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1. Introduction

Moving from a controller design to its real-time 
implementation is time-consuming and requires 
knowledge in various areas. To implement a real 
time controller, it has to be programmed using 
C language, compiled and executed in a micro-
controller (MCU). For a complex control strategy, 
this task can be time-consuming and error-prone. 
Fixing errors in the program takes additional time 
and effort (How, 2019). These factors slow down 
small companies in developing products that 
involve controllers. In education environments 
cause students and professors prefer to make 
a computer simulation instead of a laboratory 
experiment or a physical application for testing 
control strategies (How, 2018).

For decades, many efforts have been made in 
order to ease the process of translating a control 
law into its real-time implementation (Hull, et al., 
2004). There are software systems like DSpace 
(Chini, et al., 2017) MATLAB (Banerjee, et al., 
2004;  Zarrad, et al., 2019) and LabVIEW (Beck, 
et al., 2006; Chacon, et al., 2015), aimed to 
assisting and simplifying the different stages of 
a control application.  These are very powerful 
tools, convenient for a well-established business. 
However, they have certain characteristics that 
inhibit their wider use, particularly in education 
environments and small technology-oriented 
companies: a) They are closed systems that 

can hide valuable information about how the 
translation is made.  b) They are expensive.

In an educational setting such characteristics 
inhibit collaboration among professors and 
students, and reduce the flexibility that is 
necessary for experimentation. Furthermore, a 
hidden process may not facilitate the students` 
understanding of the process. 

Controllers for dynamical systems are 
dynamical themselves. The static cases can 
be seen as particular instances of dynamical 
systems with no states.  Hence to implement 
real-time controllers is tantamount to making a 
digital system to emulate a dynamical system. 
Hereafter real-time controller implementation 
and emulation of dynamical systems by digital 
systems are treated interchangeably.

The previously mentioned existing tools are 
based on a domain-specific language in which 
the dynamical equations are easily expressed 
(e.g. Simulink in case of MATLAB) and on a 
processor of such language whose purpose is to 
generate code which can be executed by a piece 
of hardware. The hardware can be manufactured 
by the provider company (e.g. LabVIEW, DSpace) 
or by a third party (e.g. MATLAB).
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To create a low-cost alternative, the following 
are necessary: 
a)	 A language for expressing dynamical systems.

b)	 Processor for such a language.

c)	 A piece of hardware to execute the 
generated code. 

There are several languages for expressing 
dynamical systems (see for example (Elmqvist, 
1977; Gumzej, 2007; Ermentrout, 2012).  
However, it would be convenient to have a 
language which is rich enough to express a wide 
variety of dynamical systems and simple enough 
to be easily processed so that a senior student or 
control engineer can understand the process.  A 
language processor is a software that processes 
a program in a certain language and generates a 
code in another (low-level) language. Typically, 
a language processor involves a lexical analyser 
and a syntactic analyser also knows as parser 
(Sujeeth et al., 2014). Free software tools meant to 
facilitate the development of language processors 
have been around for some time (Donnelly et al., 
2019;  Paxson et al., 2015).

For controller implementation the code generated 
by the language processor must be executed in real 
time by a digital system with proper interruption 
system, digital to analogue converter (DAC), 
analogue to digital converter (ADC), etc. (Nilsson, 
et al., 1998). Until recently, most digital boards 
based on micro-controllers, lacked the resources 
for running a real-time operating system (RTOS) 
so that a code could be loaded and executed in real 
time. However, now there exist boards which are 
based on 32 bit micro-controllers (32-bit MCU) 
that can run RTOS, make float point operations 
by hardware and include analog-to-digital and 
digital-to-analog converters. In addition, these 
board include hardware that is useful for controller 
implementation like pulse with modulation 
(PWM) modules, communication protocols and 
general-purpose input-output ports. Most of these 
micro-controllers are directly programmed in C 
(Gehani & Ramamritham, 1991).

As a consequence, a controller implementation 
can now be made, at a low cost, using three 
components: a) a language for expressing 
dynamical systems; b) a language processor for 
such a language generates the actual C code of the 

controller; c) a set of procedures through which 
the C code of the controller becomes the main 
task to be executed by the RTOS running in the 
32-bit MCU. In this way the effort to test, modify 
and experiment with a control strategy can be 
reduced considerably.

The development of these three components 
is described in this paper. First, SystDynam a 
high-level language meant to describe dynamical 
systems (and hence controllers) is presented. Then 
the language processor to automatically generate 
the C code that describe the dynamical system 
is explained. Finally, the hardware necessary to 
execute the obtained C code is discussed.

The SystDynam language is flexible enough to 
describe a wide variety of dynamical systems 
but at the same time is easy to process. A senior 
student or a control engineer with a short training 
in language processors is able to understand how 
the translation is made and modify that language, 
if it is necessary. 

With the language and its processor here-
presented is easy to emulate a great variety of 
dynamical systems and controllers using a 32-bit 
MCU board. Thereby enabling a broad range of 
experiments, for example instead of using a high-
cost dynamical system for experimentation, it 
could be emulated using a 32-bit MCU.

The paper is organized as follows. Section 2 
presents the developed language for describing 
dynamical systems, SystDynam. Section 3 
describes the process for generating C code from 
a SysDynam file. Section 4 discuss in detail the 
hardware aspects for running the generated code 
in a 32-bit MCU. The overall process is evaluated 
using a couple of examples in Section 5 and 
finally the conclusions are given at the end of 
the paper.

2. The Language for Describing 
Dynamical Systems

Although there are many languages for describing 
dynamical systems, the “SystDynam” language 
described here allows one to describe a variety of 
systems and at the same time it is easy to process. 
These two conditions should be met in order for 
the above-mentioned language to be convenient 
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and simple enough to be understood by a senior 
student or control engineer. To introduce the 
SystDynam language one should consider the 
description of a simple pendulum shown in 
Listing  1. In SystDynam language a system is 
described by means of three blocks.  Each of 
them begins with a reserved word and end with a 
semicolon. The reserved words in the beginning 
of each block are: “Parameters:”; “System:” and 
“InitialC:”, respectively. 
Listing 1. Description of a simple pendulum in relation to 

SystDynam language

 Parameters:

    ti :=0,

    tf :=10,

    dt :=0.1,

    inputs :=1,

    outputs :=2,

    input_scale:=2,

    output_scale :=2

;

System:

    l = 0.5,

    b = 0.15,

    g = 9.81,

    m = 0.5,

    j = m*l*l,

    #u,

    $y1,

    $y2,

    x1’= x2 ,

    x2’= (1/j)*(-b*x2-m*g*l*sin(x1)+u),

    y1=x1,

    y2=x2

;

InitialC:

    x1_0 = 1.2,

    x2_0 = 0

;

The block “Parameters:” is used to define those 
characteristics of the system that are important 
to know for the real-time execution of the 
code. The parameters that can be specified are 
shown in Table 1.  Sampling time is the same 
as integration step size. Parameter input_scale 
is the number corresponding to 1V of an ADC 
input channel. Similarly, output_scale means the 
number that corresponds to each volt of a DAC 
output channel.  In the block System:, the system 
dynamics is properly specified by state equations. 
Each state equation begins with an alphanumeric 

symbol starting with a letter and ending with an 
apostrophe. Hence, in the string exp'2 =x , the 
symbol x2 is identified as a state name and exp as 
the expression of the derivative of that state. If a 
line begins with a symbol that does not end with 
an apostrophe it is interpreted as a system dynamic 
parameter. Hence in the string llmj **= , the 
symbols m  and l  are identified as constants. Note 
that m and l  must be defined before they can be 
used in expression for j . After j  is defined, it 
can be used in other symbol definitions or for 
defining state derivatives. Any function defined 
in the standard C math library can be used for 
defining state derivatives. 

Table 1. Parameters – reserved words

Parameters Function Example

ti Time to start 
emulation ti:=0

tf Time to finish 
emulation tf:=10

dt Sampling time dt:=0.1

inputs Number of inputs inputs:=1

outputs Number of outputs outputs:=2

input_scale Input factor input_scale:=2

output_scale Output factor output_scale:=2

Initial conditions for any state can be defined in 
InitialC: block. The symbols must have the same 
name as the state variables, with the characters 
“_0” added at the end. For example, if 1x is a state 
identifier, the initial condition for this state would 
be defined as x1_0=1.2.

3. Processing a SystDynam File for 
Generating C Code

The syntax of SystDynam was designed to be easy to 
process.  Due to this syntax, students with a certain 
knowledge of  C language and a short training in 
lexical analysers and parsers can understand how to 
process a SystDynam file and make modifications 
to the language or the language processor. The 
SystDynam language processor can be generated by 
using free software tools, such as FLex and Bison. 
The input of FLex is a file that specifies the rules for 
valid language patterns. The output of FLex is a file 
in standard C language which contains definitions 
and prototypes whose compilation enables the 
generation of the lexical analyser. The specifications 
are made by regular expressions (REGEXP) and a 
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set of actions. This analyser, is the lexical scanner 
that verifies the syntax of SystDynam code. The 
lexical analyser reads a SystDynam source code, 
and breaks it down into minimal expressions named 
tokens, it identifies what tokens match the rules and 
classifies them depending on their respective type. 
They can be reserved words, identifiers, names of 
variables, etc. Furthermore, Flex allows it to specify 
the actions that must been taken when a string 
matches a token.

Listing  2 shows a part of the Flex file used 
to build the lexical analyser according to the 
SystDynam specifications. Here are defined the 
reserved words and the valid characters. The full 
Flex file can be consulted on http://github.com/
control-lab-org/systdynam/ . 

Listing 2. Lexical analyser specifications

[(]  {yylval.sym=yytext[0];return OFNT;}

[)]  {yylval.sym=yytext[0];return CFNT;}

[-|+]{yylval.sym=yytext[0];return OPA; }

[*|/]{yylval.sym=yytext[0];return OPA1;}

[,]  {yylval.sym=yytext[0];return MORE;}

[=]  {yylval.sym=yytext[0]; return EQL;}

[0-9]+[.]?[0-9]* {strcpy(yylval.val,yytext);               

 return NUM; }

[a-z][a-z0-9]*   {strcpy(yylval.val,yytext);  

 return VAR; }

[a-z][a-z0-9]*[‘]

{strcpy(yylval.val,yytext);  

 return DEQQ;}

[a-z][a-z0-9]*[_][0]

{strcpy(yylval.val,yytext);

 return INITALC;}

“Sistem:”       {  return STRT;     }

“Parameters:”   {  return STRPAR;   }

“InitialC:”     {  return STRINI;   }

“ti:”           {  return TI;       }

“tf:”           {  return TF;       }

“dt:”           {  return DT;       }

“inputs:”       {  return NINPUT;   }

“outputs:”      {  return NOUTPUT;  }

“input_scale::” {  return IN_SCALE; }

“output_scale:” {  return OUT_SCALE;}

“#”             {  return INPUT_ID; }

“$”             {  return OUTPUT_ID;}

“;”             {  return STOP;     }

<<EOF>>         { return 0;         }

[ \t\n]+        { }

.               {cout<<”Warning;    }

The other tool used for developing the SystDynam 
language processor is Bison, a software that accepts 
a context-free grammar specification and generates a 
deterministic Left to Right general-purpose parsers. 
In the case of SystDynam, the parser generated 
by Bison process the file with the description of 
a dynamical system and produce the equivalent 
description but in C code. Bison and FLex work 
together, the lexical analyser generated by FLex is 
a subroutine of the parser generated by Bison. FLex 
and Bison generate a syntax-lexical analyser. 

To explain how the grammar rules are expressed, 
Listing  3 shows the set of rules for the block 
System:. To read these rules, the character ‘|’ must 
be read as ‘or’ and also it should be taken into 
account that by convention, tokens are written in 
capitals and non-terminal symbols are in lowercase 
letters as it is shown in Listing  2. Considering this, 
the rules in can be read as follows.  

Listing 3. A part of grammar analyser specifications
model:  STRT vvar STOP  {action();} 

vvar:   vvar MORE vvar  {action();} 

            | static    {action();}

            | deq       {action();}

                

static: VAR  EQL exp    {action();}

deq:    DEQQ EQL exp    {action();}

exp:    exp MORE exp         {action();}

      | exp OPA1 exp         {action();}

      | exp OPA0 exp         {action();}

      | OPA0 exp %prec OPA1  {action();}

      | OPA1 exp             {action();}

      | ffun %prec VAR       {action();}

      | NUMS                 {action();}

      | VAR                  {action();}

      | OFNT exp CFNT        {action();}     

ffun:  VAR OFNT exp CFNT     {action();}

A “System” is abstracted by an element called 
“model:”. A model is valid if there is a token 
STRT (“STRT” = “System:”; see Listing  2) 
followed by a sequence of symbols (identified 
by “vvar”) and ending with the STOP token 
(STOP=“;”).  The element vvar contains the 
system body definitions. The element vvar is 
defined recursively. A vvar can be formed by two 
vvar separated by the token for MORE (“,”); or 
be formed by a “static” expression; or a “deq” 
expression. A static expression is a “VAR” 
token followed by an “EQL” token which is also 
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followed by an “exp” element. The rest of the 
rules can be read in this way.

The action() function appearing in Listing 3, is not 
a single function, it represent a set of functions that 
determines how the symbols of the input file are 
translated. Basically all mathematical operations are 
converted and translated into C language functions. 
State equations are also translated into C functions. 
These functions are passed as arguments of a 
numerical integration algorithm. The full grammar 
code and all semantic actions can be accessed on 
http://github.com/control-lab-org/systdynam.

To integrate state equations, Euler method was 
used due to it is easy to implement and it is 
run-time predictable. However, the integration 
algorithm is not difficult to change if that be 
deemed necessary. 

To sum up, both Bison and Flex generate 
source code for syntactic and lexical analysers. 
When they are compiled based on well-defined 
semantic actions, the Bison application file yields 
the compiler of SystDynam language.  This 
application processes a file with a description 
of a dynamical system written in SystDynam 
language and delivers a file that describes the 
same dynamical system in a C code.  This file 
is ready to be compiled and then loaded to be 
executed in a 32-bit MCU.

4. Hardware-related Aspects

The description of a dynamic system in C language 
can be compiled and loaded as the main task on a 
RTOS running on a 32-bit MCU board. However, 
for this to be possible it is required that the board 
meet the following specifications: a) A minimum 
size of RAM and ROM memory that would enable 
it to run a RTOS. b) Hardware floating-point 
operations (FPU), necessary to efficiently perform 
numerical computations. c) High-resolution 
(16-bit) Analog-to-Digital Converters (ADCs) 
and Digital-to-Analog Converters (DACs) with 
embedded hardware filters. d) A software for fast 
project development and debugging.

Until very recently, a hardware with these 
requirements was expensive. Thanks to the 
rapid development of technology there are 
now high-performance and cheaper 32-bit 
MCUs. For the test presented in Section 5, 
the Freedom-K64F (FRDM-K64F) (NXP 

Semiconductors, MCUXpresso IDE User Guide, 
2018) development board was employed.  This 
board is powered by a 32-bit Advanced Reduced 
Instruction Set Computer Machine (ARM) 
Cortex-M4. With a 1024 KB flash memory, 254 
KB RAM, combined with a 120 MHz base clock 
frequency, various communication ports like 
SPI, I2C, UART, Ethernet and USB, drives like 
PWM modules, PLL, and more flexible timers, 
etc. The manufacturer of this board also provides 
an Integrated Development Environment (IDE) 
and Software Development Kit (SDK), that make 
board configuration, and the FreeRTOS (RTOS 
used) configuration and installation easier.

FreeRTOS is a type of RTOS that is designed 
to be small enough to run on a MCU. However, 
its use is not limited to MCU applications. 
FreeRTOS is a kernel for embedded systems 
developed and maintained by the team of Real 
Time Engineers Ltd. It is an Open-source project 
distributed under a MIT license. It provides the 
core Real-time scheduling functionality, inter-
task communication, timing and synchronization 
primitives only. FreeRTOS kernel allows 
applications to be organized as a collection of 
independent tasks with priorities. Each priority 
is assigned by the application developer. For the 
program that emulates a dynamical system, the 
necessary tasks are: computing state values, and 
the communication between ADC, DAC and the 
plot buffer. 

5. Evaluation

In order to test SystDynam language, its language 
processor and the procedures for compiling and 
loading the C code generated, different dynamical 
system descriptions were coded in SystDynam.  
The description of dynamical systems instead of 
controllers was preferred for evaluation because 
a dynamical system can be tested separately. By 
contrast, a controller has to be applied to other 
dynamical systems. Nevertheless, experiments 
are meaningful because a dynamical controller 
is basically a dynamical system, and a static 
controller can be considered a dynamical system 
without states. Furthermore, in both experiments 
a state is actually a feedback into the system. 

The dynamical systems chosen to evaluate the 
tool here-developed are classical in the study of 
dynamical systems. To make experiments with 
these systems, a lab equipment is required. One 
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way is construct a lab prototype with error prone 
and on the other hand, buy the equipment to a 
laboratory that is not usually cheap. However, 
with the SystDynam language and its processor, 
these systems can be emulated using a low cost 
32-bit MCU. In the same way other systems can 
be emulates such as DC and AC electric motors, 
simple robots, etc.

Each system description was input into the 
language processor and C code was generated.  
The C code obtained was compiled by a standard 
C compiler and loaded to the MCU to be executed 
in real-time by the FreeRTOS operating system.  
Finally, measurements were taken with the 
oscilloscope on corresponding output pins.  These 
measurements were compared with the results 
of a simulation of the same system in Simulink. 
The method used in Simulink was ODE45 with a 
relative tolerance of 10-6. 

The MCU employed limited the analogue signal 
range of the ADC input and the DAC output to 
0-3.3v. This can be modified by external hardware. 
However, to reduce the influence of external 
hardware to a minimum, in examples presented 
below, numbers that pass through the ADC and 
DAC to be measured externally are manipulated 
such that zero correspond to 3.3/2=1.65 V. Thus, 
positive numbers result in the range [1.65V-3.3V] 
and the range for negatives is [0V-1.65V).  Proper 
output scaling should be specified for each 
SystDynam description to keep the output voltage 
within these ranges.

5.1 Evaluation of SystDynam Using a 
Simple Pendulum Model

A simple pendulum  is modelled by (1), (2).

21 xx =
                                                               (1)

                      (2)
Where 1x  and 2x  are the angular position and 
velocity respectively, m  is the pendulum mass, l  
is the pendulum length, J  is angular momentum, 
b  is the friction coefficient and the input u  is a 
torque applied to the pivot.  Models (1) and (2) are 
described in SystDynam by the code illustrated in 
Listing 1. 

The input and output scale was ×2, hence each 
volt at the input represents two radians and also 
each volt at the output represents two radians. 

The initial values of the pendulum states are 
)0,2.1(),( 21 =xx . The same values were used in 

the Simulink model. 

Results obtained when 2u x= − , are shown in 
Figure 1, Figure 2 and  Figure 3. The numerical 
values calculated by the MCU, which are 
superimposed to the Simulink simulation results 
are shown in Figure 1 and Figure 2. 

These results are available thanks to the board 
debugging tools that allow one to record and 
access the internal values generated when the 
program is running.  To achieve this feedback, the 
corresponding DAC output channel was wired to 
the ADC input channel programmed to be u . The 
minus sign was set by software. Note how the 2x  
feedback affected the MCU calculated values in 
almost the same manner as Simulink. 

Figure 1. Pendulum Angular Position

Figure 2. Pendulum Angular Velocity
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Figure 3. Simple pendulum ( 2xu −= ): signals 
measured at DAC output 

State signals measured at the DAC channels of the 
board are illustrated in Figure 3. The state 1x  does 
not reach zero in the MCU because the maximum 
DAC output is not 3.3V but 3.26V. Hence, the 
offset of 1.65V does not correspond exactly to 
zero.  As a consequence, the system behaves as if 
it received a small constant input. 

5.2 Van Der Pol Model Evaluation

A classical model of an excited Van Der Pol 
oscillator is given by (3) and (4).

21 xx =
                                                               (3)

uxxxx +−−= 1

3
2

22 )
3

(ξ


                              (4)

where ξ  is a constant and u  is an external input.  
The SystDynam code for this example is shown 
in Listing  4. 

Listing 4. Description of a Van Der Pol model on 
SystDynam language

Parameters:
   ti:=0 ,
   tf:=10 ,
   dt:=0.01 ,
   inputs:=1 ,
   outputs: =2 ,
   input_scale: =2,
   output_scale: =2;
System:
   epsi=0.01,
   #u, 
   $y1,
   $y2,
   x1’=x2,
   x2’ =epsi*(x2-(x2*x2*x2)/3)-x1+u,
   y1=x1,
   y2=x2;
InitialC:
   x1_0 = -1.0,
   x2_0 = 0;

This example is interesting because depending 
on u  three behaviors can be noticed. If 0=u  a 
stable oscillation is obtained. If 1xu = , the origin 
is an equilibrium point. If 2xu = , increasing 
oscillations can be noticed. The experiment and 
results for increasing oscillations, 2xu = , are 
shown below in Figure 4, Figure 5 and Figure 6. 

Figure 4. 1x state, Van Der Pol linear oscillator

Figure 5. 2x state, Van Der Pol linear oscillator 

To make the feedback 2xu = , the pin signal 
corresponding to the 2x  state, in the output channel 
of the DAC, was routed to the corresponding 
control input pin of the ADC channel.  

Both states were calculated by the MCU and 
superimposed with the data obtained by Simulink. 
Note that oscillations increased as it was expected. 
Differences between MCU data and Simulink as 
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illustrated by these graphs are due to quantization 
errors in the ADC and a more notable deviation 
between Euler method used in the MCU and 
the ode45 method used in Simulink for unstable 
systems. Figure 6 depicts both system states 
measured in the respective DAC output channels 
with the oscilloscope. Here, increased oscillations 
can also be noticed. However, due to DAC has 
a limited output range, as signals` amplitude 
increases and saturation can be noticed. 

Figure 6. Van Der Pol linear oscillator ( 2xu = ): 
signals measured at DAC output channels

6. Conclusion

Having the experience of physically manipulate 
and control dynamical systems is important for 
control engineering students. In this paper it was 
described a set of tools to ease acquiring such 
experience without hiding any step of the process. 
Thus, a student will be able to modify or fine-tune 
any component of hardware or software involved 

in the experiment. These tools include SystDynam, 
a high-level language designed to describe static 
or dynamical systems.  The language, which was 
designed to easily describe a dynamical and be 
simple to translate the description into a C code. 
In this way, a senior student or a control engineer 
can understand how the C code is generated. A 
language processor that is fed with a SystDynam 
description and generates a C code was developed 
and is freely available. 

The generated C code can be compiled and run 
as the main task of a real-time operating system 
in a MCU. The results obtained by using the 
FreeRTOS running in a FRDM-K64F powered 
by an ARM Cortex M4 were presented. 

The SystDynam language and its language 
processor is meant to ease controller 
implementations. Furthermore, it can be used to 
emulate dynamical systems and make simulations 
with hardware in the loop (HIL). With a pair of 
boards, a dynamical system can be emulated in one 
board and the controller in the other one, which 
would give way to a variety of experiments. It can 
also be used for rapid prototyping, particularly in 
small technology-oriented businesses that cannot 
afford the cost of other tools. Because, SystDynam 
is easy to translate but powerful at the same time, 
it also can be useful in other engineering contexts, 
like signal processing, programming, real-time 
systems, embedded systems, compilers, etc. 
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