning
of each block are: “Parameters:”; “System:” and
“InitialC:”, respectively.
Listing 1. Description of a simple pendulum in relation to

SystDynam language

 Parameters:

 ti :=0,

 tf :=10,

 dt :=0.1,

 inputs :=1,

 outputs :=2,

 input_scale:=2,

 output_scale :=2

;

System:

 l = 0.5,

 b = 0.15,

 g = 9.81,

 m = 0.5,

 j = m*l*l,

 #u,

 $y1,

 $y2,

 x1’= x2 ,

 x2’= (1/j)*(-b*x2-m*g*l*sin(x1)+u),

 y1=x1,

 y2=x2

;

InitialC:

 x1_0 = 1.2,

 x2_0 = 0

;

The block “Parameters:” is used to define those
characteristics of the system that are important
to know for the real-time execution of the
code. The parameters that can be specified are
shown in Table 1. Sampling time is the same
as integration step size. Parameter input_scale
is the number corresponding to 1V of an ADC
input channel. Similarly, output_scale means the
number that corresponds to each volt of a DAC
output channel. In the block System:, the system
dynamics is properly specified by state equations.
Each state equation begins with an alphanumeric

symbol starting with a letter and ending with an
apostrophe. Hence, in the string exp'2 =x , the
symbol x2 is identified as a state name and exp as
the expression of the derivative of that state. If a
line begins with a symbol that does not end with
an apostrophe it is interpreted as a system dynamic
parameter. Hence in the string llmj **= , the
symbols m and l are identified as constants. Note
that m and l must be defined before they can be
used in expression for j . After j is defined, it
can be used in other symbol definitions or for
defining state derivatives. Any function defined
in the standard C math library can be used for
defining state derivatives.

Table 1. Parameters – reserved words

Parameters Function Example

ti Time to start
emulation ti:=0

tf Time to finish
emulation tf:=10

dt Sampling time dt:=0.1

inputs Number of inputs inputs:=1

outputs Number of outputs outputs:=2

input_scale Input factor input_scale:=2

output_scale Output factor output_scale:=2

Initial conditions for any state can be defined in
InitialC: block. The symbols must have the same
name as the state variables, with the characters
“_0” added at the end. For example, if 1x is a state
identifier, the initial condition for this state would
be defined as x1_0=1.2.

3. Processing a SystDynam File for
Generating C Code

The syntax of SystDynam was designed to be easy to
process. Due to this syntax, students with a certain
knowledge of C language and a short training in
lexical analysers and parsers can understand how to
process a SystDynam file and make modifications
to the language or the language processor. The
SystDynam language processor can be generated by
using free software tools, such as FLex and Bison.
The input of FLex is a file that specifies the rules for
valid language patterns. The output of FLex is a file
in standard C language which contains definitions
and prototypes whose compilation enables the
generation of the lexical analyser. The specifications
are made by regular expressions (REGEXP) and a

https://www.sic.ici.ro

456 Francisco-David Hernandez, Domingo Cortes, Marco A. Ramirez-Salinas, Jorge Resa

set of actions. This analyser, is the lexical scanner
that verifies the syntax of SystDynam code. The
lexical analyser reads a SystDynam source code,
and breaks it down into minimal expressions named
tokens, it identifies what tokens match the rules and
classifies them depending on their respective type.
They can be reserved words, identifiers, names of
variables, etc. Furthermore, Flex allows it to specify
the actions that must been taken when a string
matches a token.

Listing 2 shows a part of the Flex file used
to build the lexical analyser according to the
SystDynam specifications. Here are defined the
reserved words and the valid characters. The full
Flex file can be consulted on http://github.com/
control-lab-org/systdynam/ .

Listing 2. Lexical analyser specifications

[(] {yylval.sym=yytext[0];return OFNT;}

[)] {yylval.sym=yytext[0];return CFNT;}

[-|+]{yylval.sym=yytext[0];return OPA; }

[*|/]{yylval.sym=yytext[0];return OPA1;}

[,] {yylval.sym=yytext[0];return MORE;}

[=] {yylval.sym=yytext[0]; return EQL;}

[0-9]+[.]?[0-9]* {strcpy(yylval.val,yytext);

 return NUM; }

[a-z][a-z0-9]* {strcpy(yylval.val,yytext);

 return VAR; }

[a-z][a-z0-9]*[‘]

{strcpy(yylval.val,yytext);

 return DEQQ;}

[a-z][a-z0-9]*[_][0]

{strcpy(yylval.val,yytext);

 return INITALC;}

“Sistem:” { return STRT; }

“Parameters:” { return STRPAR; }

“InitialC:” { return STRINI; }

“ti:” { return TI; }

“tf:” { return TF; }

“dt:” { return DT; }

“inputs:” { return NINPUT; }

“outputs:” { return NOUTPUT; }

“input_scale::” { return IN_SCALE; }

“output_scale:” { return OUT_SCALE;}

“#” { return INPUT_ID; }

“$” { return OUTPUT_ID;}

“;” { return STOP; }

<<EOF>> { return 0; }

[\t\n]+ { }

. {cout<<”Warning; }

The other tool used for developing the SystDynam
language processor is Bison, a software that accepts
a context-free grammar specification and generates a
deterministic Left to Right general-purpose parsers.
In the case of SystDynam, the parser generated
by Bison process the file with the description of
a dynamical system and produce the equivalent
description but in C code. Bison and FLex work
together, the lexical analyser generated by FLex is
a subroutine of the parser generated by Bison. FLex
and Bison generate a syntax-lexical analyser.

To explain how the grammar rules are expressed,
Listing 3 shows the set of rules for the block
System:. To read these rules, the character ‘|’ must
be read as ‘or’ and also it should be taken into
account that by convention, tokens are written in
capitals and non-terminal symbols are in lowercase
letters as it is shown in Listing 2. Considering this,
the rules in can be read as follows.

Listing 3. A part of grammar analyser specifications
model: STRT vvar STOP {action();}

vvar: vvar MORE vvar {action();}

 | static {action();}

 | deq {action();}

static: VAR EQL exp {action();}

deq: DEQQ EQL exp {action();}

exp: exp MORE exp {action();}

 | exp OPA1 exp {action();}

 | exp OPA0 exp {action();}

 | OPA0 exp %prec OPA1 {action();}

 | OPA1 exp {action();}

 | ffun %prec VAR {action();}

 | NUMS {action();}

 | VAR {action();}

 | OFNT exp CFNT {action();}

ffun: VAR OFNT exp CFNT {action();}

A “System” is abstracted by an element called
“model:”. A model is valid if there is a token
STRT (“STRT” = “System:”; see Listing 2)
followed by a sequence of symbols (identified
by “vvar”) and ending with the STOP token
(STOP=“;”). The element vvar contains the
system body definitions. The element vvar is
defined recursively. A vvar can be formed by two
vvar separated by the token for MORE (“,”); or
be formed by a “static” expression; or a “deq”
expression. A static expression is a “VAR”
token followed by an “EQL” token which is also

	 457

ICI Bucharest © Copyright 2012-2019. All rights reserved

A Domain-specific Language for Real-time Dynamical Systems Emulation on a Microcontroller

followed by an “exp” element. The rest of the
rules can be read in this way.

The action() function appearing in Listing 3, is not
a single function, it represent a set of functions that
determines how the symbols of the input file are
translated. Basically all mathematical operations are
converted and translated into C language functions.
State equations are also translated into C functions.
These functions are passed as arguments of a
numerical integration algorithm. The full grammar
code and all semantic actions can be accessed on
http://github.com/control-lab-org/systdynam.

To integrate state equations, Euler method was
used due to it is easy to implement and it is
run-time predictable. However, the integration
algorithm is not difficult to change if that be
deemed necessary.

To sum up, both Bison and Flex generate
source code for syntactic and lexical analysers.
When they are compiled based on well-defined
semantic actions, the Bison application file yields
the compiler of SystDynam language. This
application processes a file with a description
of a dynamical system written in SystDynam
language and delivers a file that describes the
same dynamical system in a C code. This file
is ready to be compiled and then loaded to be
executed in a 32-bit MCU.

4. Hardware-related Aspects

The description of a dynamic system in C language
can be compiled and loaded as the main task on a
RTOS running on a 32-bit MCU board. However,
for this to be possible it is required that the board
meet the following specifications: a) A minimum
size of RAM and ROM memory that would enable
it to run a RTOS. b) Hardware floating-point
operations (FPU), necessary to efficiently perform
numerical computations. c) High-resolution
(16-bit) Analog-to-Digital Converters (ADCs)
and Digital-to-Analog Converters (DACs) with
embedded hardware filters. d) A software for fast
project development and debugging.

Until very recently, a hardware with these
requirements was expensive. Thanks to the
rapid development of technology there are
now high-performance and cheaper 32-bit
MCUs. For the test presented in Section 5,
the Freedom-K64F (FRDM-K64F) (NXP

Semiconductors, MCUXpresso IDE User Guide,
2018) development board was employed. This
board is powered by a 32-bit Advanced Reduced
Instruction Set Computer Machine (ARM)
Cortex-M4. With a 1024 KB flash memory, 254
KB RAM, combined with a 120 MHz base clock
frequency, various communication ports like
SPI, I2C, UART, Ethernet and USB, drives like
PWM modules, PLL, and more flexible timers,
etc. The manufacturer of this board also provides
an Integrated Development Environment (IDE)
and Software Development Kit (SDK), that make
board configuration, and the FreeRTOS (RTOS
used) configuration and installation easier.

FreeRTOS is a type of RTOS that is designed
to be small enough to run on a MCU. However,
its use is not limited to MCU applications.
FreeRTOS is a kernel for embedded systems
developed and maintained by the team of Real
Time Engineers Ltd. It is an Open-source project
distributed under a MIT license. It provides the
core Real-time scheduling functionality, inter-
task communication, timing and synchronization
primitives only. FreeRTOS kernel allows
applications to be organized as a collection of
independent tasks with priorities. Each priority
is assigned by the application developer. For the
program that emulates a dynamical system, the
necessary tasks are: computing state values, and
the communication between ADC, DAC and the
plot buffer.

5. Evaluation

In order to test SystDynam language, its language
processor and the procedures for compiling and
loading the C code generated, different dynamical
system descriptions were coded in SystDynam.
The description of dynamical systems instead of
controllers was preferred for evaluation because
a dynamical system can be tested separately. By
contrast, a controller has to be applied to other
dynamical systems. Nevertheless, experiments
are meaningful because a dynamical controller
is basically a dynamical system, and a static
controller can be considered a dynamical system
without states. Furthermore, in both experiments
a state is actually a feedback into the system.

The dynamical systems chosen to evaluate the
tool here-developed are classical in the study of
dynamical systems. To make experiments with
these systems, a lab equipment is required. One

https://www.sic.ici.ro

458 Francisco-David Hernandez, Domingo Cortes, Marco A. Ramirez-Salinas, Jorge Resa

way is construct a lab prototype with error prone
and on the other hand, buy the equipment to a
laboratory that is not usually cheap. However,
with the SystDynam language and its processor,
these systems can be emulated using a low cost
32-bit MCU. In the same way other systems can
be emulates such as DC and AC electric motors,
simple robots, etc.

Each system description was input into the
language processor and C code was generated.
The C code obtained was compiled by a standard
C compiler and loaded to the MCU to be executed
in real-time by the FreeRTOS operating system.
Finally, measurements were taken with the
oscilloscope on corresponding output pins. These
measurements were compared with the results
of a simulation of the same system in Simulink.
The method used in Simulink was ODE45 with a
relative tolerance of 10-6.

The MCU employed limited the analogue signal
range of the ADC input and the DAC output to
0-3.3v. This can be modified by external hardware.
However, to reduce the influence of external
hardware to a minimum, in examples presented
below, numbers that pass through the ADC and
DAC to be measured externally are manipulated
such that zero correspond to 3.3/2=1.65 V. Thus,
positive numbers result in the range [1.65V-3.3V]
and the range for negatives is [0V-1.65V). Proper
output scaling should be specified for each
SystDynam description to keep the output voltage
within these ranges.

5.1 Evaluation of SystDynam Using a
Simple Pendulum Model

A simple pendulum is modelled by (1), (2).

21 xx =
 (1)

 (2)
Where 1x and 2x are the angular position and
velocity respectively, m is the pendulum mass, l
is the pendulum length, J is angular momentum,
b is the friction coefficient and the input u is a
torque applied to the pivot. Models (1) and (2) are
described in SystDynam by the code illustrated in
Listing 1.

The input and output scale was ×2, hence each
volt at the input represents two radians and also
each volt at the output represents two radians.

The initial values of the pendulum states are
)0,2.1(),(21 =xx . The same values were used in

the Simulink model.

Results obtained when 2u x= − , are shown in
Figure 1, Figure 2 and Figure 3. The numerical
values calculated by the MCU, which are
superimposed to the Simulink simulation results
are shown in Figure 1 and Figure 2.

These results are available thanks to the board
debugging tools that allow one to record and
access the internal values generated when the
program is running. To achieve this feedback, the
corresponding DAC output channel was wired to
the ADC input channel programmed to be u . The
minus sign was set by software. Note how the 2x
feedback affected the MCU calculated values in
almost the same manner as Simulink.

Figure 1. Pendulum Angular Position

Figure 2. Pendulum Angular Velocity

	 459

ICI Bucharest © Copyright 2012-2019. All rights reserved

A Domain-specific Language for Real-time Dynamical Systems Emulation on a Microcontroller

Figure 3. Simple pendulum (2xu −=): signals
measured at DAC output

State signals measured at the DAC channels of the
board are illustrated in Figure 3. The state 1x does
not reach zero in the MCU because the maximum
DAC output is not 3.3V but 3.26V. Hence, the
offset of 1.65V does not correspond exactly to
zero. As a consequence, the system behaves as if
it received a small constant input.

5.2 Van Der Pol Model Evaluation

A classical model of an excited Van Der Pol
oscillator is given by (3) and (4).

21 xx =
 (3)

uxxxx +−−= 1

3
2

22)
3

(ξ


 (4)

where ξ is a constant and u is an external input.
The SystDynam code for this example is shown
in Listing 4.

Listing 4. Description of a Van Der Pol model on
SystDynam language

Parameters:
 ti:=0 ,
 tf:=10 ,
 dt:=0.01 ,
 inputs:=1 ,
 outputs: =2 ,
 input_scale: =2,
 output_scale: =2;
System:
 epsi=0.01,
 #u,
 $y1,
 $y2,
 x1’=x2,
 x2’ =epsi*(x2-(x2*x2*x2)/3)-x1+u,
 y1=x1,
 y2=x2;
InitialC:
 x1_0 = -1.0,
 x2_0 = 0;

This example is interesting because depending
on u three behaviors can be noticed. If 0=u a
stable oscillation is obtained. If 1xu = , the origin
is an equilibrium point. If 2xu = , increasing
oscillations can be noticed. The experiment and
results for increasing oscillations, 2xu = , are
shown below in Figure 4, Figure 5 and Figure 6.

Figure 4. 1x state, Van Der Pol linear oscillator

Figure 5. 2x state, Van Der Pol linear oscillator

To make the feedback 2xu = , the pin signal
corresponding to the 2x state, in the output channel
of the DAC, was routed to the corresponding
control input pin of the ADC channel.

Both states were calculated by the MCU and
superimposed with the data obtained by Simulink.
Note that oscillations increased as it was expected.
Differences between MCU data and Simulink as

https://www.sic.ici.ro

460 Francisco-David Hernandez, Domingo Cortes, Marco A. Ramirez-Salinas, Jorge Resa

illustrated by these graphs are due to quantization
errors in the ADC and a more notable deviation
between Euler method used in the MCU and
the ode45 method used in Simulink for unstable
systems. Figure 6 depicts both system states
measured in the respective DAC output channels
with the oscilloscope. Here, increased oscillations
can also be noticed. However, due to DAC has
a limited output range, as signals` amplitude
increases and saturation can be noticed.

Figure 6. Van Der Pol linear oscillator (2xu =):
signals measured at DAC output channels

6. Conclusion

Having the experience of physically manipulate
and control dynamical systems is important for
control engineering students. In this paper it was
described a set of tools to ease acquiring such
experience without hiding any step of the process.
Thus, a student will be able to modify or fine-tune
any component of hardware or software involved

in the experiment. These tools include SystDynam,
a high-level language designed to describe static
or dynamical systems. The language, which was
designed to easily describe a dynamical and be
simple to translate the description into a C code.
In this way, a senior student or a control engineer
can understand how the C code is generated. A
language processor that is fed with a SystDynam
description and generates a C code was developed
and is freely available.

The generated C code can be compiled and run
as the main task of a real-time operating system
in a MCU. The results obtained by using the
FreeRTOS running in a FRDM-K64F powered
by an ARM Cortex M4 were presented.

The SystDynam language and its language
processor is meant to ease controller
implementations. Furthermore, it can be used to
emulate dynamical systems and make simulations
with hardware in the loop (HIL). With a pair of
boards, a dynamical system can be emulated in one
board and the controller in the other one, which
would give way to a variety of experiments. It can
also be used for rapid prototyping, particularly in
small technology-oriented businesses that cannot
afford the cost of other tools. Because, SystDynam
is easy to translate but powerful at the same time,
it also can be useful in other engineering contexts,
like signal processing, programming, real-time
systems, embedded systems, compilers, etc.

REFERENCES

1.	 Banerjee, P., Haldar, M., Nayak, A., Kim, V.,
Saxena, V. S. & Uribe, J. (2004). Overview
of a compiler for synthesizing MATLAB
programs onto FPGAs, IEEE Transactions
on Very Large Scale Integration (VLSI)
Systems, 12(3), 312-324.

2.	 Beck, D., Brand, H., Karagiannis, C. &
Rauth, C. (2006). The first approach to object
oriented programming for LabVIEW real-
time targets, IEEE Transactions on Nuclear
Science, 53(3), 930-935. DOI: 10.1109/
TNS.2006.873532

3.	 Chacon, J., Vargas, H., Farias, G., Sanchez,
J. & Dormido, S. (2015). EJS, JIL Server,
and LabVIEW: An Architecture for Rapid

Development of Remote Labs, IEEE
Transactions on Learning Technologies,
8(4), 393-401.

4.	 Chini, A., Azza, H. B., Jemli, M. & Sellami,
A. (2017). Nonlinear Discrete-Time Integral
Sliding Mode Control of an Induction Motor:
Real-Time Implementation, Studies in
Informatics and Control, 26(1), 23-32. DOI:
10.24846/v26i1y201703

5.	 Donnelly, C. & Stallman, R. (2019). Bison
Manual, 51-126. Free Software Fundation.

6.	 Elmqvist, H. (1977). SIMNON - An
Interactive Simulation Program for Non-
Linear Systems. In Proceedings of the

	 461

ICI Bucharest © Copyright 2012-2019. All rights reserved

A Domain-specific Language for Real-time Dynamical Systems Emulation on a Microcontroller

International Symposium SIMULATION ’77,
Montreux, Switzerland, M. Hamza (ed.),
ACTA Press, Anaheim, CA (pp. 85-90).

7.	 Ermentrout, B. (2012). Xppaut. In: Le
Novère N. (eds) Computational Systems
Neurobiology, 519-531. Springer, Dordrecht.
DOI: 10.1007/978-94-007-3858-4_17

8.	 Gehani, N. & Ramamritham, K. (1991).
Real-time concurrent C: a language for
programming dynamic real-time systems,
Real-Time Systems, 3(4), 377-405.

9.	 Gumzej, R. (2007). Modeling distributed
real-time applications with specification
PEARL, Real-Time Systems, 35(3), 181-208.

10.	 How, J. P. (2018). Future Controls Courses
[From the Editor], IEEE Control Systems
Magazine, 38, 3-4.

11.	 How, J. P. (2019). Why Do Experiments?
[From the Editor], IEEE Control Systems
Magazine, 39, 4-6.

12.	 Hull, M., Ewart, S. & Hanna, J. (2004).
Modeling Complex Real-Time and
Embedded Systems - The UML and DORIS

Combination, Real-Time Systems, 26(2),
135-159.

13.	 Nilsson, K., Blomdell, A. & Laurin, O.
(1998) Open Embedded Control, Real-Time
Systems, 14(3), 325-343.

14.	 NXP Semiconductors (2018). MCUXpresso
IDE User Guide, 37-130.

15.	 Paxson, V., Estes, W. & Millaway, J. (2015).
Lexical Analysis with Flex. The Regents of
the University of California.

16.	 Sujeeth, A. K, Brown, K. J., Lee, H., Rompf,
T., Chafi, H., Odersky, M. & Delite, K.
O. (2014). A Compiler Architecture for
Performance-Oriented Embedded Domain-
Specific Languages, ACM Transactions
on Embedded Computing Systems (TECS),
13(4), 1-25.

17.	 Zarrad, O., Hajjaji, M. A. & Mansouri,
M. N. (2019). Hardware Implementation
of Hybrid Wind-Solar Energy System for
Pumping Water Based on Artificial Neural
Network Controller, Studies in Informatics
and Control, 28(1), 35-44. DOI:10.24846/
v28i1y201904

	OLE_LINK9
	OLE_LINK10
	_GoBack
	_Hlk21340612
	_GoBack
	_GoBack
	_Ref20544371
	_Ref20544387
	_Ref20544421
	_Ref20544454
	_Ref20753143
	_Ref20753145
	_Ref20753148
	_Ref20760659
	_Ref20754130
	_Ref20754132
	_GoBack
	_GoBack
	_Hlk21516250
	_Hlk21516938
	OLE_LINK9
	OLE_LINK8
	OLE_LINK5
	OLE_LINK4
	OLE_LINK41
	OLE_LINK40
	OLE_LINK26
	OLE_LINK25
	OLE_LINK56
	OLE_LINK55
	OLE_LINK21
	OLE_LINK20
	OLE_LINK52
	OLE_LINK51
	OLE_LINK24
	OLE_LINK23
	OLE_LINK54
	OLE_LINK53
	OLE_LINK7
	_GoBack
	_Hlk23878482
	bau000005
	bau000010
	bau000015
	bau000020
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK1
	OLE_LINK2
	_GoBack
	_GoBack
	_Hlk24652148
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OBJ_PREFIX_DWT325_ZmEmailObjectHandler1
	_Hlk25655392
	_Hlk24633070
	_Hlk23155444
	_Hlk25657182

