
477

ICI Bucharest © Copyright 2012-2019. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

The Cloud Computing paradigm is considered as
one of the main techniques to operate with data
using a network of computers that is available
through Internet by paying a certain price. This
paradigm is based on the interaction between
CSCs that rent the Cloud Computing Service
from a CSP. In this type of environment one of
the most important operations is to schedule
the tasks from one or various CSC to the Cloud
Computing resources that are offered by the CSPs.
The process of task scheduling is crucial when
discussing about this type of paradigm because
based on the scheduling algorithm the CSC
can decide which CSP is the most suitable for
scheduling its DAG of tasks.

Three different scheduling algorithms were
modelled and simulated in order to design a SLA
contract for the Cloud. One used a very well-
known Cloud Computing paradigm simulator that
is called CloudSim (Calheiros et al., 2011). The
reason behind the choice of CloudSim was the
fact that this tool is considered a well-established
modeling and simulation software for the Cloud.
The CloudSim is a simulation toolkit that can help
design, evaluate and implement various Cloud
architectures and various scheduling algorithms.
The process of experimenting in Cloud is very
difficult and involves high costs when dealing with
real environments. Thus, the choice of simulating
the algorithms in CloudSim is well-motivated.

This paper elaborates on the scheduling of
tasks with dependencies on a Cloud Computing
platform. For this purpose, three scheduling
algorithms (that are some of the most usual when
working with DAGs) are considered and the
differences between them are analyzed. These
differences are useful when trying to optimize
certain SLA parameters. By optimizing the SLA
parameters, one refers to the minimization of the
values of these parameters in the negotiation phase
(between the CSC and the CSP) when knowing the
DAG of tasks of the CSC. These SLA parameters
can be enumerated as follows:

-- Total time of execution (Iordache et al.,
2017): although this parameter is hard to
minimize because the actual execution time
on a certain resource it is usually unknown, in
this paper it is considered that this parameter
can be reduced because the DAG of the
CSC is already known. This parameter is
useful when designing the CSP infrastructure
because based on it one can decide for
example the number of Virtual Machines that
are offered by the provider to the customer.

-- Total Execution Time of a specific tenant:
because the execution times of tasks on
Virtual Machines and the communication
costs between the Virtual Machines of the
Cloud are known, the Cloud infrastructure
can be designed so that it can minimize the

Studies in Informatics and Control, 28(4) 477-484, December 2019

https://doi.org/10.24846/v28i4y201911

Scheduling in CloudSim of Interdependent Tasks for
SLA Design

Bogdan ȚIGĂNOAIA1, George IORDACHE1*, Cătălin NEGRU1, Florin POP1,2

1 University “Politehnica” of Bucharest, Computer Science Department, Splaiul Independentei, No. 313,
Bucharest-Sector 6, Bucharest, 60042, Romania
bogdantiganoaia@gmail.com, george.iordache@cs.pub.ro (*Corresponding author), catalin.negru@cs.pub.ro
2 National Institute for Research and Development in Informatics (ICI), Bucharest, Romania
florin.pop@cs.pub.ro

Abstract: One of the most recent concepts in the framework of today’s distributed systems is Cloud Computing. A very
difficult problem that needs to be addressed is the management of the Cloud. When designing a Cloud scheduling strategy,
the design trade-offs of the Cloud architecture should be evaluated. The easiest way to evaluate this infrastructure is to use a
simulation tool (in this case CloudSim simulation toolkit). This article examines three different algorithms that consider the
scheduling of tasks in Cloud, which are described as Directed Acyclic Graphs (DAGs) (interdependent tasks). The results of
the scheduling algorithms are valuable because they are helpful for the design of the Cloud Computing scheduling algorithms
and for the design of a Service Level Agreement (SLA) contract whose members are the Cloud Service Provider (CSP) and
the Cloud Service Customers (CSCs). This paper shows that the selection of the scheduling algorithms is useful in the design
of the SLA contract.

Keywords: Scheduling in Cloud, CloudSim, SLA parameters, Directed Acyclic Graphs.

mailto:bogdantiganoaia@gmail.com
mailto:g
mailto:george.iordache@cs.pub.ro
mailto:catalin.negru@cs.pub.ro
mailto:florin.pop@cs.pub.ro

https://www.sic.ici.ro

478 Bogdan Țigănoaia, George Iordache, Cătălin Negru, Florin Pop

total execution time of a specific tenant.;
thus this parameter is useful from the user
(tenant) point of view.

-- Percentage of Disponible Resources
(PDR): this parameter is used by the CSP
in the scheduling process of certain tasks on
certain Virtual Machines in the Cloud.

The process of scheduling can be employed
when designing a Cloud Computing System,
by using the simulation results that come from
the CloudSim simulation toolkit. The main idea
behind this design process is the fact that one must
decide the number of available Cloud Computing
resources and the cost that is needed to maintain
those resources. Thus, it can be said that having
many resources is useful, but this large number is
not always necessary. The second situation, which
is the implementation of different scheduling
strategies on existing Cloud architectures, is very
important when dealing with CSCs that want to
optimize the SLA parameters of a given Cloud
Infrastructure. For this usually a SLA between
the CSPs and CSCs must be in place. The design
of such a SLA contract can be based also on the
scheduling algorithms and results.

The process of scheduling is based on the idea
of mapping tasks on the available resources (see
Figure 1). There are various types of tasks. From
the point of view of interaction between them
there are (Hassan et al., 2015), (Kwok, Ahmad
& Gu, 1996):

-- Independent (tasks that run independently
from one another)

-- Interdependent (tasks that have
dependencies between them)

From the point of view of the time of execution,
the tasks can be heterogeneous (with different
execution times) or homogeneous (with the same
execution times).

This paper will focus on heterogeneous offline (in
this case the queue of tasks is known a priori)
CPU and network communication intensive
interdependent tasks.

One of the most important situations in Cloud
is the way that the resource management is
performed. We know already that the scheduling
problem is NP-complete (Ullman, 1975). This
means that the matching between the tasks and the

resources can be optimized, but it is not certain that
an optimal one can be reached. Thus, in scheduling
the purpose is finding a “good enough” solution
in a short enough time. For this to be feasible the
Cloud designer must take proper decisions.

The paper is organized as follows. Section 2
discusses the state of the art regarding scheduling
in the Cloud domain. Section 3 presents the DAG
model used. Section 4 sets forth the simulation
toolkit – CloudSim. Section 5 explores the list
scheduling strategies and metrics. In section 6 the
implemented algorithms are considered. Section
7 presents the DAG scheduling results and how
these algorithms can be used in designing the SLA
for the Cloud. In section 8 the conclusions are
drawn, and the future work is presented.

Figure 1. Scheduling in Cloud – a schema.

2. State of the Art

This paper discusses the simulated scheduling in
a homogeneous Cloud because the homogeneous
Cloud is encountered in practice (the CSPs usually
provide the same types of resources) and the
scheduling in such environments represents a real
research challenge (Singh & Chana, 2016).

DAG-based scheduling strategies in homogeneous
and heterogeneous Cloud have been presented in
multiple works, (Singh & Chana, 2016; Wang, et
al., 2012; Mohammed & ȚĂPUȘ, 2017). Various
scheduling strategies with various optimization
parameters are discussed by (Zhan et al., 2015),
for example load balancing scheduling, energy
conservation scheduling, and cost effectiveness
scheduling. The scheduling strategies can be offline
or online, and the experimental environments can
be real clouds or numerical simulators.

In (Emeakaroha et al., 2015) the scheduling process
in Cloud by considering multiple SLA objectives. In
(Reig, Alonso & Guitart, 2010) a novel mechanism
is proposed to prevent SLA violations.

Three scheduling algorithms were implemented
in CloudSim with the purpose of choosing (the

	 479

ICI Bucharest © Copyright 2012-2019. All rights reserved

Scheduling in CloudSim of Interdependent Tasks for SLA Design

chosen strategy is explicitly discussed) the best
scheduling strategy when a certain SLA parameter
needs to be optimized.

The novelty of this work lies in the fact that it
starts from the scheduling strategy and analyses
which SLA parameters can be optimized based on
the implemented scheduling strategy.

3. The DAG Model

In Cloud scheduling a set of tasks that interact
with each other can be represented as a DAG
characterized by:

V – the set of nodes (vertexes – tasks), where
a node represents an application task. Each
application task is defined as a set of instructions
that can be executed on a processor, and a set
of nodes (vertexes – tasks) can be executed on
multiple processors. There can exist two types of
nodes: a parent node which is the source node of
an edge and a child node which is the destination
node of an edge. A node without parents is said to
be at an entry level and a node without children is
said to be at an exit level. The set of nodes can be
used when computing the SLA parameter called
Number and type of virtual machines (Iordache
et al., 2017). For example, based on the V of the
DAG and on the scheduling policy one can decide
which number and type of virtual machines of
the CSPs can be rented for scheduling that DAG.

E – the set of oriented edges that defines the
nodes’ dependencies. An edge, e(i, j), denotes the
communication costs between a parent node (task)
v(i) and a v(j) node (task) that is denoted as a
child node. Additionally, it must be said that when
dealing with a DAG a child node, v(j) cannot be
executed until its parent node, v(i), is executed and
until it communicates the data resulted from its
execution to the child node, v(j). E can be used to
represent the communication costs of the network
that is in place between the computational nodes
of the Cloud.

C – the set of communication-related costs,
meaning that each edge e(i, j) has an associated
communication cost, c(i, j). The communication
costs can be used when designing the Cloud based
on the SLA parameter Network capacity. Starting
from the DAG of the CSC and based on the upper
bounds of the network (the Network capacity
parameter) the communication costs of the set C
can be recomputed.

W – the set of computation costs (or computation
weights), where an element of the set, for
example the node (task) v(i), has the computation
weight w(i).

It can be said that a DAG has some entry nodes,
some intermediate nodes and some exit nodes.

Based on the W set the CSP infrastructure
configuration can be designed. When doing
this, the SLA parameter called CPU capacity is
of interest. For example, W is computed based
on the CPU capacity SLA parameter of each
virtual machine from the Cloud (e.g. as the time
necessary for the execution of a certain task on a
certain resource).

The DAG is used because the scheduling of tasks
in the Cloud when having a CSC’s DAG can be
optimized. This optimization can be used when
defining the SLA parameters agreed with the CSP.
This will be further discussed in section 7.

4. CloudSim Toolkit

CloudSim (Calheiros et al., 2011; Buyya, Ranjan
& Calheiros, 2009) is a well-known simulation
tool that was designed to evaluate the performance
of different Cloud infrastructures and model the
interactions between the CSPs and the CSCs. The
CloudSim implementation classes model Cloud
Components such as: datacenters (Datacenter),
hosts (Host), virtual machines (Vm), processing
elements (Pe) and tasks (Cloudlets) (see Fig. 2).

Figure 2. Basic Cloud infrastructure (Calheiros et al.,
2011)

As shown in Figure. 2, the main entities of a Cloud
architecture implemented in CloudSim are:

1.	 CIS (Cloud Information Service) functional
part registers Data Center entities and
ensures the correspondence between the
Cloud Service Customers and the suitable
Cloud Service Providers.

https://www.sic.ici.ro

480 Bogdan Țigănoaia, George Iordache, Cătălin Negru, Florin Pop

2.	 Data Center represents a model of hardware
resources that are offered by the Cloud
Service Providers and that are either
homogeneous or heterogeneous.

3.	 Data Center Broker is an entity that has
the purpose of selecting a Data Center by
analyzing its available virtual machines and
the Cloudlets (tasks) that need to be allocated
to the virtual machines and implements the
execution of tasks on the selected Data Center.

4.	 Host represents a physical computing
machine. A Data Center can have one or
many Hosts.

5.	 VM represents a Virtual Machine. A Host can
have one or multiple Virtual Machines.

6.	 Cloudlet represents a Task that needs to
be scheduled.

The simulator has some specific properties:

-- a task can be executed on a single processing
element (Pe);

-- a processor cannot use preemption; this
means that before executing the next task
on the current Pe, the current task must be
executed on the current Pe;

-- a Pe can execute the tasks that are mapped
to it;

-- for tasks with dependencies a task can be
executed only after the execution of all
its parents;

-- if a task is mapped on a Pe, the task is ready
to run and the Pe is available, the task will
run on that Pe.

The aim of this research is to optimize the
scheduling process based on SLA constraints
in a Cloud environment by using simulations.
The authors chose to simulate the scheduling
process because it offers different configuration
capabilities at lower costs.

5. List Scheduling

The list scheduling technique is based on the idea
that the tasks that must be scheduled are assigned
certain priorities and they are ordered into lists
(or queues) into the descending order of their
priority. The scheduling algorithms include the
following steps:

1.	 If a task from the given list has the highest
priority, then it will be selected for scheduling;

2.	 Based on the selected task a mapping between
the task and a resource is done;

3.	 If no resource is found for the mapping
between the task and the resource (Step 2.)
continue with the next task from the list.

Priorities are assigned to the tasks based on some
metrics of DAG such as (Kwok & Ahmad, 1999):

-- Top level (t-level) of a node v(i) represents
the length of the longest path whose start
node is an entry node and whose end node
is the node v(i). This length is given by the
sum of all computation costs (represented
by the costs of nodes) and communication
costs (represented by the costs of edges) of
all nodes along the top level (t-level) path.
For the computation of the t-level the DAG
is traversed downwards starting from its
entry nodes.

The formula for the computation of t-level of
node v(i) is the following:

(()) max((()) () (,)).t level v i t level v m w i c m i− = − + + (1)

•	 Bottom level (b-level) of a node v(i) rep-
resents the length of the longest path whose start
node is the node v(i) and whose end node is an
exit node. Its length is given by the sum of all
computation costs (the costs of nodes) and com-
munication costs (the costs of edges) of all nodes
along the bottom level (b-level) path. For the
computation of the b-level the DAG should be
traversed upwards by starting from its exit nodes
towards to the node v(i).

The b-level of v(i) can be computed as follows:
(()) () max((()) (,)).b level v i w i b level v m c m i− = + − + (2)

-- Static b-level (SBL) is computed when the
edge weights are not considered. The SBL of
v(i) can be expressed as:

(()) () max((())).SBL v i w i SBL v m= + (3)

-- Critical path is computed as the longest path
that starts from an entry node and ends with
an exit node.

-- ALAP (LST) (Wu & Gajski, 1990): As
late as possible start time of a given node
measures how much the start time of a node
can be delayed without affecting the global
schedule length.

	 481

ICI Bucharest © Copyright 2012-2019. All rights reserved

Scheduling in CloudSim of Interdependent Tasks for SLA Design

The formula which expresses the LST of v(i) is
the following:

(()) min((()) (,)) ().LST v i LST v m c m i w i= − − (4)
-- ASAP (Wu & Gajski, 1990): – as soon as

possible – refers to the earliest start time of a
node (vertex) if by scheduling the node (task
- vertex) the DAG scheduling constraints are
not violated.

All these metrics are used by the considered list
of scheduling algorithms for DAGs in CloudSim.

The next section puts forward three algorithms
that were developed in order to analyze different
SLA characteristics of the scheduling process in
the Cloud when tasks are represented as DAGs.

6. Algorithms

The Earliest Time First Algorithm (ETF)
(Hwang et al.,1989). is based on the idea that
at each execution step all the earliest start times
(EST) are computed for each task and the task
with the smallest start time from the batch of tasks
that need to be scheduled is chosen for scheduling.
The EST of a node is computed by considering
exhaustively the start time of each task (node).
A list of the nodes that are ready to be evaluated
is used. After selecting a node that is ready for
evaluation all its successors will be included in
the respective list.

The Highest Level First with Estimated Times
(HLFET) (Adam, Chandy & Dickson, 1974)
algorithm produces a schedule based on the
priority of nodes (tasks) that is determined by
computing its level. For the computation of this
level the computation costs are added along a path
from a given node (task) to an exit node and the
largest sum is chosen. The highest priority of a
node is denoted by the highest computed level.
For ordering the nodes (tasks) a list with all the
nodes of the DAG is sorted in descending order
based on the SL of nodes (tasks).

Modified Critical Path (MCP) (Wu & Gajski,
1990) algorithm computes first an attribute called
Latest Possible Start Time for each node. This
attribute is computed by finding the ALAP metric
of each node. For finding this metric one should
traverse the graph starting from the exit nodes
(tasks) towards the entry nodes (tasks) and to
compute downwards where it is possible the start
time of the nodes.

7. DAG Scheduling Example

In order to obtain the scheduling results, the
DAG presented in Figure 3 is used. In Figure 3
the Critical Path is marked with grey and has a
length of 46. In Table 1 the nodes are marked by
an asterisk.

Figure 3. An example of DAG used to highlight the
execution of the scheduling algorithm

Table 1 presents the values for the static b-levels
(SBLs), t-levels, b-levels and ALAP of the nodes
computed for the given graph.

Table 1. The metrics of the DAG graph: Static b-levels
(SL), t-levels, b-levels, ALAP; the nodes on the Criti-

cal Path (CP) are marked with asterisk (*)

node SL t-level b-level ALAP
v(0)* 31 0 46 0
v(1) 25 9 36 10
v(2)* 27 10 36 10
v(3) 18 16 25 21
v(4)* 20 18 28 18
v(5) 19 19 25 21
v(6) 14 28 16 30
v(7)* 14 29 17 29
v(8) 12 27 14 32
*v(9) 8 38 8 38

The results of the scheduling algorithms
implemented in CloudSim are presented in Tables
2, 3, 4. When designing the above-mentioned
Cloud, 1 Data Center with 3 Virtual Machines
was chosen. The purpose of the experimental
setup was to compare the three algorithms that
were implemented in CloudSim. The purpose of
the experimental setup was to compare the three
algorithms that were implemented in CloudSim.

https://www.sic.ici.ro

482 Bogdan Țigănoaia, George Iordache, Cătălin Negru, Florin Pop

To compare the results, the following optimization
parameters were chosen (Pop, Dobre & Cristea,
2009; Zuo et al., 2015).

Table 2. The scheduling results for the DAG of tasks
in the case of the ETF algorithm

Output Earliest Time First (ETF) Algorithm
Cloudlet

ID VM ID Task
Weigth

Start
time

Finish
Time

0 0 4 0 4
1 1 5 4 14
2 2 7 4 17
3 1 4 14 18
4 2 6 17 23
5 1 4 18 22
6 2 6 23 29
7 1 6 22 28
8 2 4 29 33
9 1 8 28 36

Table 3. The scheduling results for the DAG of tasks
in the case of the HLFET algorithm

Output of the HLFET Algorithm
Cloudlet

ID VM ID Task
Weigth

Start
time

Finish
Time

0 0 4 0 4
1 1 5 9 14
2 0 7 4 11
3 2 4 16 20
4 1 6 14 20
5 0 5 11 16
6 0 6 16 22
7 1 6 20 26
8 2 4 23 27
9 1 8 26 34

Table 4. The scheduling results for the DAG of tasks
in the case of the MCP algorithm

Output of the MCP Algorithm
Cloudlet

ID VM ID Task
Weigth

Start
time

Finish
Time

0 0 4 0 4
1 0 5 4 9
2 0 7 9 16
3 1 4 11 15
4 0 6 16 22
5 1 5 18 23
6 0 6 22 28
7 1 6 23 29
8 2 4 26 30
9 2 8 30 38

1. Makespan = max(v(i)) ∈V {ft(v(i))}, where v(i)
represents a node (vertex - task) from the set of
nodes (vertexes - tasks) V; additionally, the st(v(i))
is denoted as the start time for node (vertex - task)
v(i), and ft(v(i)) as the finish time for node (task)
v(i). The makespan parameter is correlated with
the SLA parameter of Total Time of Execution for
the DAG that is sent to be scheduled. Based on the
results obtained it can be noticed that the HLFET
algorithm has the minimum makespan, followed
by the ETF algorithm and the last one is the MCP
the algorithm (see Table 5.).

Table 5. The makespan for the implemented algo-
rithms: MCP, ETF, HLFET.

Makespan
MCP ETF HLFET

38 36 34

The makespan parameter is useful when designing
a Cloud Service Provider scheduling policy that
has the purpose of minimizing the Total Time of
Execution for a DAG of tasks. This SLA parameter
can be optimized if we know the exact DAG that
needs to be scheduled and the scheduling policies
to be implemented.

A SLA between the CSP and the CSC might state
the following: “The Total Execution Time in the
case of the given DAG must have a finish time of
at most 37” (Iordache et al., 2017). A generic SLA
rule of the form “if-then” can be the following:

“If the Total Execution Time in the case of the
given DAG is greater that the agreed one (e.g.
37) then the CSP needs to pay a penalty of 10%
for this violation” (Iordache et al., 2017).

One can see that if this rule is put in practice
then the MCP scheduling algorithm should
not be considered.

2. Total Execution Time of a specific tenant
that represents how the scheduling process can
be optimized when it relates to a specific tenant (a
Cloud customer can have multiple tenants of the
same CSP). For example, if one considers that in
the DAG employed for designing the scheduling
process in the Cloud the path v(0) – v(2) – v(5)
– v(8) represents the tasks executed for a specific
tenant (the tasks in the chosen DAG are from
multiple tenants) then the Total Execution Time

	 483

ICI Bucharest © Copyright 2012-2019. All rights reserved

Scheduling in CloudSim of Interdependent Tasks for SLA Design

of this tenant is 27 in the case of the HLFET
algorithm, 33 in the case of the ETF algorithm
and 30 in the case of MCP algorithm (see Table 6).

Table 6. The makespan for the three implemented
algorithms in case of a given tenant

Total execution time for a specific tenant
Cloudlet

ID
Task

Weigth HLFET ETF MCP

st ft st ft st ft
0 4 0 4 0 4 0 4
2 4 4 11 4 17 9 16
5 5 11 16 18 22 18 23
8 4 23 27 29 33 26 30

A SLA between the CSP and the CSC might point
out about the Total Execution Time for that tenant
(the one in Table 6): “The Total Execution Time in
the case of the given DAG for the given tenant must
have a finish time of at most 29”. A generic SLA
rule of the form “if-then” can be the following:

“If the Total Execution Time for the given tenant
in the case of the given DAG is greater that the
agreed one (e.g. 29) then the CSP needs to pay
a penalty of 5% for this violation”

If this rule is put in practice, then only the HLFET
algorithm should be considered. The SLA rules
can be defined while negotiating the SLA contract.
The negotiation of the SLA contract is based on
what the Cloud Service Provider can offer in terms
of implemented scheduling algorithms.

3. Another SLA parameter that can be optimized
is the Percentage of Disponible Resources
(PDR) when discussing about multi-tenancy in
Cloud. If one considers for example that in the
aforementioned DAG v(3), v(4), and v(5), are
independent tasks, that are part of different Cloud
applications, it can be noticed that for example for
the task v(3) the only available machine in order
to minimize the makespan is the Virtual Machine
VM 2, in the case of the HLFET algorithm, it is
the Virtual Machine VM 1 in the case of the ETF
algorithm, and the Virtual Machine VM 1 in the
case of the MCP algorithm. A generic SLA rule in
the form “if-then” for the Percentage of Disponible
Resources (PDR) parameter can be the following:

“If the Percentage of Disponible Resources in
the case of the given DAG is smaller than the
agreed one then the CSP needs to pay a penalty
of 5% for this violation”

and the rule is useful when multiple tenants
use the same Cloud architecture and the
Percentage of Disponible Resources is used in
the scheduling process).

The SLA parameters that were discussed in this
work are used when designing a SLA contract
if one knows the scheduling DAG and the
scheduling strategy. Based on the parameters that
need to be optimized the SLA can consider a given
scheduling strategy (from among the three ones
presented previously or from among others that
will be implemented in the future).

8. Conclusions and Future Work

This paper discusses the importance of scheduling
algorithms in order to help designing a proper SLA
contract, which may prove to be advantageous
for both the CSP and for the CSC. One discusses
certain SLA parameters that need to be taken into
consideration when implementing the scheduling
algorithms, then analyze and compare the three
algorithms that are employed for scheduling tasks
in the CloudSim environment.

As future work it is planned to implement the
scheduling algorithms in a real Cloud System
(for example Cloud robotics (Wan et al., 2016))
and analyze and design in a better way both the
interaction between the CSCs and the CSPs and the
scheduling process. In addition, one could analyze
and implement other algorithms from literature (for
example those described by (Zuo et al., 2015), that
are meant to optimize the SLA-based scheduling
process. Another aim is to use the scheduling
platform together with other technologies
(Merezeanu, Vasilescu, & Dobrescu, (2016).	

Acknowledgement

This work has been funded by University
Politehnica of Bucharest, through the “ARUT
Grants” Program, UPB – GNaC. Identifier: GNaC
2018, Contract: 16/06.02.2019, RM-CYBERSEC.

https://www.sic.ici.ro

484 Bogdan Țigănoaia, George Iordache, Cătălin Negru, Florin Pop

REFERENCES

1.	 Adam, T. L., Chandy, K. M. & Dickson, J.
R. (1974). A comparison of list schedules for
parallel processing systems, Communications
of the ACM, 17(12), 685-690.

2.	 Buyya, R., Ranjan, R. & Calheiros, R. N.
(2009, June). Modeling and simulation of
scalable Cloud computing environments
and the CloudSim toolkit: Challenges and
opportunities. In International Conference on
High Performance Computing & Simulation,
- HPCS’09 (pp. 1-11). IEEE.

3.	 Calheiros, R. N., Ranjan, R., Beloglazov, A.,
De Rose, C. A. & Buyya, R. (2011). CloudSim:
a toolkit for modeling and simulation of cloud
computing environments and evaluation of
resource provisioning algorithms, Software:
Practice and experience, 41(1), 23-50.

4.	 Emeakaroha, V. C., Brandic, I., Maurer, M., &
Breskovic, I. (2011). SLA-aware application
deployment and resource allocation in
clouds. In 2011 IEEE 35th Annual Computer
Software and Applications Conference
Workshops (pp. 298-303). IEEE.

5.	 Hwang, J. J., Chow, Y. C., Anger, F. D. &
Lee, C. Y. (1989). Scheduling precedence
graphs in systems with interprocessor
communication times, SIAM Journal on
Computing, 18(2), 244-257.

6.	 Iordache, G., Paschke, A., Mocanu, M. &
Negru, C. (2017). Service Level Agreement
Characteristics of Monitoring Wireless
Sensor Networks for Water Resource
Management (SLAs4Water), Studies in
Informatics and Control, 26(4), 379-386.
DOI: 10.24846/v26i4y201701

7.	 Kwok, Y. K., Ahmad, I. & Gu, J. (1996).
FAST: A low-complexity algorithm for
efficient scheduling of DAGs on parallel
processors. In Proceedings of the 1996
ICPP Workshop on Challenges for Parallel
Processing (pp. 150-157). IEEE.

8.	 Kwok, Y. K. & Ahmad, I. (1999). Static
scheduling algorithms for allocating directed
task graphs to multiprocessors, ACM
Computing Surveys (CSUR), 31(4), 406-471.

9.	 Merezeanu, D., Vasilescu, G. & Dobrescu, R.
(2016). Context-aware control platform for
sensor network integration in IoT and Cloud,
Studies in Informatics and Control, 25(4),
489-498. DOI: 10.24846/v25i4y201610

10.	 Mohammed, M. A. & Țăpuş, N. (2017).
A novel approach of reducing energy
consumption by utilizing enthalpy in mobile
cloud computing, Studies in Informatics and
Control, 26(4), 425-434. DOI: /10.24846/
v26i4y201706

11.	 Pop, F., Dobre, C. & Cristea, V. (2009).
Genetic algorithm for DAG scheduling
in grid environments. In 2009 IEEE 5th
International Conference on Intelligent
Computer Communication and Processing
(pp. 299-305). IEEE.

12.	Reig, G., Alonso, J. & Guitart, J. (2010).
“Prediction of job resource requirements
for deadline schedulers to manage high-
level SLAs on the cloud.” In 2010 Ninth
IEEE International Symposium on Network
Computing and Applications (pp. 162-
167). IEEE.

13.	 Singh, S. & Chana, I. (2016). A survey on
resource scheduling in cloud computing:
Issues and challenges, Journal of Grid
Computing, 14(2), 217-264.

14.	 Ullman, J. D. (1975). NP-complete
scheduling problems, Journal of Computer
and System Sciences, 10(3), 384-393.

15.	 Wan, J., Tang, S., Yan, H., Li, D., Wang, S.,
& Vasilakos, A. V. (2016). Cloud robotics:
Current status and open issues. IEEE Access,
4, 2797-2807.

16.	 Wang, W., Zeng, G., Tang, D. & Yao, J. (2012).
Cloud-DLS: Dynamic trusted scheduling
for Cloud computing, Expert Systems with
Applications, 39(3), 2321-2329.

17.	 Wu, M. Y. & Gajski, D. D. (1990). Hypertool:
A Programming Aid for Message-Passing
Systems, IEEE Transactions on Parallel and
Distributed Systems, 1(3), 330-343.

18.	 Zhan, Z. H., Liu, X. F., Gong, Y. J., Zhang,
J., Chung, H. S. H. & Li, Y. (2015). Cloud
computing resource scheduling and a
survey of its evolutionary approaches, ACM
Computing Surveys, 47(4), 1-33.

19.	 Zuo, L., Shu, L., Dong, S., Zhu, C. & Hara,
T. (2015). A multi-objective optimization
scheduling method based on the ant colony
algorithm in cloud computing, IEEE Access,
3, 2687-2699.

	OLE_LINK9
	OLE_LINK10
	_GoBack
	_Hlk21340612
	_GoBack
	_GoBack
	_Ref20544371
	_Ref20544387
	_Ref20544421
	_Ref20544454
	_Ref20753143
	_Ref20753145
	_Ref20753148
	_Ref20760659
	_Ref20754130
	_Ref20754132
	_GoBack
	_GoBack
	_Hlk21516250
	_Hlk21516938
	OLE_LINK9
	OLE_LINK8
	OLE_LINK5
	OLE_LINK4
	OLE_LINK41
	OLE_LINK40
	OLE_LINK26
	OLE_LINK25
	OLE_LINK56
	OLE_LINK55
	OLE_LINK21
	OLE_LINK20
	OLE_LINK52
	OLE_LINK51
	OLE_LINK24
	OLE_LINK23
	OLE_LINK54
	OLE_LINK53
	OLE_LINK7
	_GoBack
	_Hlk23878482
	bau000005
	bau000010
	bau000015
	bau000020
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OLE_LINK1
	OLE_LINK2
	_GoBack
	_GoBack
	_Hlk24652148
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	OBJ_PREFIX_DWT325_ZmEmailObjectHandler1
	_Hlk25655392
	_Hlk24633070
	_Hlk23155444
	_Hlk25657182

